

Polynomial-time programs from ineffective proofs in feasible analysis

Paulo Oliva

 BRICS
University of Århus
Denmark

ASL Annual Meeting, Chicago, Jun 2003

The Plan

1. Motivation

- Ineffective principles in analysis (weak König's Lemma)
- Feasible analysis

2. The Main Result

- Algorithm for extracting polynomial-time realizers from proofs (involving WKL) of Π_2^0 -theorems in feasible analysis.

3. Sketch of the Proof

4. Related/Future Work

Ineffective principles

- By ineffective principles we mean, e.g.
 - (1) sequential Heine/Borel covering lemma for $[0, 1]$,
 - (2) Every continuous function $f : [0, 1] \rightarrow \mathbb{R}$ attains its infimum and supremum,
 - (3) Every continuous function $f : [0, 1] \rightarrow \mathbb{R}$ is uniformly continuous.
- Over a basic system of analysis (RCA_0) those principles are equivalent to

WKL : *Every infinite binary tree has an infinite branch*

- This principle is normally called binary/weak König's Lemma.
- WKL is ineffective in the sense that it only holds in models which contain non-recursive functions.

WKL in proofs of $\forall\exists$ -theorems

- What if WKL is used in the proof of a theorem $\forall x\exists y A_0(x, y)$?
- In 76 Friedman (also Parsons, Mints, Takeuti) defined the subsystem of analysis RCA_0 and showed that RCA_0 is Π_2^0 -conservative over PRA, i.e.

Thm [Friedman]. If $\text{RCA}_0 \vdash \forall x\exists y A_0(x, y)$ then there exists a primitive recursive function f such that $\text{PRA} \vdash A_0(x, fx)$.

- Moreover, he showed that $\text{RCA}_0 + \text{WKL}$ is Π_2^0 -conservative over RCA_0 . Therefore:

Thm [Friedman]. If $\text{RCA}_0 + \text{WKL} \vdash \forall x\exists y A_0(x, y)$ then there exists primitive recursive function f such that $\text{PRA} \vdash A_0(x, fx)$.

- Friedman's proof is **ineffective!**

On Friedman's result

- Harrington'77 proved (also non-constructively) Π_1^1 -conservation of WKL over RCA_0 .
- First effective version of Friedman's result was given by Sieg'85 (based on cut-elimination).
- Extension of Friedman's result to the higher types was given by Kohlenbach'92 (based on functional interpretation).
- Avigad'96 formalized the forcing argument used in Harrington's proof obtaining an effective version of the Π_1^1 -conservation result (no function extraction procedure, though).

Basic Feasible Analysis I

- Ferreira'94 defined a Basic Theory for Feasible Analysis BTFA
- The Π_2^0 -theorems of BTFA have polynomial-time computable realizers.

Thm [Ferreira]. If $\text{BTFA} \vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

- Ferreira also showed **non-constructively** that BTFA and $\text{BTFA} + \text{WKL}$ have the same Π_1^1 -theorems (and consequently Π_2^0 -theorems). Hence:

Thm [Ferreira]. If $\text{BTFA} + \text{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

Basic Feasible Analysis II

- A different basic theory for feasible analysis (based on the language of finite types) can be obtained by taking Cook and Urquhart's system CPV^ω extended with quantifier-free choice QF-AC.
- The resulting theory can be viewed as an extension of (a version of) BTFA to all finite types.

Thm. If $\text{CPV}^\omega + \text{QF-AC} \vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a polynomial-time computable function f such that $\text{IPV}^\omega \vdash \forall x A_0(x, fx)$.

Main result (to appear: LICS'03)

Thm. If $\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

- We can also allow “set parameters” in the theorem above, i.e.

Thm. If $\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \vdash \forall x \exists y A_0(x, y, \alpha)$ then there exists *effectively* a polynomial-time computable function *with boolean oracle* f such that $\forall x \forall \alpha : \{0, 1\}^\omega A_0(x, f x \alpha, \alpha)$ holds.

- In order to illustrated the mathematical significance of the system $\text{CPV}^\omega + \text{QF-AC} + \text{WKL}$ we have indicated how to formalize the proof of Heine/Borel covering lemma in it.

Sketch of the proof

1. Cook and Urquhart showed that CPV^ω has a functional interpretation, via negative translation, in IPV^ω .

Thm [CU'93]. $\text{CPV}^\omega \xrightarrow{\text{N+f.i.}} \text{IPV}^\omega$.

2. We extend this interpretation to $\text{CPV}^\omega + \text{QF-AC}$.

Lem. $\text{CPV}^\omega + \text{QF-AC} \xrightarrow{\text{N+f.i.}} \text{IPV}^\omega$.

3. And, by adding a new form of **binary bar recursion** \mathcal{B} to IPV^ω we can even interpret WKL .

Thm. $\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \xrightarrow{\text{N+f.i.}} \text{IPV}^\omega + \mathcal{B}$.

4. Finally, we show that the functions of $\text{IPV}^\omega + \mathcal{B}$ are polynomial-time computable.

Thm. $[\text{IPV}^\omega + \mathcal{B}]_1 \equiv \text{P}$.

Binary Bar Recursion

$$A : \{0, 1\}^\omega \rightarrow \mathbb{N} \quad w_n : \{0, 1\}^* \quad \hat{w}_n := w_n * \lambda k. 0$$

- The binary bar recursion we use can be formulated in terms of the following unbounded search:

$$\mathcal{B}(A, (w_n)_{n \in \mathbb{N}}) := \min n (|w_n| \neq n \vee |A\hat{w}_n| \leq |w_n|)$$

- Why is this functional total?

Lem [KC'96]. For any closed term $\Psi : \mathbb{N} \rightarrow \{0, 1\}^\omega \rightarrow \mathbb{N}$ of IPV^ω , there exist constants c_1 and c_2 such that

$$\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^\omega (|\Psi x \alpha| \leq |x|^{c_1} + c_2)$$

- **Lemma.** For any closed term $t[x, \alpha]$ in $\text{IPV}^\omega + \mathcal{B}$ there exists effectively a closed term $t'[x, \alpha]$ of IPV^ω such that $t = t'$ for all input x and 0-1 functions α .

Related Work

- Howard'81 used a different form of binary bar recursion to realize the functional interpretation of (the negative translation of) [WKL](#).
- Howard's binary bar recursion, however, seems to be too strong for the feasible context, since it apparently involves an exponential search.
- Sieg's proof of [WKL](#)-elimination (based on cut elimination) was successfully adapted to the feasible setting by Kauffmann'00.
- Our approach [directly](#) extracts a polynomial-time computable realizer out of the [WKL](#)-proof, rather than eliminating it first.

Future Work

- Investigate whether Kohlenbach's effective proofs of WKL elimination can be translated into the feasible setting, by making a careful treatment of bounded quantifiers.
- Find ineffective proofs of Π_2^0 -theorems which can be formalized in $\text{CPV}^\omega + \text{QF-AC} + \text{WKL}$, and carry out the extraction of polynomial-time algorithms (cf. analysis of WKL -proofs e.g. in approximation theory).
- Compare the quality of the polynomial-time algorithms yielded via the approach based on cut elimination and our approach.