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Road Map

#® |nfroduction
o Proof Interpretations
o Classical Logic
o Countable Choice

® Inferpreting Classical Countable Choice
o Bar Recursion (Spector’'62)
o Modified Bar Recursion (BO’03)
» Krivine’s Clock (Krivine’03)

® Final Remarks
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Proof Interpretations

8 THA = SFA! (usualyS C7T)
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Proof Interpretations

8 THA = SFA! (usuallyS cC7)

» Consistency (A! = A = false)
—-Cons = —Consg
s Theorem refinement (7 = S, Al — A)
SFA = SFA
s Hypothesis elimination (7 = S + P, Al = A)

S+PFA = SFA
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Proof Interpretations

® Refinement + elimination (7 =S + P, AL — A)

S+P-A = SF Al
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Proof Inferpretations

® Refinement + elimination (7 =S + P, AL — A)

S+P-A = SF Al

# Associates formula A with A! = 3z A;(x).
® Aisinfterpretable in 7 if

T+ A;(t), for some ferm t¢.
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Proof Inferpretations

® Refinement + elimination (7 =S + P, AL — A)

S+P-A = SF Al

# Associates formula A with A! = 3z A;(x).
® Aisinfterpretable in 7 if

T+ A;(t), for some ferm t¢.

® Al={t:TFA;(t)}. (readlisersof A)
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Proof Interpretations

#® Finite type approach (|A] is a set of terms)

‘A — B’ = ’A‘ — ’B’
Ve Ayl = per|As
[FzT ALl = Yier| Az
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Proof Interpretations

» Finite type approach (|A4] is a set of terms)

‘A — B‘ — ‘A‘ — ‘B‘
WJUTAQC‘ — HxET‘ACU‘
EmTAx‘ — ECUET‘Ax‘

® Eg AC=Va?dy" A(x,y) — fVz Az, f(x))
AC| = T Xy |A(z, y)| — Xplle | Az, f(2))]

then A\¢.(\x.mo(opx), Ax.m1(¢x)) € |AC|.
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Proof Inferpretations

#® Finite type approach (|A] is a set of terms)

‘A — B‘ = ’A‘ — ‘B‘
Ve Ayl = per|Azl
[FzT ALl = Yier| Az

® Second order approach (parametrised by model M)

‘A — B‘ = ’A‘ — ‘B‘

W:IJA‘ = ﬂ ‘Aa‘
aceM

FzAl = U |A4

aceM
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Proof Interpretations

® E.g Let
Int(n) =VX(X(0) AVx(X(z) = X(z+1)) — X(n))

then Az f.f™(x) € |Int(n)].

» Second order approach (parametrised by model M)

‘A — B‘ — ‘A‘ — ‘B‘

VzAl = () |A4]
aceM

HzAl = U |A4
aeM
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Dealing with Counfable Choice

cAC : Vniy"A(n,y) — 3fVnA(n, fn)
cAC ' VndSA(n,S) — 3Y)VnA(n,Y,)
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Dealing with Counfable Choice

cAC : Vniy"A(n,y) — 3fVnA(n, fn)
cAC ' VndSA(n,S) — 3Y)VnA(n,Y,)

® Accepted intuitionistically.
® Heyting arithmetic closed under “rule of choice”:

HAY - VaxdyA(z,y) = HAYF JfVzA(z, f(x))
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Dealing with Counfable Choice

cAC : Vniy"A(n,y) — 3fVnA(n, fn)
cAC ' VndSA(n,S) — 3Y)VnA(n,Y,)

® Accepted intuitionistically.

® Heyting arithmetic closed under “rule of choice”:
HA® b VeayA(z,y) = HAYF JfVeA(z, f(x))

® \ery strong in the presence of classical logic:
LEM + cACHF CA
where CA = 3fvn(f(n) =0 < A(n)).
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Dealing with Counfable Choice

cAC : Vniy"A(n,y) — 3fVnA(n, fn)
cAC ' VndSA(n,S) — 3Y)VnA(n,Y,)

® Accepted intuitionistically.

® Heyting arithmetic closed under “rule of choice”:
HA® b VeayA(z,y) = HAYF JfVeA(z, f(x))

® \ery strong in the presence of classical logic:
LEM + cACHF CA
where CA = 3fvn(f(n) =0 < A(n)).

® S50, PAY + cAC = full classical analysis.
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Dealing with Classical Logic

#® Eliminatfe classical logic:
HAY + LEMF A = HAYF AV,

N = negative tfranslation. (Godel’33)
® |Interpret classical logic:

Find functional C witnessing LEM?.

C = continuation. (Griffin"90)
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Interpreting Countable Choice (1)

® Finite type approach

HA* + LEM +cACHF A
HA“ + cACYN F AN (by negative translation)
HA® 4+ DNS + cAC+ AN (since DNS + cAC F cACY)

where DNS : Vn—-—A(n) — -—=VnA(n)
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Intferpreting Countable Choice (1)

® Finite type approach

HA* + LEM +cACHF A
HA“ + cACYN F AN (by negative translation)
HA® 4+ DNS + cAC+ AN (since DNS + cAC F cACY)

where DNS : Vn—-—A(n) — -—=VnA(n)

® Bar recursion interprets DNS (Spector’'62).

(via functional interpretation (Godel 56))
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Interpreting Countable Choice (2)

Thm(BO’'02) Modified bar recursion interprets DNS

(via modified readlizability)
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Interpreting Countable Choice (2)

Thm(BO’'02) Modified bar recursion interprets DNS
(via modified realizability)

o Based on work of Berardi, Bezem & Coguand (98).
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Interpreting Countable Choice (2)

Thm(BO’'02) Modified bar recursion interprets DNS

(via modified readlizability)

o Based on work of Berardi, Bezem & Cogquand (98).

Thm(BO'02) SBR is primitive recursively definable in
MBR, but not conversely.
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Krivine’s Interpretfatfion

#® Reduce
vndSA(n,S) — 3Y)VnA(n,Y,)

(®
vndSA(n,S) — 3Y . \VnIkA(n, Y, x)
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Krivine’s Interpretfatfion

#® Reduce
vndSA(n,S) — 3Y)VnA(n,Y,)

(®
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Krivine’s Interpretfatfion

#® Reduce
vndSA(n,S) — 3Y)VnA(n,Y,)

(®
vnaSA(n,S) — 3Y . \Vn3kA(n, Y, x)

which follows from

Y \Vn(VEA(n, Yy, k) — VSA(n, S)).

e
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Krivine’s Interpretfatfion

® [nferpretation of
Y \Vn(VEA(n, Y, k) — VSA(n, S)).
asks for ferm y in the sef

N ﬂ Int(k)| — [A(n, Yui)|) — [¥SA(n, S))).

Y,y n
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Krivine’s Interpretfatfion

® |[nferpretation of
Y \Vn(VEA(n, Y, k) — VSA(n, S)).
asks for ferm y in the sef

N ﬂ Int(k)| — [A(n, Yui)|) — [¥SA(n, S)]).

Yoy m

® Assume b : k — tg. Take Y, ; (by cAC) satisfying:
(x) If ti(k) € |A(n, Yn,k)‘ then ti (k) € [VSA(n,S)|.
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Krivine’s Interpretfatfion

® |[nferpretation of
Y \Vn(VEA(n, Y, k) — VSA(n, S)).
asks for ferm y in the sef

N ﬂ Int(k)| — [A(n, Yui)|) — [¥SA(n, S)]).

Yy mn
® Assume b : k — tg. Take Y, ; (by cAC) satisfying:
(*) if ti(k) € |A(n, Yo r)| then ty(k) € [VSA(n, S)].
® We cantake xt = t(k;). (b1t k)

On the Different Interpretations of Classical Countable Choice —p.11/1:¢



Comparing the Two Approaches

Basic terms
Induction
Scales
Curry-Howard
Classical Logic
Comprehension
Reduces cAC fo

Finite types Second order
Primitive rec Recursive
Interprefts Eliminates
Yes ?
? Yes
Eliminates Interprets
Godal Axiom
DNS KA
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Open Questions

® Classical logic:
o Finite types: use continuations?
# Second order: negative translation?
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Open Questions

® Classical logic:
o Finite types: use continuations?
o Second order: negative franslation?

® [nduction:
» Inferpret weak forms of induction?
o Subsystems of analysis?
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Open Questions

® Classical logic:
o Finite types: use continuations?
o Second order: negative franslation?

® [nduction:
» Inferpret weak forms of induction?
o Subsystems of analysis?

® Krivine's interpretation:
o Not assume comprehension?
o No conflict between classical logic and choice?
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Open Questions

® Classical logic:
o Finite types: use continuations?
o Second order: negative franslation?

® [nduction:
» Inferpret weak forms of induction?
o Subsystems of analysis?

® Krivine's interpretation:
o Not assume comprehension?
o No conflict between classical logic and choice?

® Polymorphism versus Bar recursion?
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