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Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )
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Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

On the Different Interpretations of Classical Countable Choice – p.3/13



Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

Theorem refinement (T ≡ S, AI → A)

S ` A ⇒ S ` AI
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Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

Theorem refinement (T ≡ S, AI → A)

S ` A ⇒ S ` AI

Hypothesis elimination (T ≡ S + P , AI ≡ A)

S + P ` A ⇒ S ` A
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Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI
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Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI

Associates formula A with AI ≡ ∃xAI(x).

A is interpretable in T if

T ` AI(t), for some term t.
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Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI

Associates formula A with AI ≡ ∃xAI(x).

A is interpretable in T if

T ` AI(t), for some term t.

|A| ≡ {t : T ` AI(t)}. (realisers of A)

On the Different Interpretations of Classical Countable Choice – p.4/13



Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|
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Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|

E.g. AC ≡ ∀xσ∃yτA(x, y) → ∃f∀xA(x, f(x))

|AC| ≡ ΠxΣy|A(x, y)| → ΣfΠx|A(x, f(x))|

then λφ.〈λx.π0(φx), λx.π1(φx)〉 ∈ |AC|.
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Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|

Second order approach (parametrised by model M)

|A → B| ≡ |A| → |B|

|∀xA| ≡
⋂

a∈M

|Aa|

|∃xA| ≡
⋃

a∈M

|Aa|
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Proof Interpretations

E.g. Let

Int(n) ≡ ∀X(X(0) ∧ ∀x(X(x) → X(x + 1)) → X(n))

then λxλf.fn(x) ∈ |Int(n)|.

Second order approach (parametrised by model M)

|A → B| ≡ |A| → |B|

|∀xA| ≡
⋂

a∈M

|Aa|

|∃xA| ≡
⋃

a∈M

|Aa|
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Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)
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Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HA
ω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))
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Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HA
ω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))

Very strong in the presence of classical logic:

LEM + cAC ` CA

where CA ≡ ∃f∀n(f(n) = 0 ↔ A(n)).
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Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HA
ω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))

Very strong in the presence of classical logic:

LEM + cAC ` CA

where CA ≡ ∃f∀n(f(n) = 0 ↔ A(n)).

So, PA
ω + cAC ≡ full classical analysis.
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Dealing with Classical Logic

Eliminate classical logic:

HA
ω + LEM ` A ⇒ HA

ω ` AN .

N ≡ negative translation. (Gödel’33)

Interpret classical logic:

Find functional C witnessing LEM
I .

C ≡ continuation. (Griffin’90)

On the Different Interpretations of Classical Countable Choice – p.7/13



Interpreting Countable Choice (1)

Finite type approach

HA
ω + LEM + cAC ` A

HA
ω + cAC

N ` AN (by negative translation)

HA
ω + DNS + cAC ` AN (since DNS + cAC ` cAC

N )

where DNS : ∀n¬¬A(n) → ¬¬∀nA(n)
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Interpreting Countable Choice (1)

Finite type approach

HA
ω + LEM + cAC ` A

HA
ω + cAC

N ` AN (by negative translation)

HA
ω + DNS + cAC ` AN (since DNS + cAC ` cAC

N )

where DNS : ∀n¬¬A(n) → ¬¬∀nA(n)

Bar recursion interprets DNS [Spector’62].

(via functional interpretation [Gödel’56])
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Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)
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Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)

Based on work of Berardi, Bezem & Coquand (98).
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Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)

Based on work of Berardi, Bezem & Coquand (98).

Thm[BO’02] SBR is primitive recursively definable in

MBR, but not conversely.
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Krivine’s Interpretation

Reduce

∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

to

∀n∃SA(n, S) → ∃Y(·,·)∀n∃kA(n, Yn,k)
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Krivine’s Interpretation

Reduce

∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

to

∀n∃SA(n, S) → ∃Y(·,·)∀n∃kA(n, Yn,k)

which follows from

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).
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Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

⋃

Y(·,·)

⋂

n

(
⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).
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Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

⋃

Y(·,·)

⋂

n

(
⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).

Assume b : k 7→ tk. Take Yn,k (by cAC) satisfying:

(∗) if tk(k) ∈ |A(n, Yn,k)| then tk(k) ∈ |∀SA(n, S)|.
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Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

⋃

Y(·,·)

⋂

n

(
⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).

Assume b : k 7→ tk. Take Yn,k (by cAC) satisfying:

(∗) if tk(k) ∈ |A(n, Yn,k)| then tk(k) ∈ |∀SA(n, S)|.

We can take χt = t(kt). (b−1 : t 7→ kt)
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Comparing the Two Approaches

Finite types Second order

Basic terms Primitive rec Recursive

Induction Interprets Eliminates

Scales Yes ?

Curry-Howard ? Yes

Classical Logic Eliminates Interprets

Comprehension Goal Axiom

Reduces cAC to DNS KA
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Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?
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Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?
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Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?

Krivine’s interpretation:

Not assume comprehension?

No conflict between classical logic and choice?
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Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?

Krivine’s interpretation:

Not assume comprehension?

No conflict between classical logic and choice?

Polymorphism versus Bar recursion?
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