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Enriching mathematical theorems

@ Complete theorems
Universal statements
E.g. Fermat's last theorem: Vn > 2vx,y,z(x" +y" # z")

@ Incomplete theorems
Existential statements
E.g. Infinity of primes: ¥n3p > n Prime(p)

@ Use proof of incomplete theorem
vn(fn > n A Prime(fn))
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Theorem (A)
Jacl(av? e Q)

Ifx/iﬁthakea:\/i
If\/iﬁg_i(@takea:\/iﬁ O
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Enriching mathematical theorems

Theorem (B)
vEN=N3nN(fn = 0 — vk(fk = 0))

Fix f _ .
Letn — { mink(fk # 0) if Ik(fk # 0) -

0 otherwise
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Functional interpretations

© Formalising statement
computational content
based on representation of mathematical objects

© Formalising proof
qualitative results
principles used in the proof

@ Proof analysis
guantitative results
theorem becomes complete
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Functional interpretations

A functional interpretation of T in S consists of:

@ A formula mapping
X
A — \A\y
@ X marks the witnesses required by A (i.e. VY|A|§7)
@ y marks the refutation of a given witness for A.

@ A proof mapping
THFA — S BB,

for some B such that B — 3)?V37\A\§:. (e.g.B = V)7|A|§7)
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S i/ IXVYIAf
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Applications in proof theory

Consistency

Closure

Conservation

Independence

If S is consistent then T is consistent
| L] =L

T proves A then T proves A’
T 3xXVY|A[f — A (SCT)

If T proves A then S proves A, for A € A
Sk IXVIAJ — A

T does not prove A
S i/ IXVYIAf

X in Vy|A[] is content of A
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Applications in proof theory

Consistency

Closure

Conservation

Independence

Computation

If S is consistent then T is consistent
| L] =L

T proves A then T proves A’

T 3xXVY|A[f — A (SCT)

If T proves A then S proves A, for A € A
Sk IXVIAJ — A

T does not prove A

S i/ IXVYIAf

Algorithm associated with proof of A
x in Vy|A[] is content of A
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Formula translation

|Aat| = Aa

IAAB[Y = A AB|Y
AVB[©T = AR v, [B]Y
A-Bl = w(A) —[B[¥)
VzA(z)[f = Vz|A(2)|?
FA@)? = |A@)N

A\/nB:E(I’]:O—>A)/\(n7ﬁO—>B)



Functional Interpretations
[eleTe] Yol

Formula translation

|Aat] = Aa
IAAB[Y = A AB|Y
IAVB[Y" = |AX v, |B]Y
A—B[ = |A—|B[¥
VZA@Z)[, = |A@)["
FA@) = |AR)P

AVhpB:=(n=0—-A)A(N#0—B)



Functional Interpretations
[eleTe] Yol

Formula translation

|Aat] = Aa
IAABlgw = |ARAIBIY,
AVBRW" = [Alf Va Bl
A—Blkw = [A —[BX
VzZA@)l}, = [A@)}
F3zA(z)ly* = A@))

AVhpB:=(n=0—-A)A(N#0—B)



Functional Interpretations
[eleTe] Yol

Formula translation

|Aat] = Aa
IAABlgw = |ARAIBIY,
AVBRW" = [Alf Va Bl
A= Blkw = VYA — [BIX
VZA@2)l,, = [A@)I}
FzA(z)ly* = A@))

AVhpB:=(n=0—-A)A(N#0—B)



Functional Interpretations
[eleTe] Yol

Formula translation

|Aat] = A
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Formula translation (parametrised)

|Aat] = Aa

AABRY = AR AIBRY,
AVB[W" = AR ValBJY,
A—BLS% = Wy C owlAl — (B2
VZA@), = A7

BA@) = AR

AVhpB:=(n=0—-A)A(N#0—B)
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Concrete instantiations

1958.

1959.

1974.

1978.

1992.

Godel's Dialectica interpretation
@ Relative consistency of PA

Kreisel's modified realizability
@ Independence results, unwinding proofs

Diller-Nahm variant of Dialectica interpretation
@ Solve contraction problem

Stein’s family of functional interpretations
@ Relate modified realizability and Diller-Nahm'’s

Monotone functional interpretation
@ Proof mining
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Sources of ineffectiveness

@ Classical logic AV -A
(eliminated via negative translation)

@ Countable choice  ¥YnV3kNA(n, k) — 3f¥nA(n,fn)

@ A = recursive predicate
(easy)

weak K 6nig lemma

@ A = arithmetic predicates
(hard)
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Every infinite finitely branching tree has an infinite path

Equivalent (over RCAy) to Heine-Borel compactness
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Vi (bT(f) A¥Yn3s®(s € ) — Fa® vn(an € 1))
vf (vn3s® (s € ) — JaB Yn(an € 7))
vi3aB vn(3sB" (s € fP) — (an e o))

vf3a < 1¥n(3s < t[n]Aq(s, f) — Ag(an,f))
Vf3a < 1VnAu(f, o, n)

Joy < 1V, nAp(f, a5, n)
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Formal systems: Heyting arithmetic =~ HA®

@ Universal axioms for 0 and S
@ Godel's primitive recursion
@ Induction rule
+ A(0) A(n)+A(n+1)
F A(n)

(IND)

@ PA¥Y = HAY + LEM



Formal systems: Others

Three Applications
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System | Induction Subsystem of
PA’] semi-decidable

RCAq semi-decidable Iﬁw[ +ACqt
PRA decidable

CPV | NP PA]

BTFA NP CPV¥ + ACys
PV P CPV¥
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Theorem (Friedman)
RCAg + WKL is I'Ig-conservative over PRA
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Theorem (Ferreira)
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Proof (Kohlenbach’92).

@ HA"} +MP + ACys + Jag¥f, nAu(f, a5, n) — ¥xTyAg(X,Y)
o By m.f.i. there exists a monotone g such that

HA F WX (3t v, n < gag, X]Ab(f, a5, n) — IyAos(X,Y))
(%] By monotonicity of q

HA'T - VX (Feys v, n < q[1, X]Ap(f, a5, n) — TyAe(X,Y))
Q HA'TF Yx3ay¥f,n < q[L, x]Ap(f, ag, n)
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2. Dialectica interpretation

Corollary (Ferreira)
MN3-theorems of CPV* + ACq; + WKLt have poly-time realizers

Proof (Oliva’03).

@ CPV¥ + ACy 'V IPV¥ (Cook/Urquhart'92)

@ Realizer for (WKLg)P using (w; := Wz)
B(z) = 4 if YW, | < |wz|or |w;| # |z
B(z «1) otherwise,
© Type 1terms of IPV¥ + B are poly-time
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3. Bounded functional interpretation

Theorem (Ferreira)
CPV” + ACqt + WKLyg is M3-conservative over PV

Proof (Ferreira/Oliva’05).

N
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3. Bounded functional interpretation

Theorem (Ferreira)
CPV” + ACqt + WKLyg is M3-conservative over PV

Proof (Ferreira/Oliva’05).
O IPV¥ + MP + ACqs + WKLpg - A

@ WKLy, follows from BCCypq
BCCpy : VbIf <tVx < bAp(X,f) — If < tVXAp(X,T)

@ IPV¥ - (BCCpq)B

N
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Different approaches

© Weakened
@ Interpreted by functional

© Interpreted by interpretation
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What about other proof-theoretic techniques?
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Proof theory tools

Other ways to give computational meaning to proofs:

@ Herbrand's theorem

@ Cut elimination

@ Formuale-as-types isomorphism
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Herbrand’s theorem

IXA(X)
Herb.thm.i

Ato) V... VA(tn)
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Herbrand’s theorem

IXA(X) neg. rans. VX —A(X)
Herb.thm.i f.i.
Alto) V...V A(ty) < cases ——A(t)

@ Kohlenbach/Gerhardy’05
Proof of Herbrand’s theorem via Dialectica interpretation
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Cut elimination

proof

c.e.

normal information
read off

@ Cut elimination
normalises the proof, information can be easily read off
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Cut elimination

fli

proof = data
c.e. normalise
normal information
read off

@ Cut elimination

normalises the proof, information can be easily read off
@ Functional interpretations

get raw data from original proof, normalise to get info



Conclusions

[e]e]ele] Jo]

Formulae-as-types isomorphism

Formulae-as-types isomorphism

Proofs Programs

Program corresponds to proof
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Formulae-as-types isomorphism

Functional interpretation

Proofs Programs

Program captures “essence” of proof!
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Summary

@ Uses

@ proof-theoretic results
@ unwind of proofs, proof mining

@ Characteristics
@ modular: applicable to real-life proofs
@ adaptable: many variations, different uses
@ context: classical proofs, analysis
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