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Enriching mathematical theorems

Complete theorems
Universal statements
E.g. Fermat’s last theorem: ∀n > 2∀x , y , z(xn + yn 6= zn)

Incomplete theorems
Existential statements
E.g. Infinity of primes: ∀n∃p ≥ n Prime(p)

Use proof of incomplete theorem
∀n(fn ≥ n ∧ Prime(fn))
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Enriching mathematical theorems

Theorem (A)

∃a ∈ I (a
√

2 ∈ Q)

Proof.

If
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2
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Enriching mathematical theorems

Theorem (B)

∀f N→N∃nN(fn = 0 → ∀k(fk = 0))

Proof.
Fix f

Let n =

{
min k(fk 6= 0) if ∃k(fk 6= 0)
0 otherwise



Introduction Functional Interpretations Three Applications Conclusions

Enriching mathematical theorems

Theorem (C)

Fix n ∈ N. Each continuous function f ∈ C[0, 1] has a unique
best approximating polynomial of degree n.

Lemma (Existence)

∀f ∈ C[0, 1]∃p ∈ Pn(||f − p|| =R dist(f , Pn))

Lemma (Uniqueness)

∀f ∈ C[0, 1]∀p0, p1 ∈ Pn

(∧1
i=0||f − pi || =R dist(f , Pn) → p0 = p1)
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Functional interpretations

1 Formalising statement
computational content
based on representation of mathematical objects

2 Formalising proof
qualitative results
principles used in the proof

3 Proof analysis
quantitative results
theorem becomes complete
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Functional interpretations

A functional interpretation of T in S consists of:

A formula mapping

A 7→ |A|~x~y
~x marks the witnesses required by A (i.e. ∀~y |A|~t

~y )
~y marks the refutation of a given witness for A.

A proof mapping

T ⊢ A 7→ S ⊢ B,

for some B such that B → ∃~x∀~y |A|~x~y . (e.g. B ≡ ∀~y |A|~t~y )
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Applications in proof theory

| ⊥ | ≡⊥

T ⊢ ∃x∀y |A|xy → A′ (S ⊆ T)

S ⊢ ∃x∀y |A|xy → A

S 6⊢ ∃x∀y |A|xy

x in ∀y |A|xy is content of A
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Applications in proof theory

Consistency If S is consistent then T is consistent
| ⊥ | ≡⊥

Closure T proves A then T proves A’
T ⊢ ∃x∀y |A|xy → A′ (S ⊆ T)

Conservation If T proves A then S proves A, for A ∈ ∆
S ⊢ ∃x∀y |A|xy → A

Independence T does not prove A
S 6⊢ ∃x∀y |A|xy

Computation Algorithm associated with proof of A
x in ∀y |A|xy is content of A
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Formula translation

|Aat| :≡ Aat

|A ∧ B|x,v :≡ |A|x ∧ |B|v
|A ∨ B|x,v ,n :≡ |A|x ∨n |B|v

|A → B|f :≡ ∀x(|A|x → |B|fx )

|∀zA(z)|f :≡ ∀z|A(z)|fz
|∃zA(z)|x,z :≡ |A(z)|x

A ∨n B :≡ (n = 0 → A) ∧ (n 6= 0 → B)
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Formula translation (parametrised)

|Aat| :≡ Aat

|A ∧ B|x,v
y ,w :≡ |A|xy ∧ |B|vw

|A ∨ B|x,v ,n
y ,w :≡ |A|xy ∨n |B|vw

|A → B|f ,gx,w :≡ ∀y ⊏ gxw |A|xy → |B|fxw
|∀zA(z)|fy ,z :≡ |A(z)|fzy
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y :≡ |A(z)|xy

A ∨n B :≡ (n = 0 → A) ∧ (n 6= 0 → B)
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Concrete instantiations

1958. Gödel’s Dialectica interpretation
Relative consistency of PA

1959. Kreisel’s modified realizability
Independence results, unwinding proofs

1974. Diller-Nahm variant of Dialectica interpretation
Solve contraction problem

1978. Stein’s family of functional interpretations
Relate modified realizability and Diller-Nahm’s

1992. Monotone functional interpretation
Proof mining
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A ≡ recursive predicate

A ≡ arithmetic predicates



Introduction Functional Interpretations Three Applications Conclusions

Sources of ineffectiveness

Classical logic A ∨ ¬A
(eliminated via negative translation)

Countable choice ∀nN∃kNA(n, k) → ∃f∀nA(n, fn)

A ≡ recursive predicate

A ≡ arithmetic predicates



Introduction Functional Interpretations Three Applications Conclusions

Sources of ineffectiveness

Classical logic A ∨ ¬A
(eliminated via negative translation)

Countable choice ∀nN∃kNA(n, k) → ∃f∀nA(n, fn)

A ≡ recursive predicate
(easy)

A ≡ arithmetic predicates



Introduction Functional Interpretations Three Applications Conclusions

Sources of ineffectiveness

Classical logic A ∨ ¬A
(eliminated via negative translation)

Countable choice ∀nN∃kNA(n, k) → ∃f∀nA(n, fn)

A ≡ recursive predicate
(easy)

A ≡ arithmetic predicates
(hard)



Introduction Functional Interpretations Three Applications Conclusions

Sources of ineffectiveness

Classical logic A ∨ ¬A
(eliminated via negative translation)

Countable choice ∀nN∃kNA(n, k) → ∃f∀nA(n, fn)

A ≡ recursive predicate
(easy)

weak K önig lemma

A ≡ arithmetic predicates
(hard)
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Weak König Lemma

Every infinite finitely branching tree has an infinite path

Equivalent (over RCA0) to Heine-Borel compactness

Formally:

WKL : ∀f
(
bT(f ) ∧ ∀n∃sB

n
(s ∈ f ) → ∃αB

ω∀n(αn ∈ f )
)

WKL : ∀f
(
∃sBn

(s ∈ f bt) → ∃αBω

(αn ∈ f bt)
)

WKL : ∀f∃αB
ω∀n

(
∃sB

n
(s ∈ f bt) → (αn ∈ f bt)

)

WKL : ∀f∃α ≤ 1∀n
(
∃s ≤ t[n]A0(s, f ) → A0(αn, f )

)

WKL : ∀f∃α ≤ 1∀nAb(f , α, n)

WKL : ∃αf ≤ 1∀f , nAb(f , αf , n)
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Formal systems: Heyting arithmetic HAω

Universal axioms for 0 and S

Gödel’s primitive recursion

Induction rule

⊢ A(0) A(n) ⊢ A(n + 1)
(IND)

⊢ A(n)

PAω ≡ HAω + LEM
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Formal systems: Others

System Induction Subsystem of
P̂A

ω
↾ semi-decidable

RCA0 semi-decidable P̂A
ω
↾ +ACqf

PRA decidable

CPVω NP P̂A
ω
↾

BTFA NP CPVω + ACqf

PV P CPVω
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Three results about WKL

Theorem (Friedman)

RCA0 + WKL is Π0
2-conservative over PRA

Theorem (Ferreira)

BTFA + WKLbd is Π0
2-conservative over PV

Corollary (Ferreira)

Π0
2-theorems of BTFA + WKLqf have poly-time realizers
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Three results about WKL

Theorem (Friedman)

RCA0 + WKL is Π0
2-conservative over PRA

Effective version: Monotone functional interpretation

Theorem (Ferreira)

BTFA + WKLbd is Π0
2-conservative over PV

Effective version: Bounded functional interpretation

Corollary (Ferreira)

Π0
2-theorems of BTFA + WKLqf have poly-time realizers

Effective version: Gödel’s functional interpretation
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1. Monotone functional interpretation

Theorem (Friedman)

P̂A
ω
↾ +ACqf + WKL is Π0

2-conservative over PRA

Proof (Kohlenbach’92).
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1. Monotone functional interpretation

Theorem (Friedman)

P̂A
ω
↾ +ACqf + WKL is Π0

2-conservative over PRA

Proof (Kohlenbach’92).

1 ĤA
ω
↾ +MP + ACqf ⊢ ∃αf∀f , nAb(f , αf , n) → ∀x∃yA0(x , y)

2 By m.f.i. there exists a monotone q such that
ĤA

ω
↾ ⊢ ∀x(∃αf∀f , n ≤ q[αf , x ]Ab(f , αf , n) → ∃yA0(x , y))

3 By monotonicity of q
ĤA

ω
↾ ⊢ ∀x(∃αf∀f , n ≤ q[1, x ]Ab(f , αf , n) → ∃yA0(x , y))

4 ĤA
ω
↾ ⊢ ∀x∃αf∀f , n ≤ q[1, x ]Ab(f , αf , n)
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2. Dialectica interpretation

Corollary (Ferreira)

Π0
2-theorems of CPVω + ACqf + WKLqf have poly-time realizers

Proof (Oliva’03).
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2. Dialectica interpretation

Corollary (Ferreira)

Π0
2-theorems of CPVω + ACqf + WKLqf have poly-time realizers

Proof (Oliva’03).

1 CPVω + ACqf
N+D7→ IPVω (Cook/Urquhart’92)

2 Realizer for (WKLqf)
D using (wz :≡ Wz)

B(z) =

{
z if |Y ŵz | ≤ |wz | or |wz | 6= |z|
B(z ∗ 1) otherwise,



Introduction Functional Interpretations Three Applications Conclusions

2. Dialectica interpretation

Corollary (Ferreira)

Π0
2-theorems of CPVω + ACqf + WKLqf have poly-time realizers

Proof (Oliva’03).

1 CPVω + ACqf
N+D7→ IPVω (Cook/Urquhart’92)

2 Realizer for (WKLqf)
D using (wz :≡ Wz)

B(z) =

{
z if |Y ŵz | ≤ |wz | or |wz | 6= |z|
B(z ∗ 1) otherwise,

3 Type 1 terms of IPVω + B are poly-time
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3. Bounded functional interpretation

Theorem (Ferreira)

CPVω + ACqf + WKLbd is Π0
2-conservative over PV

Proof (Ferreira/Oliva’05).
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3. Bounded functional interpretation

Theorem (Ferreira)

CPVω + ACqf + WKLbd is Π0
2-conservative over PV

Proof (Ferreira/Oliva’05).
1 IPVω + MP + ACqf + WKLbd ⊢ A
2 WKLbd follows from BCCbd

BCCbd : ∀b∃f ≤ t∀x ≤ bAb(x , f ) → ∃f ≤ t∀xAb(x , f )
3 IPVω ⊢ (BCCbd)

B
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Different approaches

1 Weakened

2 Interpreted by functional

3 Interpreted by interpretation
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Outline

1 Functional Interpretations

2 Three Applications

3 Conclusions



What about other proof-theoretic techniques?
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Proof theory tools

Other ways to give computational meaning to proofs:

Herbrand’s theorem

Cut elimination

Formuale-as-types isomorphism
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Herbrand’s theorem

∃xA(x)

Herb.thm.

��

A(t0) ∨ . . . ∨ A(tn)
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Herbrand’s theorem

∃xA(x)
neg. trans.

//

Herb.thm.

��

¬∀x¬A(x)

f .i .
��

A(t0) ∨ . . . ∨ A(tn) ¬¬A(t)
norm. + cases

oo

Kohlenbach/Gerhardy’05
Proof of Herbrand’s theorem via Dialectica interpretation
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Cut elimination

proof

c.e.

��

normal
read off

// information

Cut elimination
normalises the proof, information can be easily read off
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Cut elimination

proof f .i . //

c.e.

��

data

normalise
��

normal
read off

// information

Cut elimination
normalises the proof, information can be easily read off

Functional interpretations
get raw data from original proof, normalise to get info
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Formulae-as-types isomorphism

Formulae-as-types isomorphismP r o o f s P r o g r a m s

Program corresponds to proof
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Formulae-as-types isomorphism

Functional interpretationP r o o f s P r o g r a m s

Program captures “essence” of proof!
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Summary

Uses
proof-theoretic results
unwind of proofs, proof mining

Characteristics
modular: applicable to real-life proofs
adaptable: many variations, different uses
context: classical proofs, analysis
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