

Understanding and Using Spector's Bar Recursion

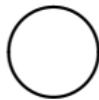
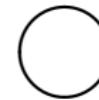
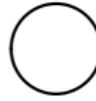
Paulo Oliva

Queen Mary, University of London, UK
(pbo@dcs.qmul.ac.uk)

Swansea, 4 July 2006

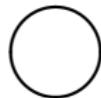
A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

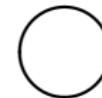


A 3-player game

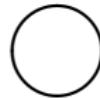
1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$



$$g_1(x) = \dots$$



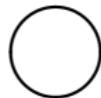
$$g_3(x) = \dots$$



$$g_2(x) = \dots$$

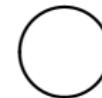
A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$



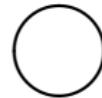
$$g_1(x) = \dots$$

$$x_1 := g_1(1)$$



$$g_3(x) = \dots$$

$$x_3 := g_3(3)$$

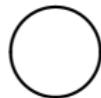


$$g_2(x) = \dots$$

$$x_2 := g_2(2)$$

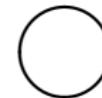
A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$



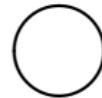
$$g_1(x) = \textcolor{red}{c}_1$$

$$x_1 := g_1(1)$$



$$g_3(x) = \textcolor{red}{c}_3$$

$$x_3 := g_3(3)$$

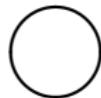


$$g_2(x) = \textcolor{red}{c}_2$$

$$x_2 := g_2(2)$$

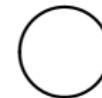
A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$



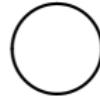
$$g_1(x) = \lambda x. (5x + 4)$$

$$x_1 := g_1(1)$$



$$g_3(x) = \lambda x. 29$$

$$x_3 := g_3(3)$$



$$g_2(x) = \lambda x. (x + 18)$$

$$x_2 := g_2(2)$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

9

$$g_1(x) = \lambda x. (5x + 4)$$

$$x_1 := g_1(1)$$

29

$$g_3(x) = \lambda x. 29$$

$$x_3 := g_3(3)$$

20

$$g_2(x) = \lambda x. (x + 18)$$

$$x_2 := g_2(2)$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2$$

$$X_3[x_1, x_2] := x_1 + x_2$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2$$

$$X_3[x_1, x_2] := x_1 + x_2$$

$$G_2[x_1] := \lambda x_2. x_1 + X_3[x_1, x_2]$$

$$X_2[x_1] := x_1 + X_3[x_1, 2]$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2$$

$$X_3[x_1, x_2] := x_1 + x_2$$

$$G_2[x_1] := \lambda x_2. x_1 + X_3[x_1, x_2]$$

$$X_2[x_1] := x_1 + X_3[x_1, 2]$$

$$g_1 := \lambda x_1. X_2[x_1] + X_3[x_1, X_2[x_1]]$$

$$x_1 := X_2[1] + X_3[1, X_2[1]]$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2$$

$$X_3[x_1, x_2] := x_1 + x_2$$

$$G_2[x_1] := \lambda x_2. x_1 + X_3[x_1, x_2]$$

$$X_2[x_1] := x_1 + X_3[x_1, 2]$$

$$g_1 := \lambda x_1. X_2[x_1] + X_3[x_1, X_2[x_1]] = \lambda x_1. (5x_1 + 4)$$

$$x_1 := X_2[1] + X_3[1, X_2[1]] = 9$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2$$

$$X_3[x_1, x_2] := x_1 + x_2$$

$$G_2[x_1] := \lambda x_2. x_1 + X_3[x_1, x_2] = \lambda x_2. (x_2 + 18)$$

$$X_2[x_1] := x_1 + X_3[x_1, 2] = 20$$

$$g_1 := \lambda x_1. X_2[x_1] + X_3[x_1, X_2[x_1]] = \lambda x_1. (5x_1 + 4)$$

$$x_1 := X_2[1] + X_3[1, X_2[1]] = 9$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

$$G_3[x_1, x_2] := \lambda x_3. x_1 + x_2 = \lambda x_3. 29$$

$$X_3[x_1, x_2] := x_1 + x_2 = 29$$

$$G_2[x_1] := \lambda x_2. x_1 + X_3[x_1, x_2] = \lambda x_2. (x_2 + 18)$$

$$X_2[x_1] := x_1 + X_3[x_1, 2] = 20$$

$$g_1 := \lambda x_1. X_2[x_1] + X_3[x_1, X_2[x_1]] = \lambda x_1. (5x_1 + 4)$$

$$x_1 := X_2[1] + X_3[1, X_2[1]] = 9$$

A 3-player game

1. Person $i \in \{1, 2, 3\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

A ω -player game

1. Person $i \in \{1, 2, 3, \dots\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := g_i(i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

A ω -player game

1. Person $i \in \{1, 2, 3, \dots\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := \Phi_i(g_i)$
3. $g_1(x_1) = x_2 + x_3$ and $g_2(x_2) = x_1 + x_3$ and $g_3(x_3) = x_1 + x_2$

A ω -player game

1. Person $i \in \{1, 2, 3, \dots\}$ builds a (non-zero) function $g_i(x)$
2. Person i is assigned the number $x_i := \Phi_i(g_i)$
3. $g_i(x_i) = \Delta(x_1, x_2, \dots)$

Outline

1 Bar recursion

- Finite bar recursion
- Spector's bar recursion

2 An application

Outline

1 Bar recursion

- Finite bar recursion
- Spector's bar recursion

2 An application

On Bar Recursion

- Facts:

- Classical computational interpretation of countable choice (due to Spector'62)
- In particular, provides interpretation of full comprehension
- Difficult to understand

On Bar Recursion

- Facts:

- Classical computational interpretation of countable choice (due to Spector'62)
- In particular, provides interpretation of full comprehension
- Difficult to understand

- Goal:

- Explain bar recursion
- Use it in simple (practical) examples
- Understand how it solves the problem

Interpreting countable choice

- Give classical computation interpretation of cAC

$$\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, fn)$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, fn)$$

- Need to interpret the negative translation of cAC

$$\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, fn)$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, fn)$$

- Need to interpret the negative translation of cAC

$$\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, fn)$$

- Consider cAC for universal formulas

$$\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} \forall x^{\sigma} A_{\text{qf}}(n, y, x) \rightarrow \neg \neg \exists f \forall n, x^{\sigma} A_{\text{qf}}(n, fn, x)$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, fn)$$

- Need to interpret the negative translation of cAC

$$\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, fn)$$

- Consider cAC for universal formulas

$$\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} \forall x^{\sigma} A_{\text{qf}}(n, y, x) \rightarrow \neg \neg \exists f \forall n, x^{\sigma} A_{\text{qf}}(n, fn, x)$$

Interpretation asks for functionals n, g, f depending on Φ, Ψ, Δ s.t.

$$\neg \neg A_{\text{qf}}(n, \Phi_n g, g(\Phi_n g)) \rightarrow \neg \neg A_{\text{qf}}(\Psi f, f(\Psi f), \Delta f)$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$\neg\neg A_{\text{qf}}(n, \Phi_n g, g(\Phi_n g)) \rightarrow \neg\neg A_{\text{qf}}(\Psi f, f(\Psi f), \Delta f)$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$\neg\neg A_{\text{qf}}(n, \Phi_n g, g(\Phi_n g)) \rightarrow \neg\neg A_{\text{qf}}(\Psi f, f(\Psi f), \Delta f)$$

Enough to satisfy equations:

$$\left\{ \begin{array}{rcl} n & \stackrel{\mathbb{N}}{=} & \Psi f \\ fn & \stackrel{\tau}{=} & \Phi_n g \\ g(fn) & \stackrel{\sigma}{=} & \Delta f \end{array} \right\}$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$\neg\neg A_{\text{qf}}(n, \Phi_n g, g(\Phi_n g)) \rightarrow \neg\neg A_{\text{qf}}(\Psi f, f(\Psi f), \Delta f)$$

Enough to satisfy equations:

$$\left\{ \begin{array}{rcl} n & \stackrel{\mathbb{N}}{=} & \Psi f \\ fn & \stackrel{\tau}{=} & \Phi_n g \\ g(fn) & \stackrel{\sigma}{=} & \Delta f \end{array} \right\} \Rightarrow \left\{ \begin{array}{rcl} i & \leq & |\mathbf{x}| \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta \mathbf{x} \end{array} \right\}$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$\neg\neg A_{\text{qf}}(n, \Phi_n g, g(\Phi_n g)) \rightarrow \neg\neg A_{\text{qf}}(\Psi f, f(\Psi f), \Delta f)$$

Enough to satisfy equations:

$$\left\{ \begin{array}{rcl} n & \stackrel{\mathbb{N}}{=} & \Psi f \\ fn & \stackrel{\tau}{=} & \Phi_n g \\ g(fn) & \stackrel{\sigma}{=} & \Delta f \end{array} \right\} \Rightarrow \left\{ \begin{array}{rcl} i & \leq & |x| \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta x \end{array} \right\}$$

Given $\Psi \hat{x} < |x|$ then $f := \hat{x}$ and $n := \Psi \hat{x}$ and $g := g_n$.

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$i \leq 3$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta x$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$i \leq 3$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta x$$

$$G_3[x_1, x_2] := \lambda x_3. \Delta(x_1, x_2, x_3)$$

$$X_3[x_1, x_2] := \Phi_3(G_3[x_1, x_2])$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$\begin{array}{rcl} i & \leq & 3 \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta x \end{array}$$

$$G_3[x_1, x_2] := \lambda x_3. \Delta(x_1, x_2, x_3)$$

$$X_3[x_1, x_2] := \Phi_3(G_3[x_1, x_2])$$

$$G_2[x_1] := \lambda x_2. \Delta(x_1, x_2, X_3[x_1, x_2])$$

$$X_2[x_1] := \Phi_2(G_2[x_1])$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$\begin{array}{rcl} i & \leq & 3 \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta x \end{array}$$

$$G_3[x_1, x_2] := \lambda x_3. \Delta(x_1, x_2, x_3)$$

$$X_3[x_1, x_2] := \Phi_3(G_3[x_1, x_2])$$

$$G_2[x_1] := \lambda x_2. \Delta(x_1, x_2, X_3[x_1, x_2])$$

$$X_2[x_1] := \Phi_2(G_2[x_1])$$

$$\textcolor{red}{g_1} := \lambda x_1. \Delta(x_1, X_2[x_1], X_3[x_1, X_2[x_1]])$$

$$\textcolor{red}{x_1} := \Phi_1(g_1)$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$\begin{array}{rcl} i & \leq & 3 \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta x \end{array}$$

$$G_3[x_1, x_2] := \lambda x_3. \Delta(x_1, x_2, x_3)$$

$$X_3[x_1, x_2] := \Phi_3(G_3[x_1, x_2])$$

$$g_2 := G_2[\textcolor{red}{x}_1] := \lambda x_2. \Delta(x_1, x_2, X_3[x_1, x_2])$$

$$x_2 := X_2[\textcolor{red}{x}_1] := \Phi_2(G_2[x_1])$$

$$\textcolor{red}{g}_1 := \lambda x_1. \Delta(x_1, X_2[x_1], X_3[x_1, X_2[x_1]])$$

$$\textcolor{red}{x}_1 := \Phi_1(g_1)$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$\begin{array}{rcl} i & \leq & 3 \\ x_i & \stackrel{\tau}{=} & \Phi_i g_i \\ g_i(x_i) & \stackrel{\sigma}{=} & \Delta x \end{array}$$

$$g_3 := G_3[x_1, x_2] := \lambda x_3. \Delta(x_1, x_2, x_3)$$

$$x_3 := X_3[x_1, x_2] := \Phi_3(G_3[x_1, x_2])$$

$$g_2 := G_2[x_1] := \lambda x_2. \Delta(x_1, x_2, X_3[x_1, x_2])$$

$$x_2 := X_2[x_1] := \Phi_2(G_2[x_1])$$

$$g_1 := \lambda x_1. \Delta(x_1, X_2[x_1], X_3[x_1, X_2[x_1]])$$

$$x_1 := \Phi_1(g_1)$$

Finite bar recursion

General case (with a fixed bound k)

$$i \leq k$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta(x_1, \dots, x_k)$$

Finite bar recursion

General case (with a fixed bound k)

$$i \leq k$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta(x_1, \dots, x_k)$$

General solution can be constructed as follows ($\mathbf{x}_{i-1} \equiv x_1, \dots, x_{i-1}$)

$$\text{fB}(\mathbf{x}_{i-1}) = \begin{cases} x_1, \dots, x_k & k = i - 1 \\ \text{fB}(\mathbf{x}_{i-1}, X_i[\mathbf{x}_{i-1}]) & \text{otherwise} \end{cases}$$

where $X_i[\mathbf{x}_{i-1}] := \Phi_i G_i[\mathbf{x}_{i-1}]$ and $G_i[\mathbf{x}_{i-1}] := \lambda x_i. \Delta(\text{fB}(\mathbf{x}_{i-1}, x_i))$.

Finite bar recursion

General case (with a fixed bound k)

$$i \leq k$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta(x_1, \dots, x_k)$$

General solution can be constructed as follows ($\mathbf{x}_{i-1} \equiv x_1, \dots, x_{i-1}$)

$$\text{fB}(\mathbf{x}_{i-1}) = \begin{cases} x_1, \dots, x_k & k = i - 1 \\ \text{fB}(\mathbf{x}_{i-1}, X_i[\mathbf{x}_{i-1}]) & \text{otherwise} \end{cases}$$

where $X_i[\mathbf{x}_{i-1}] := \Phi_i G_i[\mathbf{x}_{i-1}]$ and $G_i[\mathbf{x}_{i-1}] := \lambda x_i. \Delta(\text{fB}(\mathbf{x}_{i-1}, x_i))$.

Then take $\langle x_1, \dots, x_k \rangle := \text{fB}(\langle \rangle)$ and $g_i := G_i[\mathbf{x}_{i-1}]$.

Spector's bar recursion

Back to the original problem

$$i \leq |\mathbf{x}|$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta \mathbf{x}$$

Spector's bar recursion

Back to the original problem

$$i \leq |\mathbf{x}|$$

$$x_i \stackrel{\tau}{=} \Phi_i g_i$$

$$g_i(x_i) \stackrel{\sigma}{=} \Delta \mathbf{x}$$

can be solved with $(\mathbf{x}_{i-1} \equiv x_1, \dots, x_{i-1})$

$$\text{BR}(\mathbf{x}_{i-1}) = \begin{cases} \mathbf{x}_{i-1} & \Psi \hat{x} < i-1 \\ \text{BR}(\mathbf{x}_{i-1}, X_i[\mathbf{x}_{i-1}]) & \text{otherwise} \end{cases}$$

where $X_i[\mathbf{x}_{i-1}] := \Phi_i G_i[\mathbf{x}_{i-1}]$ and $G_i[\mathbf{x}_{i-1}] := \lambda x_i. \Delta(\text{BR}(\mathbf{x}_{i-1}, x_i)).$

Finally, take $\mathbf{x} := \text{fB}(\langle \rangle)$ and $g_i := G_i[\mathbf{x}_{i-1}]$.

Outline

1 Bar recursion

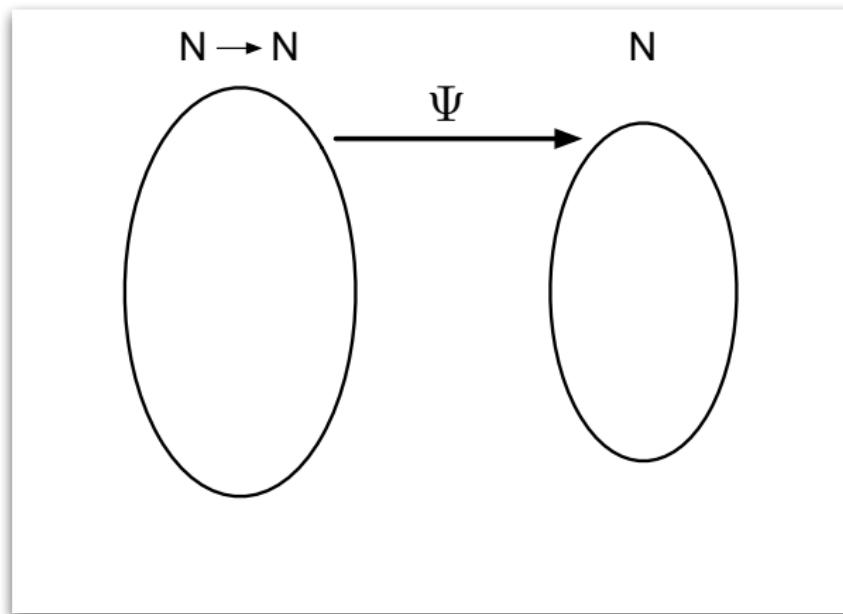
- Finite bar recursion
- Spector's bar recursion

2 An application

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

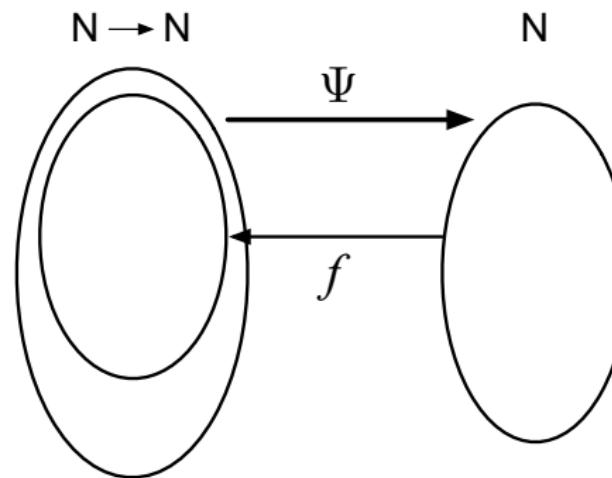
$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

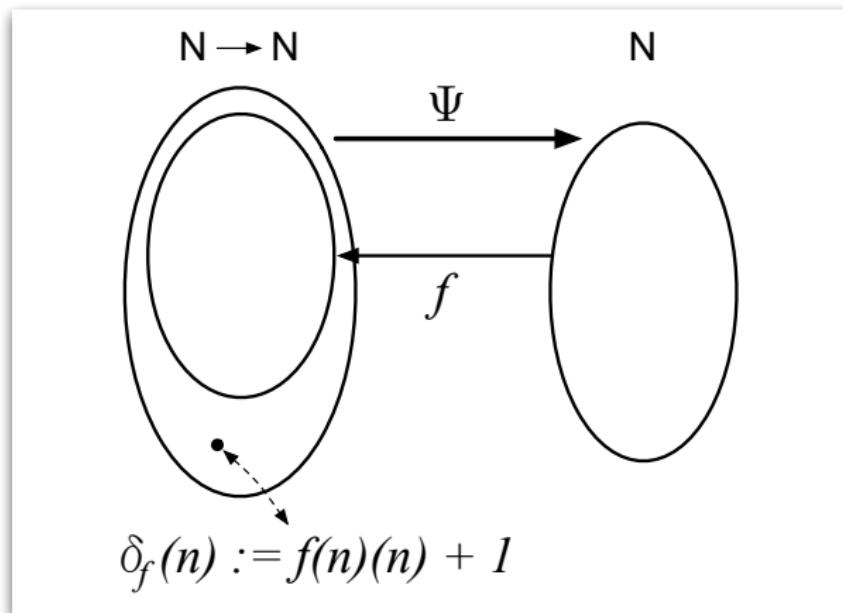
$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

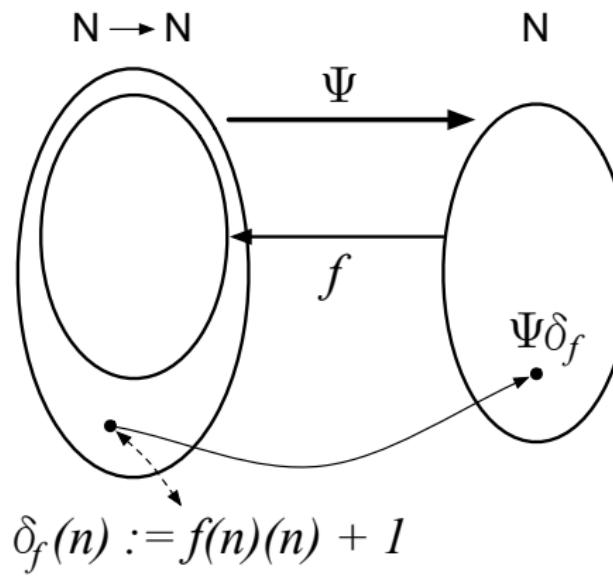
$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

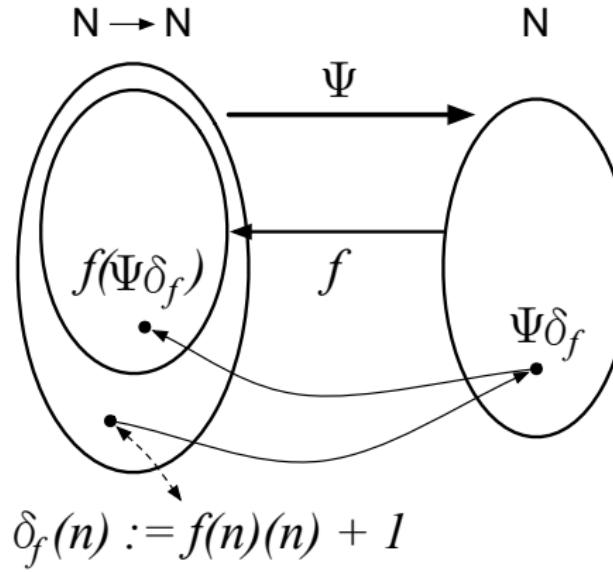
$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

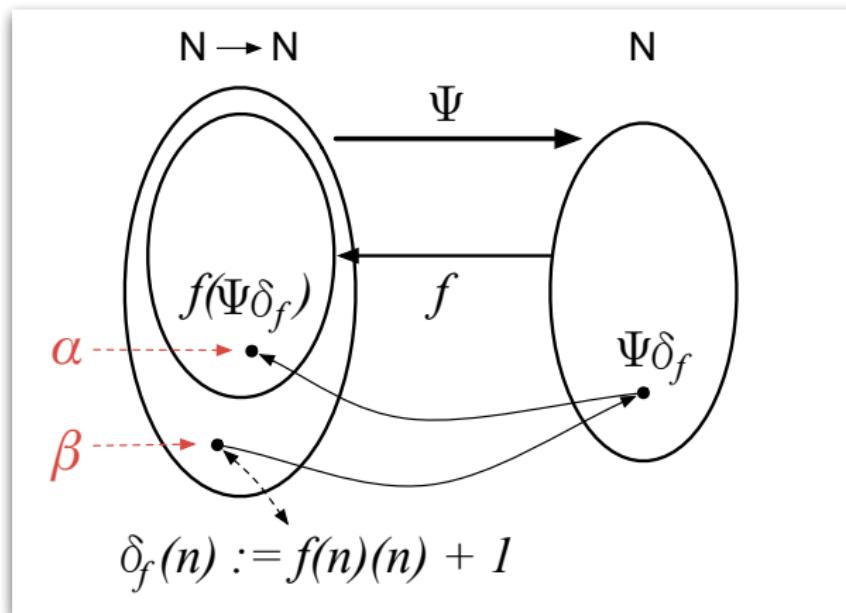
$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$\forall \Psi^{1 \rightarrow 0} \exists \alpha^1, \beta^1 (\alpha \neq \beta \wedge \Psi\alpha = \Psi\beta).$



Bar recursive solution

Key in solution is the construction of the enumeration $f : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$

$$\forall k(\exists \beta(\Psi\beta = k) \rightarrow \Psi(fk) = k)$$

Bar recursive solution

Key in solution is the construction of the enumeration $f : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$

$$\forall k (\exists \beta (\Psi \beta = k) \rightarrow \Psi(fk) = k)$$

Could try to build a *finite approximation* t for f

$$\forall k < |t| (\exists \beta (\Psi \beta = k) \rightarrow \Psi(t_k) = k)$$

Bar recursive solution

Key in solution is the construction of the enumeration $f : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$

$$\forall k (\exists \beta (\Psi \beta = k) \rightarrow \Psi(fk) = k)$$

Could try to build a *finite approximation* t for f

$$\forall k < |t| (\exists \beta (\Psi \beta = k) \rightarrow \Psi(t_k) = k)$$

This is still too strong. We build finite approximation t satisfying

$$\forall k < |t| (\Psi(\delta_{\hat{t}}) = k \rightarrow \Psi(t_k) = k) \text{ and } \Psi(\delta_{\hat{t}}) \leq |t|$$

Bar recursive solution

Key in solution is the construction of the enumeration $f : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$

$$\forall k (\exists \beta (\Psi\beta = k) \rightarrow \Psi(fk) = k)$$

Could try to build a *finite approximation* t for f

$$\forall k < |t| (\exists \beta (\Psi\beta = k) \rightarrow \Psi(t_k) = k)$$

This is still too strong. We build finite approximation t satisfying

$$\forall k < |t| (\Psi(\delta_{\hat{t}}) = k \rightarrow \Psi(t_k) = k) \text{ and } \Psi(\delta_{\hat{t}}) \leq |t|$$

Let

$$B(s, k) := \begin{cases} s & \Psi\delta_{\hat{s}} < k \\ r & \Psi\delta_{\hat{r}} \neq k \quad (\text{and } \Psi\delta_{\hat{s}} \geq k) \\ B(s * \delta_{\hat{r}}, k + 1) & \Psi\delta_{\hat{r}} = k \quad (\text{and } \Psi\delta_{\hat{s}} \geq k) \end{cases}$$

where $r := B(s * 0^1, k + 1)$. Then take $t := B(\langle \rangle, 0)$.

Final remarks

- Other application in the paper
 - compute fixed-point for update procedures (Avigad'02)

Final remarks

- Other application in the paper
 - compute fixed-point for update procedures (Avigad'02)
- Models of bar recursion
 - Total continuous functions (Scarpellini'71)
 - Strongly majorizable functions (Bezem'85)

Final remarks

- Other application in the paper
 - compute fixed-point for update procedures (Avigad'02)
- Models of bar recursion
 - Total continuous functions (Scarpellini'71)
 - Strongly majorizable functions (Bezem'85)
- Interpretation used
 - Dialectica interpretation (Gödel'58)
 - Using realizability interpretations:
Modified bar recursion (Berardi et al.'98, Berger/O.'05)