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Understanding and Using Spector’s Bar Recursion

A 3-player game

1. Person i ∈ {1, 2, 3} builds a (non-zero) function gi(x)
2. Person i is assigned the number xi := gi(i)
3. g1(x1) = x2 + x3 and g2(x2) = x1 + x3 and g3(x3) = x1 + x2
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g3(x) =

x3 := g3(3)
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A ω-player game

1. Person i ∈ {1, 2, 3, ...} builds a (non-zero) function gi(x)
2. Person i is assigned the number xi := gi(i)
3. g1(x1) = x2 + x3 and g2(x2) = x1 + x3 and g3(x3) = x1 + x2
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A ω-player game
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A ω-player game

1. Person i ∈ {1, 2, 3, ...} builds a (non-zero) function gi(x)
2. Person i is assigned the number xi := Φi(gi)
3. gi(xi) = ∆(x1, x2, . . .)
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Bar recursion

On Bar Recursion

Facts:

Classical computational interpretation of countable choice
(due to Spector’62)
In particular, provides interpretation of full comprehension
Difficult to understand

Goal:

Explain bar recursion
Use it in simple (practical) examples
Understand how it solves the problem
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Bar recursion

Interpreting countable choice

Give classical computation interpretation of cAC

∀nN∃yτA(n, y) → ∃f∀nA(n, fn)

Need to interpret the negative translation of cAC

∀nN¬¬∃yτA†(n, y) → ¬¬∃f∀nA†(n, fn)

Consider cAC for universal formulas

∀nN¬¬∃yτ∀xσAqf(n, y, x) → ¬¬∃f∀n, xσAqf(n, fn, x)

Interpretation asks for functionals n, g, f depending on Φ,Ψ,∆ s.t.

¬¬Aqf(n, Φng, g(Φng)) → ¬¬Aqf(Ψf, f(Ψf),∆f)
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Bar recursion

Interpreting countable choice

How to produce n, g, f (parametrised by Φ,Ψ,∆) such that

¬¬Aqf(n, Φng, g(Φng)) → ¬¬Aqf(Ψf, f(Ψf),∆f)

Enough to satisfy equations:
n

N= Ψf

fn
τ= Φng

g(fn) σ= ∆f



⇒


i ≤ |x|

xi
τ= Φigi

gi(xi)
σ= ∆x



Given Ψx̂ < |x| then f := x̂ and n := Ψx̂ and g := gn.
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Bar recursion

Finite bar recursion

A particular case

Let’s consider the particular case in which Ψ ≤ 3

i ≤ 3

xi
τ= Φigi

gi(xi)
σ= ∆x

g3 :=

G3[x1, x2] := λx3.∆(x1, x2, x3)

x3 :=

X3[x1, x2] := Φ3(G3[x1, x2])

g2 := G2[x1] := λx2.∆(x1, x2, X3[x1, x2])

x2 := X2[x1] := Φ2(G2[x1])

g1 := λx1.∆(x1, X2[x1], X3[x1, X2[x1]])

x1 := Φ1(g1)
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Bar recursion

Finite bar recursion

Finite bar recursion

General case (with a fixed bound k)

i ≤ k

xi
τ= Φigi

gi(xi)
σ= ∆(x1, . . . , xk)

General solution can be constructed as follows (xi−1 ≡ x1, . . . , xi−1)

fB(xi−1) =

{
x1, . . . , xk k = i− 1

fB(xi−1, Xi[xi−1]) otherwise

where Xi[xi−1] := ΦiGi[xi−1] and Gi[xi−1] := λxi.∆(fB(xi−1, xi)).

Then take 〈x1, . . . , xk〉 := fB(〈 〉) and gi := Gi[xi−1].
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Bar recursion

Spector’s bar recursion

Spector’s bar recursion

Back to the original problem

i ≤ |x|

xi
τ= Φigi

gi(xi)
σ= ∆x

can be solved with (xi−1 ≡ x1, . . . , xi−1)

BR(xi−1) =

{
xi−1 Ψx̂ < i− 1

BR(xi−1, Xi[xi−1]) otherwise

where Xi[xi−1] := ΦiGi[xi−1] and Gi[xi−1] := λxi.∆(BR(xi−1, xi)).

Finally, take x := fB(〈 〉) and gi := Gi[xi−1].
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Bar recursive solution

Key in solution is the construction of the enumeration f : N → (N → N)
∀k(∃β(Ψβ = k) → Ψ(fk) = k)

Could try to build a finite approximation t for f

∀k < |t|(∃β(Ψβ = k) → Ψ(tk) = k)
This is still too strong. We build finite approximation t satisfying

∀k < |t|(Ψ(δt̂) = k → Ψ(tk) = k) and Ψ(δt̂) ≤ |t|
Let

B(s, k) :=


s Ψδŝ < k

r Ψδr̂ 6= k (and Ψδŝ ≥ k)

B(s ∗ δr̂, k + 1) Ψδr̂ = k (and Ψδŝ ≥ k)

where r := B(s ∗ 01, k + 1). Then take t := B(〈 〉, 0).
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Final remarks

Other application in the paper

compute fixed-point for update procedures (Avigad’02)

Models of bar recursion

Total continuous functions (Scarpellini’71)
Strongly majorizable functions (Bezem’85)

Interpretation used

Dialectica interpretation (Gödel’58)
Using realizability interpretations:
Modified bar recursion (Berardi et al.’98, Berger/O.’05)
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