
Bath Mathematical Foundations Seminar
30 March 2021

Paulo Oliva
(joint work with Martín Escardó)

Queen Mary University of London

The Selection Monad
Transformer

Backward Induction with Mixed Strategies

Tic-Tac-Toe
If both players play optimally, the game ends in a draw

Hence any first move is an optimal move!

But what if the opponent is likely to make mistakes…

Surely some first moves are better than others

How do we calculate strategies that maximises the chances of your
opponent making a mistake?

How to do this in a modular / compositional way?

Plan

• Strong Monads

• Continuation Monad (folding back procedure)

• Selection Monad (backward induction)

• Selection Monad Transformer

• An Example (Tic-Tac-Toe)

Strong Monads

Strong Monads
A function on types is a strong monad if we have operations:T : Type → Type

ηX : X → TX
(⋅)† : (X → TY) → TX → TY

 Example 1 (Lists)

TX = [X]

η(x) = [x]
f †(xs) = [y : x ∈ xs, y ∈ fx]

(ηX)†(xs) = [y : x ∈ xs, y ∈ [x]]
= [x : x ∈ xs]
= [x : x ∈ xs]

(ηX)† = idTX

f † ∘ ηX = f

(g† ∘ f)† = g† ∘ f †

(f : X → TY)
(g : Y → TZ)

satisfying

Strong Monads
A function on types is a strong monad if we have operations:T : Type → Type

ηX : X → TX
(⋅)† : (X → TY) → TX → TY

(ηX)† = idTX

f † ∘ ηX = f

(g† ∘ f)† = g† ∘ f †

(f : X → TY)
(g : Y → TZ)

satisfying

 Example 2 (Distributions)

ΔX = [(ℚ, X)]

η(x) = [(1, x)]
f †(d) = [(p1p2, y) : (p1, x) ∈ d, (p2, y) ∈ fx]

(ηX)†(xs) = [(p, x) : (p, x) ∈ d]
= d

Strong Monad Product
For any strong monad we can define an operation

which we can iterate to obtain

For some strong monads even the countable iteration is well defined

In game theory applications, captures the “local” strategy at round and the
product operation is used to compose simpler strategies into more complex ones

T : Type → Type

TXi i

⊗ : TX × TY → T(X × Y)

⨂
i

: Πi(TXi) → T(ΠiX)

Continuation Monad

Continuation Monad
For any type the following type function is a strong monad (continuation monad)

with the mappings:

A program in a context views as its continuation

In proof theory the continuation monad is related to double negation translations

In game theory it corresponding to the “folding back procedure”

R

p : X E[p] : R λx . E[x] : X → R

η : X → KRX (⋅)† : (X → KRY) → KRX → KRY

KRX = (X → R) → R

η(x) = λκX→R . κ(x) f †(ϕ) = λκY→R . ϕ(λxX . (fx)(κ))

Folding Back Procedure
Given a game in extensive form (tree), and an aggregation function

we can “fold back” the game. For instance, suppose our aggregation function is

ϕ : (X → R) → R

max : (X → ℝ) → ℝ
4

3

7

1
Sequence
of Moves Outcomes

game continuationsIn these
positions

Folding Back Procedure
Given a game in extensive form (tree), and an aggregation function

we can “fold back” the game. For instance, suppose our aggregation function is

ϕ : (X → R) → R

max : (X → ℝ) → ℝ
4

3

7

1
Sequence
of Moves Outcomes

In these
positions

game continuations

fold back 4

7

In this
position

game continuation

Folding Back Procedure
Given a game in extensive form (tree), and an aggregation function

we can “fold back” the game. For instance, suppose our aggregation function is

ϕ : (X → R) → R

max : (X → ℝ) → ℝ
4

3

7

1
Sequence
of Moves Outcomes

In these
positions

game continuations

fold back 4

7

fold back

7

In this
position

game continuation

Selection Monad

Selection Monad
For any type the following type function is a strong monad (selection monad)

with the mappings:

where

In proof theory the selection monad is related to the Peirce translation

In game theory it corresponding to “backward induction”
(computing optimal strategies in sequential games)

R

a(κ) = ε(λx . κ(f(x)(κ)))

η : X → JRX (⋅)† : JRX → (X → JRY) → JRY

JRX = (X → R) → X

η(x) = λκX→R . x f †(ε) = λκY→R . f(a(κ))(κ)

Backward Induction
Given a game in extensive form (tree), and a selection function

we can calculate optimal plays. For instance, suppose our selection function is

ε : (X → R) → X

argmax: (X → ℝ) → X
4

3

7

1
Sequence
of Moves Outcomes

In these
positions

game continuations

Backward Induction
Given a game in extensive form (tree), and a selection function

we can calculate optimal plays. For instance, suppose our selection function is

ε : (X → R) → X

argmax: (X → ℝ) → X
4

3

7

1
Sequence
of Moves Outcomes

In these
positions

game continuations

4

7

Backward Induction
Given a game in extensive form (tree), and a selection function

we can calculate optimal plays. For instance, suppose our selection function is

ε : (X → R) → X

argmax: (X → ℝ) → X
4

3

7

1
Sequence
of Moves Outcomes

In these
positions

game continuations

4

7 7

Selection Monad
Transformer

Selection Monad Transformer
For any strong monad M and type the following is also a strong monadR

JM
R X = (X → MR) → MX

JΔ
R X = (X → ΔR) → ΔX

For each move
we have a distribution

over outcomes

J𝒫
R X = (X → 𝒫R) → 𝒫X

For each move
we have a set

of possible outcomes

Non-deterministic players Stochastic players

choose a
set of
move

choose a
distribution of

moves

Haskell

Tic-Tac-Toe

Tic-Tac-Toe
If both players play optimally, the game ends in a draw

Standard backward induction then says that any first move is an optimal move

But what if the opponent is likely to make mistakes, surely some first moves are
better than others

You want to choose a first move that maximises the chances of your opponent
making a mistake

This can be easily calculated with the selection monad transformer

JΔ
R X = (X → ΔR) → ΔX Demo

Haskell

Thank you for your attention!

