
Bath Mathematical Foundations Seminar 
30 March 2021 

Paulo Oliva 
(joint work with Martín Escardó) 

Queen Mary University of London

The Selection Monad 
Transformer

Backward Induction with Mixed Strategies



Tic-Tac-Toe
If both players play optimally, the game ends in a draw 

Hence any first move is an optimal move! 

But what if the opponent is likely to make mistakes…  

Surely some first moves are better than others 

How do we calculate strategies that maximises the chances of your 
opponent making a mistake? 

How to do this in a modular / compositional way?



Plan

• Strong Monads 

• Continuation Monad (folding back procedure) 

• Selection Monad (backward induction) 

• Selection Monad Transformer 

• An Example (Tic-Tac-Toe)
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Strong Monads
A function on types  is a strong monad if we have operations:T : Type → Type

ηX : X → TX
( ⋅ )† : (X → TY) → TX → TY

 Example 1 (Lists)

TX = [X]

η(x) = [x]
f †(xs) = [y : x ∈ xs, y ∈ fx]

(ηX)†(xs) = [y : x ∈ xs, y ∈ [x]]
= [x : x ∈ xs]
= [x : x ∈ xs]

(ηX)† = idTX

f † ∘ ηX = f

(g† ∘ f )† = g† ∘ f †

( f : X → TY)
(g : Y → TZ)

satisfying



Strong Monads
A function on types  is a strong monad if we have operations:T : Type → Type

ηX : X → TX
( ⋅ )† : (X → TY) → TX → TY

(ηX)† = idTX

f † ∘ ηX = f

(g† ∘ f )† = g† ∘ f †

( f : X → TY)
(g : Y → TZ)

satisfying

 Example 2 (Distributions)

ΔX = [(ℚ, X)]

η(x) = [(1, x)]
f †(d) = [(p1p2, y) : (p1, x) ∈ d, (p2, y) ∈ fx]

(ηX)†(xs) = [(p, x) : (p, x) ∈ d]
= d



Strong Monad Product
For any strong monad  we can define an operation 

which we can iterate to obtain 

For some strong monads even the countable iteration is well defined 

In game theory applications,  captures the “local” strategy at round  and the 
product operation is used to compose simpler strategies into more complex ones

T : Type → Type

TXi i

⊗ : TX × TY → T(X × Y)

⨂
i

: Πi(TXi) → T(ΠiX)
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Continuation Monad
For any type  the following type function is a strong monad (continuation monad) 

with the mappings: 
 
 
 
 
A program  in a context  views  as its continuation 

In proof theory the continuation monad is related to double negation translations 

In game theory it corresponding to the “folding back procedure”

R

p : X E[p] : R λx . E[x] : X → R

η : X → KRX ( ⋅ )† : (X → KRY) → KRX → KRY

KRX = (X → R) → R

η(x) = λκX→R . κ(x) f †(ϕ) = λκY→R . ϕ(λxX . ( fx)(κ))



Folding Back Procedure
Given a game in extensive form (tree), and an aggregation function 

we can “fold back” the game. For instance, suppose our aggregation function is

ϕ : (X → R) → R

max : (X → ℝ) → ℝ
4
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Selection Monad
For any type  the following type function is a strong monad (selection monad) 

with the mappings: 
 
 
 

 
where  

In proof theory the selection monad is related to the Peirce translation 

In game theory it corresponding to “backward induction” 
(computing optimal strategies in sequential games)

R

a(κ) = ε(λx . κ( f(x)(κ)))

η : X → JRX ( ⋅ )† : JRX → (X → JRY) → JRY

JRX = (X → R) → X

η(x) = λκX→R . x f †(ε) = λκY→R . f(a(κ))(κ)



Backward Induction
Given a game in extensive form (tree), and a selection function 

we can calculate optimal plays. For instance, suppose our selection function is

ε : (X → R) → X

argmax: (X → ℝ) → X
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Selection Monad Transformer
For any strong monad M and type  the following is also a strong monadR

JM
R X = (X → MR) → MX

JΔ
R X = (X → ΔR) → ΔX

For each move 
we have a distribution 

over outcomes

J𝒫
R X = (X → 𝒫R) → 𝒫X

For each move 
we have a set 

of possible outcomes

Non-deterministic players Stochastic players

choose a 
set of 
move

choose a 
distribution of 

moves



Haskell



Tic-Tac-Toe



Tic-Tac-Toe
If both players play optimally, the game ends in a draw 

Standard backward induction then says that any first move is an optimal move 

But what if the opponent is likely to make mistakes, surely some first moves are 
better than others 

You want to choose a first move that maximises the chances of your opponent 
making a mistake 

This can be easily calculated with the selection monad transformer

JΔ
R X = (X → ΔR) → ΔX Demo



Haskell



Thank you for your attention!


