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Tic-Tac-Toe

If both players play optimally, the game ends in a draw
Hence any first move is an optimal move!

But what if the opponent is likely to make mistakes...
Surely some first moves are better than others

How do we calculate strategies that maximises the chances of your

opponent making a mistake?

How to do this in a modular / compositional way?



Plan

Strong Monads

Continuation Monad (folding back procedure)
Selection Monad (backward induction)
Selection Monad Transformer

An Example (Tic-Tac-Toe)
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Strong Monads

A function on types T: Type — Type is a strong monad if we have operations:

Ny : X = 1TX

Example 1 (Lists)
(): X>TY)>TX >TY

TX = [X]
satisfying /00 = [x]
)T = idy ffxs) =[y: x € xs,y € fx]
flrongy=f (f: X—>TY) (nx)'(xs) = [y : x € x5,y € []]

= |x: x € x5]

(g ef) =g of" (g:Y—TZ) = [x: x € xs]




Strong Monads

A function on types T: Type — Type is a strong monad if we have operations:

Ny : X = 1TX
(- )T: (X = TY) > TX = TY Example 2 (Distributions)
AX = [(Q,X)]
satisfying "0 = [(1.20)]
(ny)' = idpy i d) = [(pip2,y) : (P, %) € d, (P, y) € fx]
fromy=f (F: X > TY) | (') = (1) : (pox) € d]
(g'ef) =g"ef" (g:Y— T2 =d




Strong Monad Product

For any strong monad 7': Type — Type we can define an operation

® : TXXTY = T(XXY)

which we can iterate to obtain

X : I(TX) - T1X)

For some strong monads even the countable iteration is well defined

In game theory applications, 7X. captures the “local” strategy at round i and the
product operation is used to compose simpler strategies into more complex ones
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Continuation Monad

For any type R the following type function is a strong monad (continuation monad)
KpX=X—->R)—>R
with the mappings:
n:X— KgX () (X = KpY) = Ko X = KpY
n(x) = A8 k(x) Fi(p) = AR pAxX . (f)(K))
A program p: X in a context E[p]: R views Ax. E[x]: X — R as its continuation

In proof theory the continuation monad is related to double negation translations
In game theory it corresponding to the “folding back procedure”



Folding Back Procedure

Given a game in extensive form (tree), and an aggregation function
$d: (X—>R)—> R

we can “fold back” the game. For instance, suppose our aggregation function is

In these game continuations max . (X — | ) — |

positions\ R ZI-.-..‘.
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Selection Monad

For any type R the following type function is a strong monad (selection monad)
Jp X=X—->R)—- X
with the mappings:
n X = JgX (N T X = (X = JpY) = JpY
n(x) = A~ x f'(e) = " . fla())(k)
where a(x) = e(Ax . k(f(x)(k)))
In proof theory the selection monad is related to the Peirce translation

In game theory it corresponding to “backward induction”
(computing optimal strategies in sequential games)



Backward Induction

Given a game in extensive form (tree), and a selection function
e:( X—->R) - X

we can calculate optimal plays. For instance, suppose our selection function is
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Selection Monad Transformer

For any strong monad M and type R the following is also a strong monad

J¥X = (X - MR) - MX

Non-deterministic players

o2

For each move
we have a set
of possible outcomes

JIX = (X - PR) -» PX

T

choose a
set of
move

Stochastic players

JAX = (X - AR) — AX

]t

For each move choose a
we have a distribution  distribution of
over outcomes moves




rmx =J {selection :: (X =>mr) — m x}

ance (Monad m) => Monad
return = pure
e >= T = mul . (fmap f) $ €

hsequence :: Monad m => [[x] => m x] =—> m [x]
hsequence || = return

hsequence (xm:xms) = do
X <— xm |[]

Xs <- hsequence [ \ys —> ym(x:ys) | ym <- xms ]
return (x : xs)
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Tic-Tac-Toe

If both players play optimally, the game ends in a draw
Standard backward induction then says that any first move is an optimal move

But what if the opponent is likely to make mistakes, surely some first moves are
better than others

You want to choose a first move that maximises the chances of your opponent
making a mistake

This can be easily calculated with the selection monad transformer

JAX = (X - AR) —» AX Demo



pR :: [Move] —> J R D Move
= J (\p —> uniform $ argmax ([0..8] "minus  xs) (probs . p))

Move] -> J R D Move

J (\p = uniform $ argmin ([0..8] “minus' xs) (probs . p))

Move] —> J R D Move

J (\p —> uniform ([0..8] "minus” xs))

players :: [[Move] —> J R D Movel
players = [pR, oI, pR, oI, pR, oI, pR, oI, pR]




‘T’hank you for your attention!



