

Mining Human Proofs from Machine Proofs

ENSPM 2021

Tuesday, 12 July 2021

Paulo Oliva

Queen Mary University of London
(Joint work with Rob Arthan)

Machine Proof

Difficult to “understand”

All formulas treated the same way

Prove exactly what needs to be proven

No new concepts

Human Proof

Focus on understanding “why” theorem is true

More “interesting” sub-goals highlighted as “Lemmas”

Generalising often makes proofs easier/shorter

Special treatment for new “important” ideas/constructions

Is A provable in L?

formula

Is A provable in L?

formula

logic

Is A provable in L?

formula

logic

Is A provable in L?

reduce

formula

logic

Is A provable in L?

reduce

Is E true in C?

formula

logic

Is A provable in L?

reduce

equation

Is E true in C?

formula

logic

Is A provable in L?

reduce

equation

class of
algebras

Is E true in C?

formula

logic

Is A provable in L?

reduce

equation

class of
algebras

machine finds
equational proof

formula

logic

Is A provable in L?

reduce

recover natural
deduction proof

Is E true in C?

equation

class of
algebras

machine finds
equational proof

Is
 $\neg(\neg A \rightarrow A)$
provable in
intuitionistic
Lukasiewicz logic?

Does
 $\neg(\neg x \rightarrow x) = 0$
hold in all
bounded hoops?

pocrim

$\langle X, \otimes, \rightarrow, \geq, 0 \rangle$

partially ordered
commutative
residuated integral
monoid

hoops

Bucki/Owens'74

pocrims satisfying:

If $x \geq y$ then
 $x = y \otimes (y \rightarrow x)$

prover9

- Automated theorem prover for first-order and equational logic
- Successor of Otter
- Developed by Bill McCune
- Uses resolution and paramodulation

<http://www.cs.unm.edu/~mccune/prover9/>

- Able to find proofs using prover9

- Able to find proofs using prover9
- Initially, not much out of the proofs other than that the result was true

```

40  $x + (x \Rightarrow 1) = 1$ . [copy(39), flip(a)].
41  $1 \Rightarrow x = y \Rightarrow ((y \Rightarrow 1) \Rightarrow x)$ . [para(40(a,1),5(a,1,1))].
42  $x \Rightarrow ((x \Rightarrow 1) \Rightarrow y) = 1 \Rightarrow y$ . [copy(41), flip(a)].
43  $x + 1 = y + (x + (y \Rightarrow 1))$ . [para(40(a,1),18(a,1,2))].
44  $1 = y + (x + (y \Rightarrow 1))$ . [para(9(a,1),43(a,1))].
45  $x + (y + (x \Rightarrow 1)) = 1$ . [copy(44), flip(a)].
46  $x + (y \Rightarrow (x \Rightarrow z)) = (y \Rightarrow z) + ((y \Rightarrow z) \Rightarrow x)$ . [para(22(a,1),6(a,1,2))].
47  $(x \Rightarrow y) + ((x \Rightarrow y) \Rightarrow z) = z + (x \Rightarrow (z \Rightarrow y))$ . [copy(46), flip(a)].
48  $x \Rightarrow 0 = y \Rightarrow (x \Rightarrow y)$ . [para(7(a,1),22(a,1,2))].
49  $0 = y \Rightarrow (x \Rightarrow y)$ . [para(8(a,1),48(a,1))].
50  $x \Rightarrow (y \Rightarrow x) = 0$ . [copy(49), flip(a)].
51  $x \Rightarrow 0 = y \Rightarrow (x \Rightarrow ((y \Rightarrow z) \Rightarrow z))$ . [para(29(a,1),22(a,1,2))].
52  $0 = y \Rightarrow (x \Rightarrow ((y \Rightarrow z) \Rightarrow z))$ . [para(8(a,1),51(a,1))].
53  $x \Rightarrow (y \Rightarrow ((x \Rightarrow z) \Rightarrow z)) = 0$ . [copy(52), flip(a)].
54  $1 \Rightarrow x = 0$ . [para(37(a,1),7(a,1))].
55  $x \Rightarrow ((x \Rightarrow 1) \Rightarrow y) = 0$ . [para(54(a,1),42(a,2))].
56  $1 = x + ((x \Rightarrow y) + (y \Rightarrow 1))$ . [para(45(a,1),24(a,1))].
57  $x + ((x \Rightarrow y) + (y \Rightarrow 1)) = 1$ . [copy(56), flip(a)].
58  $x \Rightarrow (0 \Rightarrow y) = (z \Rightarrow x) \Rightarrow (((z \Rightarrow x) \Rightarrow x) \Rightarrow y)$ . [para(50(a,1),26(a,1,2,1))].
59  $x \Rightarrow y = (z \Rightarrow x) \Rightarrow (((z \Rightarrow x) \Rightarrow x) \Rightarrow y)$ . [para(33(a,1),58(a,1,2))].
60  $(x \Rightarrow y) \Rightarrow (((x \Rightarrow y) \Rightarrow y) \Rightarrow z) = y \Rightarrow z$ . [copy(59), flip(a)].
61  $x \Rightarrow ((x \Rightarrow y) \Rightarrow ((y \Rightarrow z) \Rightarrow z)) = 0$ . [para(26(a,1),53(a,1))].
62  $x + (0 + (((x \Rightarrow y) \Rightarrow y) \Rightarrow 1)) = 1$ . [para(29(a,1),57(a,1,2,1))].
63  $x + (((x \Rightarrow y) \Rightarrow y) \Rightarrow 1) = 1$ . [para(20(a,1),62(a,1,2))].
64  $x + ((y \Rightarrow z) + ((y \Rightarrow z) \Rightarrow u)) = u + (x + (y \Rightarrow (u \Rightarrow z)))$ . [para(22(a,1),38(a,2,2,2))].
65  $1 \Rightarrow x = y \Rightarrow (((y \Rightarrow z) \Rightarrow z) \Rightarrow 1) \Rightarrow x$ . [para(63(a,1),5(a,1,1))].
66  $0 = y \Rightarrow (((y \Rightarrow z) \Rightarrow z) \Rightarrow 1) \Rightarrow x$ . [para(54(a,1),65(a,1))].
67  $x \Rightarrow (((x \Rightarrow y) \Rightarrow y) \Rightarrow 1) \Rightarrow z = 0$ . [copy(66), flip(a)].
68  $(x \Rightarrow y) + ((x \Rightarrow y) \Rightarrow (x \Rightarrow 1)) = (x \Rightarrow 1) + 0$ . [para(55(a,1),47(a,2,2))].
69  $(x \Rightarrow y) + (x \Rightarrow ((x \Rightarrow y) \Rightarrow 1)) = (x \Rightarrow 1) + 0$ . [para(22(a,1),68(a,1,2))].
70  $(x \Rightarrow y) + (x \Rightarrow ((x \Rightarrow y) \Rightarrow 1)) = 0 + (x \Rightarrow 1)$ . [para(3(a,1),69(a,2))].
71  $(x \Rightarrow y) + (x \Rightarrow ((x \Rightarrow y) \Rightarrow 1)) = x \Rightarrow 1$ . [para(20(a,1),70(a,2))].

```

- Able to find proofs using prover9
- Initially, not much out of the proofs other than that the result was true

- Able to find proofs using prover9
- Initially, not much out of the proofs other than that the result was true
- But we started noticing some patterns...

Certain derived connectives kept appearing:

weak conjunction

$$A \wedge B \equiv A \otimes (A \rightarrow B)$$

strong disjunction

$$A \vee B \equiv (B \rightarrow A) \rightarrow A$$

strong implication

$$A \Rightarrow B \equiv A \rightarrow A \otimes B$$

NOR, Peirce's ampheck

$$A \downarrow B \equiv \neg A \otimes (B \rightarrow A)$$

Lemma 4.2 (LL_i) $A \otimes B \leftrightarrow A \otimes (B \vee (A \Rightarrow B))$

Theorem 4.7 (LL_i) $B \downarrow A \leftrightarrow A \downarrow B$

Corollary 4.8 (LL_i) $(A^{\perp\perp} \multimap A)^{\perp\perp}$

Proof: Note that, since $\perp \leftrightarrow A \otimes A^\perp$ we have (*) $A^{\perp\perp} \leftrightarrow A^\perp \Rightarrow A$. Moreover, it is easy to check that (**) $X \downarrow (Y \multimap X) \leftrightarrow X^\perp \otimes (X \vee Y)$, for all X and Y . Hence

$$\begin{aligned} (A^{\perp\perp} \multimap A)^\perp &\leftrightarrow ((A^\perp \Rightarrow A) \multimap A)^\perp & (*) \\ &\leftrightarrow ((A^\perp \Rightarrow A) \multimap A)^\perp \otimes \underline{(A \multimap ((A^\perp \Rightarrow A) \multimap A))} & ([\text{WK}]) \\ &\leftrightarrow ((A^\perp \Rightarrow A) \multimap A) \downarrow A & (\text{def } \downarrow) \\ &\leftrightarrow A \downarrow ((A^\perp \Rightarrow A) \multimap A) & (\text{Theorem 4.7}) \\ &\leftrightarrow A^\perp \otimes (A \vee (A^\perp \Rightarrow A)) & (**) \\ &\leftrightarrow A^\perp \otimes A & (\text{Lemma 4.2}) \\ &\leftrightarrow \perp. & \blacksquare \end{aligned}$$

Conclusions

Conclusions

- Successfully mined human-readable proofs from machine proofs

Conclusions

- Successfully mined human-readable proofs from machine proofs
- Human input is identifying the “right” abstractions:
 - Find useful derived concepts
 - Recover an intuitive proof plan

Conclusions

- Successfully mined human-readable proofs from machine proofs
- Human input is identifying the “right” abstractions:
 - Find useful derived concepts
 - Recover an intuitive proof plan
- Automated support for proof refactoring?

Conclusions

- Successfully mined human-readable proofs from machine proofs
- Human input is identifying the “right” abstractions:
 - Find useful derived concepts
 - Recover an intuitive proof plan
- Automated support for proof refactoring?
- AI to automate human aspect?

Conclusions

- Successfully mined human-readable proofs from machine proofs
- Human input is identifying the “right” abstractions:
 - Find useful derived concepts
 - Recover an intuitive proof plan
- Automated support for proof refactoring?
- AI to automate human aspect?
- The Late Bill McCune is the real star!