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o Automated theorem prover for firsk-
order ahd equational logic

o Successor of Otter
3 ‘Devetcpeci bj Bill McCune

o Uses resolution and paramodwi&%mm

kEEp: [/ wwwcsunm.edu/“mecune/ prover‘)/









o Able to find proofs using prover9

o Initially, not much out of the Prmo%
other than that the result was brue



11==>x=y== ((y =>1) ==>x). [para(40(a,l),5(a,1,1))].
2 X ==> ((x ==>1) ==>y) =1 ==1vy. [copy(4l),flip(a)].
3x+1=y+ (x+ (y==1)). [para(40(a,1),18(a,1,2))].
4 1=y + (x + (y =>1)). [para(9(a,l),43(a,1))].
5x + (y+ (x==1)) =1. [copy(44),flip(a)l].
6 X + (y ==> (x ==> 2)) = (y ==> 2z) + ((y ==> z) ==> x). [para(22(a,1),6(a,1,2))].
(X =>y) + ((x=>y) ==>2) =2+ (x=> (z =>1y)). [copy(46),flip(a)l.
X =>0@Q =y ==> (x ==>vy). [para(7(a,l1),22(a,1,2))].
49 @ =y ==> (x ==>y). [para(8(a,1),48(a,1))].
50 x ==> (y ==> x) = 0. [copy(49),flip(a)].
51 X ==> @ =y ==> (x ==> ((y ==> z) ==> z)). [para(29(a,l1),22(a,1,2))].
52 0 =y ==> (x ==> ((y ==> z) ==> z)). [para(8(a,1),51(a,1))].
53 x ==> (y ==> ((x ==> z) ==> z)) = 0. [copy(52),flip(a)l.
54 1 ==> x = 0. [para(37(a,1),7(a,1))].
55 X ==> ((x ==> 1) ==>vy) = 0. [para(54(a,1),42(a,2))].
56 1 = X + ((x ==>vy) + (y ==>1)). [para(45(a,l),24(a,1))].
57 X + ((x ==>vy) + (y ==> 1)) = 1. [copy(56),flip(a)l.
58 X ==> (0 ==>y) = (z ==> x) ==> (((z ==> x) ==> x) ==>y). [para(50(a,1),26(a,1,2,1))].
59 x ==> y = (z ==> x) ==> (((z ==> x) ==> x) ==>y). [para(33(a,1),58(a,1,2))].
60 (x ==>y) ==> (((x ==>y) ==>y) ==> 2z) =y ==> z. [copy(59),flip(a)l.
61 X ==> ((x ==>y) ==> ((y ==> z) ==> z)) = 0. [para(26(a,1),53(a,1))].
162 X + (0 + (((x ==>y) ==>y) ==> 1)) = 1. [para(29(a,l1),57(a,1,2,1))].
63 X + (((x ==>y) ==>y) ==> 1) = 1. [para(20(a,l),62(a,1,2))].
64 x + ((y ==> 2z) + ((y ==>2) ==>u)) =u + (x + (y ==> (u==>12))). [para(22(a,l),38(a,2,2,2))].
65 1 ==> x =y ==> ((((y ==> z) ==> z) ==> 1) ==> x). [para(63(a,1),5(a,1,1))].
0

66 0 =y ==> ((((y ==> z) ==> z) ==> 1) ==> x). [para(54(a,1),65(a,1))].

67 x ==> ((((x ==>y) ==>y) ==> 1) ==> z) = 0. [copy(66),flip(a)].

68 (x ==>y) + ((x ==>y) ==> (x ==> 1)) = (x ==> 1) + 0. [para(55(a,1),47(a,2,2))].
69 (x ==>y) + (x ==> ((x ==>y) ==> 1)) = (x ==> 1) + 0. [para(22(p,1),68(a,1,2))].
70 (x ==>y) + (X ==> ((x ==>y) ==> 1)) =0 + (x ==> 1). [para(3(a,1),69(a,2))].




o Able to find proofs using prover9

o Initially, not much out of the Prmo%
other than that the result was brue



o Able to find proofs using prover9

o Initially, not much out of the Prmo%
other than that the result was brue

o But we started noticing some
Fa&%&rms...



Cerbkain derived conneckives M’@.Fv& appearing:

weak conjunction
AAB = A®(A— B)
strong disjunction
AvB = (BoA)—>A
strong Emyima&mm
A=>B =A—>A®B

NOR, Peirce’s amphecik
Al B = =@ (BS A)
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Lemma 4.2 (LL;) A® B <+ A®(BV (A= B))

Theorem 4.7 (LL;) B/ A < A|B

Corollary 4.8 (LL;) (A++ — A)++

Proof: Note that, since L ++ A ® At we have (x) At+ « AL+ = A. Moreover, it is easy to
check that (xx) X | (Y — X) < X+ ® (X VY), for all X and Y. Hence

(ATt - At & (AT = A) — A)* (%)
& (A= 4) = A)" @A — (A" = 4) — 4)) ([WK])

(A= 4) —-A)L A (def )

Al ((A+ = A) — A) (Theorem 4.7)

At ® (Av (AL = A)) (%)

At® A (Lemma 4.2)

1. u
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Human nput is Ed@.ﬂﬁ{viﬂg the “right”
abstractions:

o Find useful derived concepts

o Recover an intuitive proof plan

- Automated support for prooaf refactoring?
Al to automabe human aspea&?

- The lake Bl McCune is the real skar!



