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1. Logics



Γ ⊢ A Δ ⊢ B
Γ, Δ ⊢ A ⊗ B

Γ ⊢ A1 ⊗ A2

Γ ⊢ Ai

Γ, A ⊢ B
Γ ⊢ A → B

Γ ⊢ A Δ ⊢ A → B
Γ, Δ ⊢ B

Γ, A ⊢ A

Intuitionistic Affine Logic

Γ ⊢ ⊥
Γ ⊢ A

Γ ⊢ s : A Δ ⊢ t : B
Γ, Δ ⊢ ⟨s, t⟩ : A ⊗ B

Γ ⊢ s : A1 ⊗ A2

Γ ⊢ πi(s) : Ai

Γ, x : A ⊢ s : B
Γ ⊢ λx . s : A → B

Γ ⊢ t : A Δ ⊢ s : A → B
Γ, Δ ⊢ st : B

Γ, x : A ⊢ x : A

Γ ⊢ s : ⊥
Γ ⊢ 𝒜(s) : A
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Sub-structural logics = lacking some structural rules



Γ, A, A ⊢ B
Γ, A ⊢ B

Structural Rules

Contraction (C):

Exchange (E):

Weakening (W): Γ ⊢ B
Γ, A ⊢ B

Γ, A, B, Δ ⊢ B
Γ, B, A, Δ ⊢ B

Involution of Negation

Γ ⊢ ¬¬A
Γ ⊢ A

(I):

{E, W, C, I}: Classical Logic

{ }: Lambek Calculus 
     (non-commutative LL)



Γ, A, A ⊢ B
Γ, A ⊢ B

Here we assume…

(C):

(E):

(W):
Γ ⊢ B

Γ, A ⊢ B

Γ, A, B, Δ ⊢ B
Γ, B, A, Δ ⊢ B

… and play with…

Γ ⊢ ¬¬A
Γ ⊢ A

(I):
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{ E, W, I } { E, W, I, C }

{ E, W } { E, W, C }

¬¬A → A

A → A ⊗ AC:

I:
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{ E, W, I } { E, W, I, C }

{ E, W } { E, W, C }

{ E, W, I, ? }

{ E, W, ? }



A weak form of contraction…

(C’):
Γ, (B → A) → A, B → A ⊢ C

Γ, A ⊢ C

equivalent to the axiom…

A, A → B ⊢ B ⊗ (B → A)

compare to full 
contraction

Γ, A, A ⊢ C
Γ, A ⊢ C
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{ E, W, I } { E, W, I, C }

{ E, W } { E, W, C }

{ E, W, I, C’ }

{ E, W, C’ }
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“Translations of classical into intuitionistic sub-structural logics”
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“A Kripke Semantics for Intuitionistic Lukasiewicz Logic”



2. Algebraic Semantics



Intuitionistic 
Affine Logic

Intuitionistic 
Logic

Classical 
Logic

Affine  
Logic

Łukasiewicz 
Logic

Intuitionistic 
Łukasiewicz 

Logic

MV-algebras Boolean algebras

Heyting algebrasbounded pocrims bounded hoops

involutive pocrims



bounded pocrims ℙ = ⟨P, ⋅ , → , 0, 1, ≤ ⟩

bounded
0 ≤ x

commutative
x ⋅ y = y ⋅ x

integral
x ≤ 1

partial order

x ≤ x
x ≤ y, y ≤ z ⇒ x ≤ z
x ≤ y, y ≤ x ⇒ x = y

monoid
x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z

x ⋅ 1 = x
residuated

x ⋅ y ≤ z ⇔ x ≤ y → z
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[0,1] { T, F }

Heyting algebrasbounded pocrims bounded hoops

involutive pocrims





Bounded pocrim where involution fails (x⊥⊥ ≠ x)

Bounded pocrim where idempotence fails (x ⋅ x ≠ x)

0

1
a

0

1

a

a ⋅ a = 1

a ⋅ a = a
a⊥ = 0

a⊥⊥ = 1



3. Kripke Semantics for IŁL



- partial order ⟨W, ≤ ⟩

Kripke structure

- valuation w ⊩ p ∈ 𝔹

- such that w ⊮ ⊥ and w ≤ v and w ⊩ p implies v ⊩ p

Kripke semantics w ⊩ A ∧ B = (w ⊩ A) ∧ (w ⊩ B)

w ⊩ A → B = ∀v ≥ w((v ⊩ A) → (v ⊩ B))

Main result: A is provable in IL iff A is valid in all Kripke structures



- partial order ⟨W, ≤ ⟩

Kripke structure (KS)

- valuation w ⊩ p ∈ 𝔹

- such that w ⊮ ⊥ and w ≤ v and w ⊩ p implies v ⊩ p

- partial order ⟨W, ≤ ⟩

Generalising KS (we call these Bova-Montagna structures)

- valuation w ⊩ p ∈ [0,1]

- such that w ⊩ ⊥ = 0 and w ≤ v and (w ⊩ p) ≤ (v ⊩ p)
w ⊩ p > 0 and v > w then v ⊩ p = 1

We call these  
“sloping functions”



going up in partial order 

value of w ⊩ p

0

1



- partial order ⟨W, ≤ ⟩

Bova-Montagna structure

- valuation w ⊩ p ∈ [0,1]

- such that w ⊩ ⊥ = ⊥ and w ≤ v and (w ⊩ p) ≤ (v ⊩ p)

Semantics w ⊩ A ⊗ B = (w ⊩ A) ⊗ (w ⊩ B)

w ⊩ A → B = ⌊ inf
v≥w

⌋((v ⊩ A) → (v ⊩ B))

Main result: A is provable in IŁL iff A is valid in all BM structures

w ⊩ p > ⊥ and v > w then v ⊩ p = ⊤

We call these  
“sloping functions”



w ⊩ A ⊗ B = (w ⊩ A) ⊗ (w ⊩ B)

Logical symbol

Operation in standard MV-chain



w ⊩ A → B = ⌊ inf
v≥w

⌋((v ⊩ A) → (v ⊩ B))



Main result: A is provable in IŁL iff A is valid in all 
BM structures



BM structure where 
DNE fails

v ⊩ p = 0

w ⊩ p = 1
w ⊩ p⊥ = 0

v ⊩ p⊥ = 0

w ⊩ p⊥⊥ = 1

v ⊩ p⊥⊥ = 1

v ⊩ p⊥⊥ → p

v

w

inf
v′￼≥v

(v′￼ ⊩ p⊥⊥ → v′￼ ⊩ p)

v ⊩ p⊥⊥ → v ⊩ p
0

(p⊥⊥ → p)



BM structure where 
contraction fails
(p → p ⊗ p)

v ⊩ p = 0

w ⊩ p = 0.5
w ⊩ p ⊗ p = 0

v ⊩ p ⊗ p = 0

(w ⊩ p) → (w ⊩ p ⊗ p) = 0.5

(v ⊩ p) → (v ⊩ p ⊗ p) = 1

v ⊩ p → p ⊗ p

v

w

inf
v′￼≥v

(v′￼ ⊩ p → v′￼ ⊩ p ⊗ p)

(w ⊩ p) → (w ⊩ p ⊗ p)

0.5






