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1. Logics



Intuitionistic Affine Logic
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['HFA ['FA. I A+FB
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Sub-structural logics = lacking some structural rules
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Structural Rules

Exchange (E):

Weakening (W):

Contraction (C):

I"A,B,A+B

I"B,A, A+ B

' -8B
I AFB

I A, A B
I AFB

Involution of Negation

[+ --A

D T

{E, W, C, I}: Classical Logic

£ 1. Lambek Calculus

(non-commutative LL)



(E):

(W):

Here we assume...

I"A,B,A+B

I"B,A, A+ B

I' -8B
I AFB

... and play with...

[+ --A

(; [ A

I A, AF-B

(©); [ A B
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* *

A weak form of contraction... compare to full

contraction
o, DB=A-AB-AFC - LaAArc
| FCAFC . hArce

0. 2
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equivalent to the axiom...

AJA—->BFHFBQ (B — A)
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“Translations of classical into intuitionistic sub-structural logics”
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“A Kripke Semantics for Intuitionistic Lukasiewicz Logic”
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2. Algebraic Semantics



involutive pocrims MV-algebras Boolean algebras
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bounded pocrims bounded hoops Heyting algebras



bounded pocrims P =

partial order

bounded XS X
0<x x<y,y<z=>x<7 rry=oA

commutative

X<V, y<X=>X=Y

integral

<1 residuated

X-y<z < xXy—Z
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DEFINITION 2.7 (Standard MV-chain). For x € |0, 1], let  := 1 — z. The standard
MV-chain, denoted |0, 1]\1v, is the MV algebra defined as follows: The domain
of [0, 1]y is the unit interval [0, 1], with the constants and binary operations

defined as

1 = 1

1 = 0

rAy = min{x,y}
rVy := max{z,y}
r®y := max{0,T+7y}
r—y = min{l,y—x}

NOTE 1. £ ® vy is equivalent to max{0,z + y — 1}, and x — y is equivalent to
min{l,y —x + 1}.



Bounded pocrim where idempotence fails (x - x # x)

1
a a-a=1
0
Bounded pocrim where involution fails (x~+ # x)
1 a-a=a
a at =0
0 at =1



5. Kripke Semantics for IEL



Kripke structure

- partial order (W, <)

-valuation wlFp e B

~suchthat wl¥ L and w<vandwlI~pimpliesv I~ p

Kripke semantics wlFAAB=WwI-A)A (wIF B)

wiFA—->B=Vv>w((vIFA) - (vIF B))

Main result: A is provable in IL iff A is valid in all Kripke structures



Kripke structure (KS)

- partial order (W, <)

-valuation wlFp e B

_suchthat w1 and w<vandwI+pimpliesv I p

Generalising KS (we call these Bova-Montagna structures)

- partial order (W, <) i We call these

_valuation w I p € [0,1] :“sloping functions’s

-suchthat wiF 1L =0 and w<vand (W”_P)S(V”_Pg
wiEp>0andv>wthenviFp=1 —




valueof w I p

going up in partial order



Bova-MQntagna Structure pressersserseresnras :
We call these

- partial order (W, <) E“sloping functions”i

-valuation wl-p € ]0,1]

-suchthat wiFL=1 and w<vand wlp) < (v I p)
wi-Fp>landv>wthenviFp=T

Semantics wlFAQB=WIFA Q (wl B)

wlA—->B=|inf |[(vIFA) - (vIF B))

VW

Main result: A is provable in ILL iff A is valid in all BM structures



WwiFAQB=wlI-A)® (wl- B)

i



wlFA — B=|inf |[(vIFA) > (vIF B))

VW

f(w) ifVo = w(f(v) =T)

nfJumwf(v) := { L ifTvs=w(fv)<T)



Main result: A is provable in ILL iff A is valid in all
BM structures




BM structure where

Fp=1
DNE fails v
1 W wlEp—-=0
(P~ = p) 1L _
wilEp—=1
viIFptt = p
inf (v' I p~= = V' I p)
vz viEp=0
viEptt > vikEp V e VviEp =0

0 viEp— =1



BM structure where
contraction fails

(p > p@p)

viEp > pQp
inf(v'lkEp ->vIiEpQ®p)

V>y

wl=p) = wl-p&p)
0.5
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The consequence relation in the logic of commutative GBL-algebras is
PSPACE-complete

Simone Bova™, Franco Montagna

Department of Mathematics and Computer Science, University of Siena, Italy

Definition 2 (Poset Sum). Let P = (P, Ep) be the cover graph of a poset (P, <p) and let (C,),p be a sequence of standard
MV -chains. The (dual) poset sum A over the skeleton P and the summands (C,),cp, in symbols A = P peP C,, is the algebra of
signature £ defined as follows (if o € £, then o, and o, are respectively for the realizations in C, and A of the symbol o):

(i) The domain, A, of A is the set of all maps h on P such that:
(i.i) forallp € P, h(p) € C,;

(1.11) forallp € P,ifh(p) < Tp, then L, = h(q) forallg € P such thatq <p p, and (thus), if L, < h(p), then h(q) =
for all g € P such that g >p p.

(ii) The realization of .£ in A is the following. For every p € P and hq, h, € A:
(i) La(p) = _p;
(11 i) Ta(p) =




The consequence relation in the logic of commutative GBL-algebras is
PSPACE-complete

Simone Bova™, Franco Montagna
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(iLiv) (hy V4 hy)(p) = hi(p) vV, ha(p);
(iLv) (hy Aq hy)(p) = hi(p) Ap ha(D);
(ii.vi) The realization of — in A is the following:
(ivii) (hy =4 hy)(p) = hi(p) =, ha(p), 1f h1(q) < hy(q) forall g € P such thatp <p g;
(iviii) (hy —a h2)(p) = Lp, otherwise;
(il.vil) hqy =4 hy if and only if h1(p) = hy(p) for all p € P;

(11.1X) hqy <4 hy if and only h;y <4 h, and h{(p) < h,(p) for some p € P.

Theorem 1 (Jipsen and Montagna). Let E be a quasiequation. Then, (E) ¢ GBL-CB-QEQ if and only if there exists a finite poset
sum A such that A £ E.




