

Proof Mining in Diophantine Approximation Theory

(joint work Rob Arthan)

Paulo Oliva
Queen Mary University of London

Proof Mining Seminar
13 July 2022

Diophantine Approximation

Diophantine Approximation

Approximation of reals \mathbb{R} by rationals \mathbb{Q}

- Rationals are dense in the real, so it's always possible to approximate a real by rationals
- But some approximations are better than others:

$$\pi \simeq \frac{314159}{100000} \text{ (good)}$$

$$\pi \simeq \frac{355}{113} \text{ (better)}$$

Goal: Given $\alpha \in \mathbb{R}$ we want to study $p, q \in \mathbb{N}$ with $\gcd(p, q) = 1$ such that:

$$\left| \alpha - \frac{p}{q} \right| \text{ is small} \quad (\text{or equivalently, } |q\alpha - p| \text{ is small})$$

Simple Lower Bound

Lemma. Let $\alpha = a/b \in \mathbb{Q}$ where $\gcd(a, b) = 1$. For any $p, q \in \mathbb{Z}$ such that $\alpha \neq p/q$ we have that $|q\alpha - p| \geq 1/b$.

Proof: If $a/b \neq p/q$ then $|qa - pb| \geq 1$ and hence:

$$|q\alpha - p| = \left| \frac{qa}{b} - p \right| \geq \frac{|qa - pb|}{b} \geq \frac{1}{b}$$

An Upper Bound

Theorem (Dirichlet Approximation Theorem). For any $\alpha \in \mathbb{R}$ and $Q \in \mathbb{N}$ there are coprime $p, q \in \mathbb{Z}$ such that $1 \leq q \leq Q$

$$|q\alpha - p| < \frac{1}{Q}$$

Proof:

1. Divide the interval $[0,1)$ into Q intervals of equal size $1/Q$
2. Look at fractional parts of $0, \alpha, 2\alpha, 3\alpha, \dots, Q\alpha$
3. Two of these (say $\{i\alpha\}, \{j\alpha\}$) will fall into the same interval
4. Then $|\{j\alpha\} - \{i\alpha\}| < 1/Q$
5. $|\{j\alpha\} - \{i\alpha\}| = |j\alpha - p_j - (i\alpha - p_i)| = |(j - i)\alpha - (p_j - p_i)|$

A Corollary

Corollary. If $\alpha \in \mathbb{R}$ is irrational then there are infinitely many $p/q \in \mathbb{Q}$ with $\gcd(p, q) = 1$, $q \geq 1$, such that

$$|\alpha - \frac{p}{q}| < \frac{1}{q^2}$$

Proof:

1. Assume there are only finitely many $p_1/q_1, \dots, p_n/q_n$
2. Since $\alpha \notin \mathbb{Q}$ we have that $|\alpha - p_i/q_i| \neq 0$
3. Choose Q such that $1/Q < \min |\alpha - p_i/q_i|$
4. From theorem, $|\alpha - p/q| < 1/qQ$, for some p and $q \leq Q$
5. So, $p/q \neq p_i/q_i$ but $|\alpha - p/q| < 1/qQ \leq 1/q^2$, contradiction

Roth's Theorem

Theorem (1955). If $\alpha \in \mathbb{R}$ is an irrational algebraic number then for every $\varepsilon > 0$ then the following has only finitely many solutions (p, q) with $\gcd(p, q) = 1$

$$|\alpha - \frac{p}{q}| < \frac{1}{q^{2+\varepsilon}}$$

- Roth's proof is ineffective
- Focus of early work on “proof mining” (Kreisel and Luckhardt)

Khintchine Theorem

Khintchine Theorem

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^+$ such that $q\psi(q)$ is non-decreasing. A real number $\alpha \in [0,1]$ is called **ψ -approximable** if there are infinitely many rationals p/q such that

$$|\alpha - \frac{p}{q}| < \frac{\psi(q)}{q}$$

Theorem (Khintchine, 1926).

- If $\sum_q \psi(q)$ diverges almost every $x \in [0,1]$ is **ψ -approximable**
- If $\sum_q \psi(q)$ converges almost every $x \in [0,1]$ is not **ψ -approximable**

2022 Fields Medal...

- Duffin & Schaeffer (1941) proved a generalisation of Khintchine's result...
- ...and posed what is known as the **Duffin-Schaeffer conjecture**, an analogue of Khintchine's result for ψ which are not necessarily decreasing
- Dimitris Koukoulopoulos and **James Maynard** announced proof of this conjecture in 2019
- James Maynard was awarded the **Fields Medal** this year for "contributions to analytic number theory, which have led to major advances in the understanding of the structure of prime numbers and in **Diophantine approximation**"

Generalisation

For $\mathbf{X} \in \mathbb{I}^{nm}$ (unit cube) and $\psi: \mathbb{N} \rightarrow \mathbb{R}^+$

- $N(\psi, \mathbf{X}) \equiv |\{(p, q) \mid |q\mathbf{X} - p| < \psi(|q|), \gcd(p, q) = 1\}|$
- $\mathcal{A}_{n,m}(\psi) \equiv \{\mathbf{X} \in \mathbb{I}^{nm} \mid N(\psi, \mathbf{X}) = \infty\}$

supremum norm

$p \in \mathbb{Z}^m, q \in \mathbb{Z}^n$

Theorem (Khintchine-Groshev).

- If $\sum_q q^{n-1} \psi(q)^m$ diverges (ψ mon.) then $|\mathcal{A}_{n,m}(\psi)| = 1$
- If $\sum_q q^{n-1} \psi(q)^m$ converges then $|\mathcal{A}_{n,m}(\psi)| = 0$

Lebesgue measure

Beresnevich-Velani Proof

Theorem (Khintchine-Groshev).

- If $\sum_q q^{n-1} \psi(q)^m$ (ψ mon.) diverges then $|\mathcal{A}_{n,m}(\psi)| = 1$

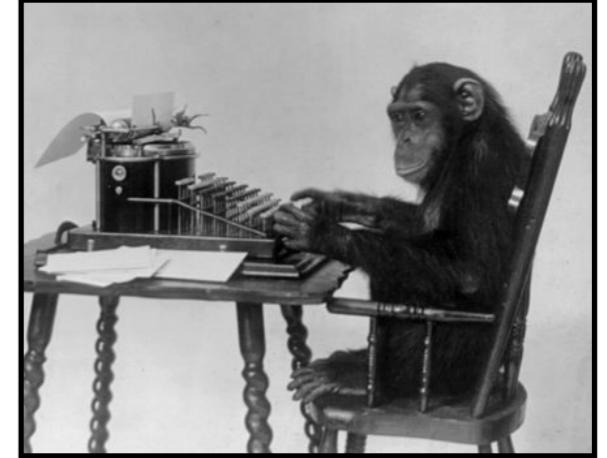
Proof: Two key lemmas

- Lemma 1: For all $n, m \geq 1$ and $\psi: \mathbb{N} \rightarrow \mathbb{R}^+$
 $|\mathcal{A}_{n,m}(\psi)| > 0 \quad \Rightarrow \quad |\mathcal{A}_{n,m}(\psi)| = 1$
- Lemma 2: Given sequence of measurable sets $E_k \subset \mathbb{I}^{nm}$ such that $\sum_{k=1}^{\infty} |E_k| = \infty$ then

$$|\limsup_{k \rightarrow \infty} E_k| \geq \limsup_{N \rightarrow \infty} \frac{(\sum_{s=1}^N |E_s|)^2}{\sum_{s,t=1}^N |E_s \cap E_t|}$$

Borel-Cantelli Lemma

The Infinite Monkey Theorem



Theorem (Borel, 1913). A monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, such as the complete works of William Shakespeare.

Proof: Let A_i be the event that the text is typed at the i -th block. Since the A_i are independent and have fixed non-zero probability

$$\sum_i P[A_i] = \infty$$

By the second **Borel-Cantelli** lemma the probability of A_i i.o. is 1

(Ω, \mathcal{F}, P) a **probability space**:

- Ω is the **sample space** (elements of Ω are called **outcomes**)
- $\mathcal{F} \subseteq 2^\Omega$ is **event space** (set of events)
- $P: \mathcal{F} \rightarrow [0,1]$ is the **probability function**

Definition. Given $(A_i)_{i \in \mathbb{N}}$ a sequence of events, we denote by “ $(A_i)_{i \in \mathbb{N}}$ i.o.” the event

$$(A_i)_{i \in \mathbb{N}} \text{ i.o.} = \{x \in \Omega \mid \forall i \exists j \geq i (x \in A_j)\}$$

or equivalently

$$(A_i)_{i \in \mathbb{N}} \text{ i.o.} = \bigcap_i \bigcup_{j \geq i} A_j$$

Question. When do we have $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 1$ or 0 ?

Borel-Cantelli Lemmas

1st B-C Lemma. If $\sum_i P[A_i] < \infty$ then $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 0$.

2nd B-C Lemma. If the events are mutually independent then $\sum_i P[A_i] = \infty$ implies $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 1$.

An example of **0-1 law**: For mutually independent events A_i we have that $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}]$ is either 0 or 1, depending on whether $\sum_i P[A_i]$ converges or diverges.

2nd B-C Lemma. If the events are mutually independent then $\sum_i P[A_i] = \infty$ implies $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 1$.

Generalisation 1 (Erdős-Rényi, 1959). If $\sum_i P[A_i] = \infty$ and

$$\liminf_{n \rightarrow \infty} \frac{\sum_{i,k=1}^n P[A_i A_k]}{\left(\sum_{k=1}^n P[A_k]\right)^2} = 1$$

then $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 1$.

Generalisation 2 (Kochen-Stone, 1964). If $\sum_i P[A_i] = \infty$ then

$$P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] \geq \limsup_{n \rightarrow \infty} \frac{\left(\sum_{k=1}^n P[A_k]\right)^2}{\sum_{i,k=1}^n P[A_i A_k]}$$

Quantitative versions of
the four above results...

$$\sum_i P[A_i] < \infty$$

$$\forall l \exists k \forall m \geq k \left(\sum_{i=k}^m P[A_i] \leq \frac{1}{2^l} \right)$$

$$P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 0$$

$$\forall l \exists k \forall m \geq k \left(P \left[\bigcup_{i=k}^m A_i \right] \leq \frac{1}{2^l} \right)$$

1st B-C Lemma

1st B-C Lemma. If $\sum_i P[A_i] < \infty$ then $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 0$.

Quantitative version (Arthan-O'2020). Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be such that for all $l \geq 0$ and $m \geq \phi(l)$

$$\sum_{i=\phi(l)}^m P[A_i] \leq \frac{1}{2^l}$$

Then for all $l \geq 0$ and $m \geq \phi(l)$

$$P \left[\bigcup_{i=\phi(l)}^m A_i \right] \leq \frac{1}{2^l}$$

2nd B-C Lemma

2nd B-C Lemma. If the events are mutually independent then $\sum_i P[A_i] = \infty$ implies $P[(A_i)_{i \in \mathbb{N}} \text{ i.o.}] = 1$.

Quantitative version (Arthan-O'2020). Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ be such that for all N

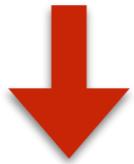
$$\sum_{i=1}^{\omega(N)} P[A_i] \geq N$$

Then for all n and l

$$P \left[\bigcup_{i=n}^{\omega(n+l-1)} A_i \right] \geq 1 - e^{-l}$$

Erdős-Rényi Generalisation

$$\liminf_{n \rightarrow \infty} \frac{\sum_{i,k=1}^n P[A_i A_k]}{\left(\sum_{k=1}^n P[A_k]\right)^2} = 1$$



$$\forall \varepsilon, n \exists m \geq n \left(\left| \frac{\sum_{i,k=1}^m P[A_i A_k]}{\left(\sum_{k=1}^m P[A_k]\right)^2} - 1 \right| < \varepsilon \right)$$

Quantitative Erdős-Rényi Theorem (Arthan-O'2020). Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall N \left(\sum_{i=1}^{\omega(N)} P[A_i] \geq N \right)$$

Quantitative Erdős-Rényi Theorem (Arthan-O'2020). Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall N \left(\sum_{i=1}^{\omega(N)} P[A_i] \geq N \right)$$

and let $\phi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall \varepsilon, n \left(\phi(\varepsilon, n) \geq n \wedge \frac{\sum_{i,k=1}^{\phi(\varepsilon, n)} P[A_i A_k]}{(\sum_{i=1}^{\phi(\varepsilon, n)} P[A_i])^2} \leq 1 + \varepsilon \right)$$

Quantitative Erdős-Rényi Theorem (Arthan-O'2020). Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall N \left(\sum_{i=1}^{\omega(N)} P[A_i] \geq N \right)$$

and let $\phi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall \varepsilon, n \left(\phi(\varepsilon, n) \geq n \wedge \frac{\sum_{i,k=1}^{\phi(\varepsilon, n)} P[A_i A_k]}{(\sum_{i=1}^{\phi(\varepsilon, n)} P[A_i])^2} \leq 1 + \varepsilon \right)$$

Let $n_1 = \phi(1/2, 1)$ and $n_{i+1} = \phi(1/2^{i+1}, n_i)$. Then

$$\forall n, l \left(P \left[\bigcup_{i=n}^{n_m} A_i \right] \geq 1 - 2^{-l} \right)$$

where $m = \max(\omega(2n), l + 3)$

Kochen-Stone Theorem

$$P[(A_i)_{i \in \mathbb{N}} \text{ i.o}] \geq \limsup_{n \rightarrow \infty} \frac{(\sum_{k=1}^n P[A_k])^2}{\sum_{i,k=1}^n P[A_i A_k]}$$

$$\forall m, l \exists n > m \forall j > n \left(P \left[\bigcup_{i=m+1}^n A_i \right] + \frac{1}{2^l} \geq \frac{(\sum_{k=1}^j P[A_k])^2}{\sum_{i,k=1}^j P[A_i A_k]} \right)$$

Theorem (Arthan-O'2020). There is a sequence of events $(A_i)_{i=1}^\infty$ and a computable function $\omega : \mathbb{N} \rightarrow \mathbb{N}$ such that

$$\forall N \left(\sum_{i=1}^{\omega(N)} P[A_i] \geq N \right)$$

for which there is no computable function $\phi : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall m, l \exists n \in [m, \phi(m, l)]$

$$P \left[\bigcup_{i=m+1}^n A_i \right] + \frac{1}{2^l} \geq \limsup_{j \rightarrow \infty} \frac{(\sum_{k=1}^j P[A_k])^2}{\sum_{i,k=1}^j P[A_i A_k]}$$

Hence, we consider the **meta-stable** version of the Kochen-Stone theorem

Quantitative (meta-stable) Kochen-Stone (Arthan-O'2020).

Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$\forall N \left(\sum_{i=1}^{\omega(N)} P[A_i] \geq N \right)$$

Then, for all m and l and $g: \mathbb{N} \rightarrow \mathbb{N}$ (with $g(i) > i$) there exists an $n \in [m, g^{(2^{l+1})}(\max(\omega(2^{l+2}\sum_{i=1}^m P[A_i]), m))]$ such that

$$\forall j \in [n, g(n)] \left(P \left[\bigcup_{i=m+1}^n A_i \right] + \frac{1}{2^l} \geq \frac{(\sum_{i=1}^j P[A_i])^2}{\sum_{i,k=1}^j P[A_i A_k]} \right)$$

Work in Progress...

METRIC SIMULTANEOUS DIOPHANTINE APPROXIMATION (II)

P. X. GALLAGHER

THEOREM 1. *Let $r \geq 2$. For each sequence of numbers a_n between 0 and 1, there are infinitely many solutions n, \mathbf{l} of*

$$n\mathbf{x} - \mathbf{l} \in U(a_n), \quad (\mathbf{l}, n) = 1 \quad (2)$$

for almost all \mathbf{x} or almost no \mathbf{x} according as $\sum a_n^{-r}$ diverges or converges.

[MATHEMATIKA 12 (1965), 123-127]

J

THEOREM 1. *Let $r \geq 2$. For each sequence of numbers a_n between 0 and 1, there are infinitely many solutions n, \mathbf{l} of*

$$n\mathbf{x} - \mathbf{l} \in U(a_n), \quad (\mathbf{l}, n) = 1 \quad (2)$$

for almost all \mathbf{x} or almost no \mathbf{x} according as $\sum a_n^r$ diverges or converges.

Let $r \geq 2$ and $(a_n)_{n \in \mathbb{N}} \in [0,1]$

- $U(a) = \{(y_1, \dots, y_r) \in \mathbb{R}^r \mid 0 \leq y_i < a\}$
- $T_N(\mathbf{x}) = \{(n, l) \mid n\mathbf{x} - l \in U(a_n) \wedge (l, n) = 1 \wedge n \leq N\}$
- $E(K) = \{\mathbf{x} \in U(1) \mid \exists N(T_N(\mathbf{x}) \geq K)\}$
- $E = \bigcap_K E(K)$

Theorem (Gallagher, 1965).

- If $\sum_n a_n^r$ converges then $|E| = 0$
- If $\sum_n a_n^r$ diverges then $|E| = 1$

Theorem (Gallagher, 1965).

- If $\sum_n a_n^r$ diverges then $|E| = 1$

Proof: Assume $\sum_n a_n^r$ diverges

- Use Schwarz inequality to show that $|E(K)| \geq C$
- Find sequence $(b_n)_{n \in \mathbb{N}} \in [0,1]$ which is $b_n = o(a_n)$ such that $\sum_n b_n^r$ also diverges (call corresponding set E^*)
- Identify $U(1)$ with torus $T^r = \mathbb{R}^r / (\text{lattice vectors})$
- Show that for the ergodic automorphism

$$\sigma(x_1, x_2, \dots, x_r) = (x_2, x_3, \dots, x_1 + \dots + x_r)$$

we have $\sigma U(c) \subset U(rc)$

- $\sigma^q E^* \subset E$, for all q , so $\bigcup_q \sigma^q E^* \subset E$
- Since σ is ergodic and $\bigcup_q \sigma^q E^* > 0$ then $\bigcup_q \sigma^q E^* = 1$

Final Mining Step

Theorem (qualitative). Given a torus automorphism σ and some $|E| > 0$ we have that

$$|\bigcup_{q \in \mathbb{N}} \sigma^{-q}(E)| = 1$$

Theorem (quantitative). Given a torus automorphism σ , there exists a function η such that

$$\forall \varepsilon, \delta \left(|E| > \varepsilon \rightarrow \left| \bigcup_{1 \leq q \leq \eta(\varepsilon, \delta)} \sigma^{-q}(E) \right| > 1 - \delta \right)$$

Conclusion

- Quantitative version of the (**constructive**) proofs of 1st and 2nd Borel-Cantelli lemmas, and Erdős-Rényi generalisation.
- Quantitative (meta-stable) version of the (**classical**) proof of the Kochen-Stone theorem.
- Original motivation for quantitative version of Borel-Cantelli lemma lies on current proof mining project on **Diophantine approximation** (Khintchine's convergence and divergence theorems).

References

- [1] Pál Erdős and Alfréd Rényi. On Cantor’s series with convergent $\sum 1/q_n$. *Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Math.*, 2:93–109, 1959.
- [2] W. Feller. *An Introduction to Probability Theory and Its Applications. I. Third Edition*. John Wiley and Sons, Inc., 1968.
- [3] S. Kochen and C. Stone. A note on the Borel-Cantelli lemma. *Ill. J. Math.*, 8:248–251, 1964.
- [4] Ernst Specker. Nicht konstruktiv beweisbare Sätze der Analysis. *J. Symb. Log.*, 14:145–158, 1949.
- [5] Jia-An Yan. A simple proof of two generalized Borel-Cantelli lemmas. In Michel Émery and Marc Yor, editors, *In memoriam Paul-André Meyer. Séminaire de probabilités XXXIX*, volume 1874 of *Lecture Notes in Mathematics*, pages 77–79. Springer, 2006.