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f(x) = 𝔼 g(Yx, x)

x

Stochastic Approximation Methods
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xn+1 = xn + ang(yn, xn)
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convergence of  to rootxn
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•  the probability of  for given  

• Assume we can only observe  via 
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Kolmogorov Strong Law of Large Numbers 

 a r. v. (independent of )       

Problem: Find  s.t.  

Instance: 

 

 

(given samples ) 

SLLN:  converges to  a.s.

Y x

x 𝔼 Y = x

g(y, x) = y − x
xn+1 = xn + (yn − xn)/(n + 1)

y0, y1, …

(xn) 𝔼 Y
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Banach Fixed-Point Theorem 

Contraction mapping  

Problem: Find  s.t.  

Instance: 

        

 

 

BFT:  converges to f.p. of 

ϕ : ℝ → ℝ

x ϕ(x) = x

Yx = ϕ(x)
g(y, x) = y − x

xn+1 = xn + (ϕ(xn) − xn)/(n + 1)

(xn) ϕ

Stochastic Approximation Methods
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Stochastic Gradient Descent 

 a loss function,  model param. 

Problem: Find  s.t.  is minimal 

 

Training set:   

 

(  learning rate) 

SGD:  converges to critical point of 
loss function

L(y, x) x

x 𝔼 L(Yx, x)

g(y, x) = − ∇xL(y, x)

y1, y2, …

xn+1 = xn − an ∇xg(yn, xn)

an

(xn)
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Robbin-Monro 
Stochastic Approximation 

Method



Robbins-Monro (1951)
Stochastic Approximation Algorithm 

 

Robbins-Monro (1951):  
 convergence of  when  

Assumes: 
• ,  ,   

•  bounded w. p. 1 

• function  
- non-decreasing 

- solution for  exists 
- derivative at solution is positive

xn+1 = xn + ang(yn, xn)

L2 xn g(y, x) = b − y

an → 0 Σ an = ∞ Σ a2
n < ∞
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Wolfowitz (1952)
Stochastic Approximation Algorithm 

 

Wolfowitz (1952):  
Convergence in prob. when  
Assumes: 

• ,  ,   

•  bounded variance 

• function  
- non-decreasing and bounded 

- solution for  exists 
- derivative at solution is positive

xn+1 = xn + an f(yn, xn)

f(y, x) = b − y

an → 0 Σ an = ∞ Σ a2
n < ∞
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Blum (1954)
Stochastic Approximation Algorithm 

 

Blum (1952):  
A. s. convergence when  
Assumes: 

• ,  ,   

•  uniformly bounded variance 

• function  
- non-decreasing and bounded by l.f. 

- solution for  exists 
- derivative at solution is positive

xn+1 = xn + an f(yn, xn)

f(y, x) = b − y

an → 0 Σ an = ∞ Σ a2
n < ∞
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• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 
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Dvoretzky Theorem 
(Derman-Sachs Proof )





Derman-Sacks Proof (1959)
• Borel-Cantelli lemma (1st) 

• Chebyshev inequality 

• Abel’s test 

• Slowdown lemma 

• Kolmogorov inequality* 

• Variance lemma* 

• “Lemma 1” about  converging and diverging sequences and seriesℝ

Σ P[Xn] < ∞ ⇒ P[Xn i . o.] = 0

P[ max
1≤k≤n

|X1 + … + Xk | ≥ λ) ≤ 1/λ2Var[X1 + … + Xn]

P[ |X − μ | ≥ kσ] ≤ 1/k2

Σ an conv ∧ bn mon . and bounded ⇒ Σ anbn conv

Σ an conv ⇒ ∃bn(bn → 0 ∧ Σ an/bn conv)

Σ 𝔼 X2
n < ∞ ⇒ Σ Xn a . s .

Xn indep .*



Derman-Sacks Proof (1959)
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