

Quantitative Analysis of Stochastic Approximation Methods

**Oberwolfach Workshop
Mathematical Logic: Proof Theory, Constructive Mathematics**

Paulo Oliva
(joint work with Rob Arthan)

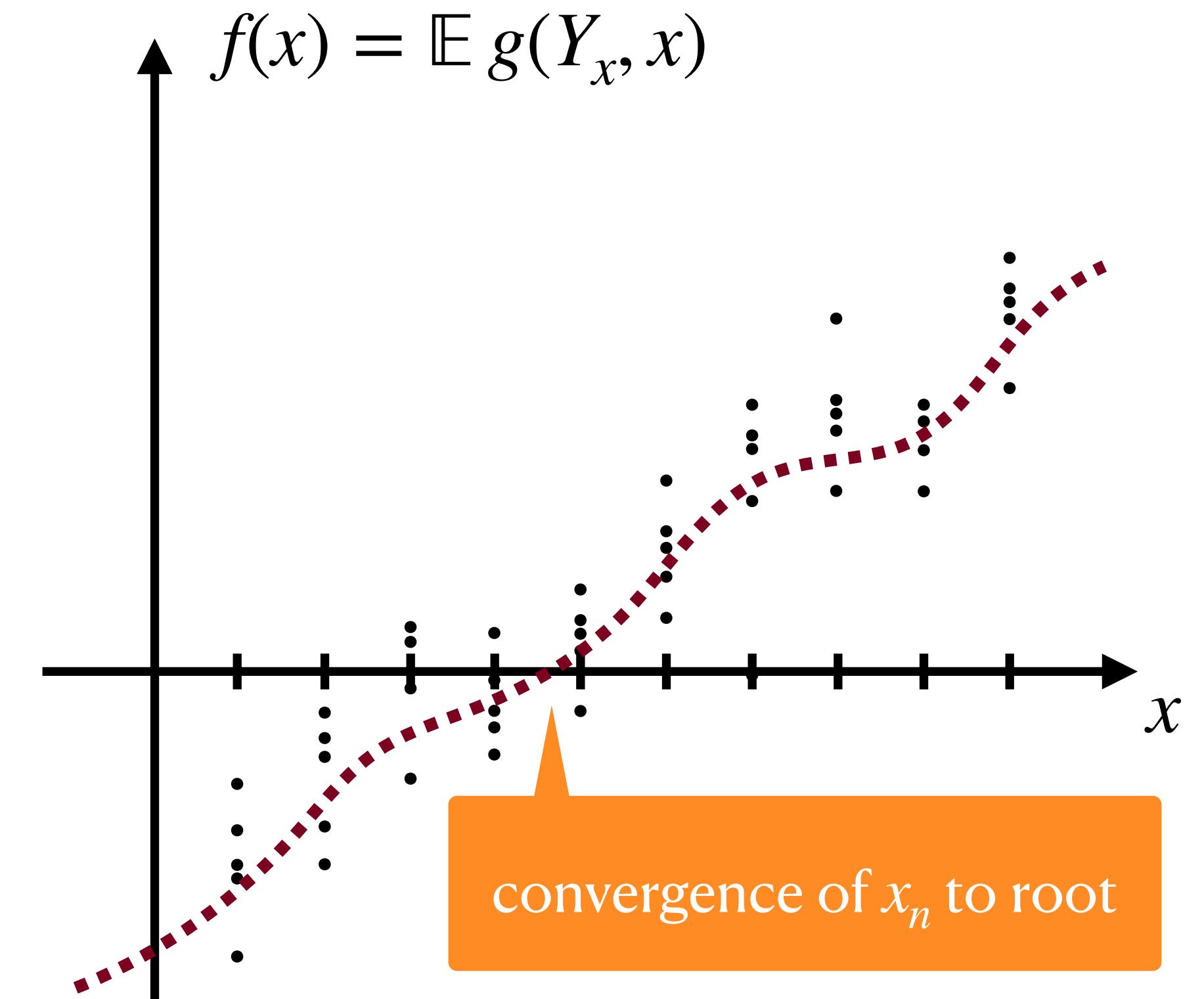
Thu 16 Nov 2023

Approximation Methods

Stochastic Approximation Methods

Stochastic Approximation Methods

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$



$$x_{n+1} = x_n + a_n g(y_n, x_n)$$

given samples y_0, y_1, \dots of Y_{x_1}, Y_{x_2}, \dots

Stochastic Approximation Methods

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Kolmogorov Strong Law of Large Numbers

Y a r. v. (independent of x)

Problem: Find x s.t. $\mathbb{E} Y = x$

Instance:

$$g(y, x) = y - x$$

$$x_{n+1} = x_n + (y_n - x_n)/(n + 1)$$

(given samples y_0, y_1, \dots)

SLLN: (x_n) converges to $\mathbb{E} Y$ a.s.

Stochastic Approximation Methods

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Banach Fixed-Point Theorem

Contraction mapping $\phi : \mathbb{R} \rightarrow \mathbb{R}$

Problem: Find x s.t. $\phi(x) = x$

Instance:

$$Y_x = \phi(x)$$

$$g(y, x) = y - x$$

$$x_{n+1} = x_n + (\phi(x_n) - x_n)/(n + 1)$$

BFT: (x_n) converges to f.p. of ϕ

Stochastic Approximation Methods

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Stochastic Gradient Descent

$L(y, x)$ a loss function, x model param.

Problem: Find x s.t. $\mathbb{E} L(Y_x, x)$ is minimal

$$g(y, x) = -\nabla_x L(y, x)$$

Training set: y_1, y_2, \dots

$$x_{n+1} = x_n - a_n \nabla_x g(y_n, x_n)$$

(a_n learning rate)

SGD: (x_n) converges to critical point of loss function

Robbin-Monro Stochastic Approximation Method

Robbins-Monro (1951)

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Stochastic Approximation Algorithm

$$x_{n+1} = x_n + a_n g(y_n, x_n)$$

Robbins-Monro (1951):

L_2 convergence of x_n when $g(y, x) = b - y$

Assumes:

- $a_n \rightarrow 0$, $\sum a_n = \infty$, $\sum a_n^2 < \infty$
- Y_x bounded w. p. 1
- function $f(x) = \mathbb{E}[Y_x]$
 - non-decreasing
 - solution for $f(x) = b$ exists
 - derivative at solution is positive

Wolfowitz (1952)

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Stochastic Approximation Algorithm

$$x_{n+1} = x_n + a_n f(y_n, x_n)$$

Wolfowitz (1952):

Convergence in prob. when $f(y, x) = b - y$

Assumes:

- $a_n \rightarrow 0$, $\sum a_n = \infty$, $\sum a_n^2 < \infty$
- Y_x bounded variance
- function $f(x) = \mathbb{E}[Y_x]$
 - non-decreasing and bounded
 - solution for $f(x) = b$ exists
 - derivative at solution is positive

Blum (1954)

- Y_x real-valued random variable parametrised by x
- $P[Y_x]$ the probability of Y_x for given x
- Assume we can only observe $P[Y_x]$ via sampling
- $g(y, x)$ a given function
- **Problem:** Find x such that $\mathbb{E} g(Y_x, x) = 0$

Stochastic Approximation Algorithm

$$x_{n+1} = x_n + a_n f(y_n, x_n)$$

Blum (1952):

A. s. convergence when $f(y, x) = b - y$

Assumes:

- $a_n \rightarrow 0$, $\sum a_n = \infty$, $\sum a_n^2 < \infty$
- Y_x uniformly bounded variance
- function $f(x) = \mathbb{E}[Y_x]$
 - non-decreasing and bounded by l.f.
 - solution for $f(x) = b$ exists
 - derivative at solution is positive

Dvoretzky Theorem (Derman-Sachs Proof)

THEOREM 1. (Dvoretzky). *Let $\{X_n\}$, $\{T_n(X_1, \dots, X_n)\}$, $\{Y_n(X_1, \dots, X_n)\}$ be sequences of real random variables with X_1 arbitrary and*

$$(6) \quad X_{n+1} = T_n(X_1, \dots, X_n) + Y_n(X_1, \dots, X_n).$$

Assume

$$(7) \quad E\{Y_n | X_1, \dots, X_n\} = 0 \quad \text{w.p.1,}$$

$$(8) \quad \sum EY_n^2 < \infty,$$

and

$$(9) \quad |T_n| \leq \max (\alpha_n, (1 + \beta_n)|X_n| - \gamma_n)$$

where $\alpha_n, \beta_n, \gamma_n$ are positive numbers such that

$$(10) \quad \alpha_n \rightarrow 0, \quad \sum \beta_n < \infty, \quad \sum \gamma_n = \infty.$$

Then $X_n \rightarrow 0$ w.p.1.

Derman-Sacks Proof (1959)

- Borel-Cantelli lemma (1st) $\sum P[X_n] < \infty \Rightarrow P[X_n \text{ i.o.}] = 0$
- Chebyshev inequality $P[|X - \mu| \geq k\sigma] \leq 1/k^2$
- Abel's test $\sum a_n \text{ conv} \wedge b_n \text{ mon. and bounded} \Rightarrow \sum a_n b_n \text{ conv}$
- Slowdown lemma $\sum a_n \text{ conv} \Rightarrow \exists b_n (b_n \rightarrow 0 \wedge \sum a_n/b_n \text{ conv})$
- Kolmogorov inequality* $P[\max_{1 \leq k \leq n} |X_1 + \dots + X_k| \geq \lambda] \leq 1/\lambda^2 \text{Var}[X_1 + \dots + X_n]$
- Variance lemma* $\sum \mathbb{E} X_n^2 < \infty \Rightarrow \sum X_n \text{ a.s.}$
- “Lemma 1” about \mathbb{R} converging and diverging sequences and series

Derman-Sacks Proof (1959)

LEMMA 1. *Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\delta_n\}$, and $\{\xi_n\}$ be sequences of real numbers satisfying*

*(i) $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\xi_n\}$ are non-negative,
(ii) $\lim_{n \rightarrow \infty} a_n = 0$, $\sum b_n < \infty$, $\sum c_n = \infty$, $\sum \delta_n$ converges,*

and, for all n larger than some N_0 ,

(iii) $\xi_{n+1} \leq \max (a_n, (1 + b_n)\xi_n + \delta_n - c_n)$.

Then, $\lim_{n \rightarrow \infty} \xi_n = 0$.

Transfer & Dialectica

- § H. Robbins and S. Monro, **A Stochastic Approximation Method**, The Annals of Mathematical Statistics, 22:3, 1951
- § A. Dvoretzky, **On Stochastic Approximation**, Berkeley Symposium on Mathematical Statistics and Probability, 3:1, 39–55 1956
- § C. Derman and J. Sacks, **On Dvoretzky's Stochastic Approximation Theorem**, Ann. Math. Statist. 30(2): 601–606, 1959
- § J. Avigad, E. Dean and J. Rute, **A metastable dominated convergence theorem**, Journal of Logic and Analysis, 4:3, 1–19, 2012
- § R. Arthan and P. Oliva, **On the Borel-Cantelli Lemmas, the Erdős-Rényi Theorem, and the Kochen-Stone Theorem**, Journal of Logic and Analysis, 13:6, 1–23, 2021