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sequence (a,), -y converges

Ve > 03N ij = N(la;—a| < &)

dp Ve > 0Vi,j> pe)|a;—a;| < é)

(a,),n converges with modulus of convergence ¢
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series 2, a, converges

Ve > i,j ZN(\Zj:iak\ <€)

dy Ve > 0Vi,] > y/(e)(\ijiak\ < é€)

2. a, converges with modulus of convergence v
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(a,),cn cOnverges = (b,), -y cOnverges

dOVp(Ve > 0Vi,j > @(e)(|a; —a;| <€)
= Ve>0Vij2> (I)(go,g)(\bi—bj\ <é€))

® turns a m.o.c for (a,),,n into a m.o.c for (b)),
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sequence of r.v. (X)), - converges with probability 1

P[Ve>03dNVi,j > N(|X;—X;| <) =1

Pl : Ve > Q3N Yij 2 N(IX(@) - Xw)]| < o)1 =1

3 Ve, 6> 0(P[Vi.j > p(e,5)(|1 X, — X;| <&)] > 1-0)

@ a uniform modulus of a.s. convergence for (X)),
Avigad-Dean-Rute (2011)
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(a,),cn cOnverges = (b,), -y cOnverges

3OV | V5 > 0Vij > p(6)(|q;— a;| <)

= V5>0Vi,j2q)((ﬂ95)(|bi_bj‘ <é))

3D, AV, e > 0

(Vi,j = p(A(p,e))(|a; — a;| < A, €))
= Vi,j 2 ®(@,e)(|b;— b;| < ¢))

4
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Stochastic
Approximation Methods



Stochastic Approximation Methods

» Iterated procedures used to approximate a target value when target is

unknown and observations are corrupted by noise
* Introduced by Robbins-Monro (1951)
* Robbins-Monro algorithms generalised by Dvoretzky (1956)
* Generalisation of (deterministic) approximation methods

» Stochastic gradient descent (in Machine Learning) is based on Stochastic

Approximation Theory
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Stochastic Approximation Methods

fx) = Eg(Y,,x)

» Y, real-valued random variable

parametrised by x

» P[Y ] the probability of Y, for given x

® o
------

» Assume we can only observe P[Y,] via
sampling

* 9(y,x) a given function

* Problem: Find x such that E g(Y,,x) =0 X1 = Xy + @, 8(Vy0 Xy)

given samples y,, vy, ... of Yxl, sz,
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Stochastic Approximation Methods

: hastic Gradient Descen
» Y, real-valued random variable

parametrised by x L(y, x) a loss function, x model param.

Problem: Find x s.t. E L(Y, x) is minimal

g(yax) — = VXL(%X)

Training set: yq, 5, ...

» P[Y ] the probability of Y, for given x

» Assume we can only observe P[Y,] via
sampling

Anel = Ay + ang(ym xn)

* 9(y,x) a given function
(a, learning rate)

* Problem: Find x such that E g(Y,,x) =0

SGD: (x,,) converges to critical point of loss
function
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Robbin-Monro

Stochastic
Approximation Method




Robbins-Monro (1951)

» Y, real-valued random variable
parametrised by x

» P[Y ] the probability of Y, for given x

* Assume we can only observe P[Y ] via
sampling

* 9(y,x) a given function

» Problem: Find x such that E g(Y,,x) =0

Stochastic Approximation Algorithm
A+l = Xy T+ ang(yn’ xn)

Robbins-Monro (1951):
L, convergence of x, when g(y,x) =b —y

Assumes:

o _ 2
a, >0, 2a, =00, Za; < o

* Y. bounded w. p. 1
* function f(x) = E[Y ]

- non-decreasing

- solution for f(x) = b exists

- derivative at solution is positive
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Assumptions:

Dvoretzky (1956) T R R

Y, Y,, ... (dependent on history of x;, x,, ...)

» Vast generalisation of Robbins- * ELY, 1%, X1 =0, w.p.1
Monro result * TE[Y;] < oo

e [teration has two parts: There exists x: such that

- Deterministic part which is | T,(X) = x| < max(a,, (1 + ) 1%, = x| = 7,)

: +
assume to converge to solution Uy, P> ¥y € R7 such that

a, = 0,2 <oo,2y, =0

- Stochastic part with expected
value of zero and bounded

- Result: )
variance

The iteration

converges a.s. to X deterministic




THEOREM 1. (Dvoretzky). Let { X}, {To(X1, -+, Xa)}, {Ya(Xy, -+, Xa)}
be sequences of real random variables with X; arbitrary and

(6) Xoy1 = To(Xy, -+, Xa) + Ya(Xy, oo+, Xa).
Assume

(7) E{Y,| X1, -, X =0 w.p.1,

(8) 2 EY: < o,

and

(9) |Ta] < max (an, (1 4 B8a)|Xa] — vn)
where ay , Bn , Yn are positive numbers such that

(10) =0, Bn < ©, D yn= .




Dvoretzky Theorem
(Derman-Sachs Proof)



Derman-Sacks Proof (1959) "X, indep.

* Borel-Cantellilemma (1st) X P[X | < oo = P[X 1.0.]=0
* Chebyshevinequality P[|X —u| > ko] < 1/k7
* Abelstest X a, conv A b, mon. and bounded = X a,b, conv

* Slowdownlemma  >a, conv = 4b, (b, - OA 2a,/b, conv)

. Kolmogorov inequality*  P| max X+ ...+ X | > 1) < 1/A*Var[X, + ... + X ]
<Kk<n

* Variance lemma® I EX?<co= XX a.s.

* “Lemma1” about R converging and diverging sequences and series
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Abel’s Test




Abel’s Test

Lemma (Abel’s Test). If 2 a, converges and (b,), - is monotone and

converges then 2 a b converges.

Proof: Summation by parts.

Quantitative data: Functional converting moduli of convergence for 2 a, and

(b,), e into @ modulus of convergence for 2 a, b, .
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Lemma 1 (Quantitative Abel’s Test) Let {6,} and {v,} be sequences of
real numbers, with {v,} monotone. Suppose that for some D and V we have

(i) |0 _; 60| < D, forall j >i>1,

(i2) |\vg| <V, forall k > 1,
and @y, 1 is a modulus of convergence for {v,}, i.e.
(iit) Ve > OVi,j > Pr, 1(e)(|lvs — vj| < €).
Then, for any ¥ and € > 0 if

I

Vi,j > Y(e/4V) ( Z5n < 45‘/) — Vi, j > ¥*(¥,¢) ( Z(Snvn e)

where

U* (P, e) = max (Cb{yn} (%) U (%)) .
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Slowdown Lemma



Slowdown Lemma

Slowdown lemma. If 2 a, converges (with a, > 0) then there exists a sequence
(b,), eny Which converges to O such that 2 a, /b, also converges.

Proof: Take b, = \/ S0 d,

Quantitative data: Finite approximation to infinite sum in b, modulus of
convergence for (b,), . and modulus of convergence for % a,/b, given one for 2 a,.

Stochastic Approximation Methods 22 Paulo Oliva %Qf Queen Mary

University of London



Lemma 5 Let (t,) be a sequence of non-negative real numbers. Assume the
series ) . tn converges with Cauchy modulus ¥s~, , i.e.,

Ve > 0 Z ty < € (3)
kZ‘I’Z tn (5)

For¢: R — R, let F(1,0) =0 and F(¢,n) = max(F(¢¥,n—1)+1,9(1/t,/n?))

and let ry, = Ef;(sztn’") t;. Define W tn by

g2\ [n% 17
Vs . () = max (\I'Ztn (Z)’ 2% 2 ) )
Then the series ) \j;‘_n converges with Cauchy modulus \I!Z tn_; 1.€.,
o0 t
Ve > 0 Z — <€ (5)
k>2Wo. ¢, (€) VI
> Vi
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Derman-Sachs Lemmmal




Lemmal

Lemmat. a,b,,c,0,6& sequencesin |
(i) a,, b,, c,, &, non-negative (0, can be negative)

(i) lima, = 0,2 b, < 00, 2 ¢, = 00, 2 0, converges

(iii) £,y < max(a,,(1 +b,)¢, + 6, — ¢,), for all large enough n

Thené, — 0

» Quantitative data: Constructive, modulus of convergence for £, given moduli for
assumptions and /N from which point (iii) holds.



Lemma 4 (Derman-Sacks Lemma 1) Let (a,), (bn),(cn),(0,), and (&,) be
sequences of reals such that:

(i) (ayn),(bn), (cn), and (&,) are non-negative
(i) &, < E and |ZZ?,:1,5”| <D, forallj>i>1

(iii) for some @, 1, Vs y, and As .. we have

~ Ve > O0Vi > 89, (e)(a; <) where
= Ve > 0 i>wy., (o)bi <€) As~¢,/B, (K, k) =As ., (K - B, k),
VK Rz R ¢ s k) N(T,¢) = max (q){an} (2;) T (\I, %) ,No) |
(iv) and No be a natural number such that for all n > Ny we have
En+1 < max(an, (14 bp)én + 0n — cn). V7 (W, ¢) = max (q’{Bln} (4D) ( ))
=00 ()

®*(V,e) = max(As /p (E/BN(w.e)-1 + 2D, N(¥,¢)), N(¥, ¢ )
®5,)(€) = Uss, (In (5 +1)),

b=1+ Zf’:%”“(l/z)‘l bi;, B=¢€" and B, = [[—,(1+b;). Then, for all ¥ and
e > 0 we have that

Vi, j > U (SiB) (Zén < 8‘;) Vi > (W, )(€; < e).
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Variance Lemma



Variance Lemma

Variance lemma. If
(i) E[Z, | X;,....X ] =0, w.p.1
(i) X, E[Z?] < o

Then 2 Z converges almost surely.

: : <N
Proof: Apply Kolmogorov inequality to S,y = 2'_,Z,.

» Quantitative data: Modulus of almost sure convergence for 2, Z given modulus of
convergence for X E[Z-].




Lemma 7 Let {Z,} be a sequence of random variables such that E|Z;Z;] = 0
for i # j, and suppose the series >, K[Z2] is such that

(i) N _E[Z2] < C, for all N > 1, and

sn=1

(1) >, E[Z7] converges with a Cauchy modulus Vs g;z2), i.e.,

Ve > 0 » E[Zf]<e|. (13)
k2¥s g122)(¢)

Then the series ) , Z,, converges with probability 1, with modulus ¥~ gy 72 (62 /4),

m-+k
Ve,0 >0 | P ﬂ (ZZI <5) >1—-9 (14)

m > \IfZE[Z%](ész/él) l=m
k>1
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Main Proof



Proof

Let Z, =Y sgn(T)). By the Variance Lemma

2./, converges a. S.

By Chebyshev inequality and Borel-Cantelli lemma
1Z. | < a,a.s., forlarge enough n

[t follows that

| X, | <max(...),a.s., forlarge enough n

Then, apply Lemma 1 pointwise on this event of prob. 1
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Stochastic Approximation Methods

e Y X real-valued random variable Kolmogorov Strong Law of Large Numbers

parametrised by x Y ar.v. (independent of x)

» P[Y_] the probability of Y, for given x Problem: Findxs.t. EY = x

» Assume we can only observe P[Y ] via Instance:

sampling gy, x) =y—x

X, =X, + O, —x)/(n+1)

* 9(y,x) a given function
(given samples yj, vy, - -)

* Problem: Find x such that E g(Y,,x) =0

SLLN: (x,) converges to
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Stochastic Approximation Methods

» Y. real-valued random variable Banach Fixed-Point Theorem
parametrised by x Contraction mapping ¢ : R — R
» P[Y ] the probability of Y, for given x Problem: Find x s.t. ¢(x) = x
- Assume we can only observe P[Y ] via Instance:
sampling Y = ¢(x)
 g(y, x) a given function 8y, X) =y —x

Xpp1 = X, T (P(x,) — X))/ (n + 1)

* Problem: Find x such that E g(Y,,x) =0

BFT: (x,) converges to f.p. of ¢
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Dvoretzky = Robbins-Monro

(Dvoretzky) X,o1=1,(x,....,x)+ Y (x1,...,%,)
Ju) = E(Z)
I (x,....,x,)=x,+a,f(x,)
Y (X, ...,X,) = an(an — f(x,))

(Robbins-Monro) Xpt1 = Xy T aan,,,



Convergence of Sequences of Random Variables

Convergence in Mean

Almost Sure Convergence

Llet r =1 be a fixed number. A sequence of random variables X;, X5, Xz, -
converges in the rth mean or in the L' norm to a random variable X, shown

A sequence of random variables X;, X5, X3, -+ converges almost surely to a LE
a.S

random variable X, shown by X, —s X, if

P({SES: lim Xn(s)=X(s)}) = 1.

n—o°

by X, — X, if
lim E (|X, - X|") =0.

n—00

If r=2, it is called the mean-square convergence, and it is shown by
m.s.

X, —> X.

n—=>00

A sequence of random variables Xj, X5, X3, -+ converges in probability to a

p
random variable X, shown by X, — X, if

lim P(|X, - X| = €) =0, for all € > 0.

Convergence in Probability




Almost Sure Convergence



A sequence (x,) € R is converging if

Ve > 0aNVm,n > N(|x,— x| < ¢€)

A sequenceof r.v. (X ) € Q — R is converging almost surely if

Pl[{lw: Ve >0aNVm,n > N(| X (w) — X (w)]| <¢e)}] =1

A sequence of r. v. (X)) € €2 — R converges almost uniformly if

Ve,o0 > 0dN (P[{a): Vm,n > N(| X, (w) — X (w)]| <&e)}] > 1— 5)

Avigad-Dean-Rute (2011)
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