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sequence  converges(an)n∈ℕ

∀ε > 0 ∃N ∀i, j ≥ N( |ai − aj | ≤ ε)

∃φ ∀ε > 0 ∀i, j ≥ φ(ε)( |ai − aj | ≤ ε)

 converges with modulus of convergence (an)n∈ℕ φ
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series  convergesΣnan

∀ε > 0 ∃N ∀i, j ≥ N( |Σj
k=iak | ≤ ε)

∃ψ ∀ε > 0 ∀i, j ≥ ψ(ε)( |Σj
k=iak | ≤ ε)

 converges with modulus of convergence Σnan ψ
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 converges       converges(an)n∈ℕ ⇒ (bn)n∈ℕ

 turns a m.o.c for  into a m.o.c for Φ (an)n∈ℕ (bn)n∈ℕ

∃Φ∀φ(∀ε > 0 ∀i, j ≥ φ(ε)( |ai − aj | ≤ ε)

⇒ ∀ε > 0 ∀i, j ≥ Φ(φ, ε)( |bi − bj | ≤ ε))
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sequence of r.v.  converges with probability 1(Xn)n∈ℕ

ℙ[∀ε > 0 ∃N ∀i, j ≥ N( |Xi − Xj | ≤ ε)] = 1

∃φ ∀ε, δ > 0 (ℙ[∀i, j ≥ φ(ε, δ)( |Xi − Xj | ≤ ε)] ≥ 1 − δ)

 a uniform modulus of a.s. convergence for φ (Xn)n∈ℕ
Avigad-Dean-Rute (2011)

ℙ[{ω : ∀ε > 0 ∃N ∀i, j ≥ N( |Xi(ω) − Xj(ω) | ≤ ε)}] = 1
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 converges       converges(an)n∈ℕ ⇒ (bn)n∈ℕ

∃Φ, Δ∀φ, ε > 0

⇒ ∀i, j ≥ Φ(φ, ε)( |bi − bj | ≤ ε))
(∀i, j ≥ φ(Δ(φ, ε))( |ai − aj | ≤ Δ(φ, ε))

∃Φ∀φ(∀δ > 0 ∀i, j ≥ φ(δ)( |ai − aj | ≤ δ)

⇒ ∀ε > 0 ∀i, j ≥ Φ(φ, ε)( |bi − bj | ≤ ε))



Stochastic 
Approximation Methods
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Stochastic Approximation Methods
• Iterated procedures used to approximate a target value when target is 

unknown and observations are corrupted by noise 

• Introduced by Robbins-Monro (1951) 

• Robbins-Monro algorithms generalised by Dvoretzky (1956) 

• Generalisation of (deterministic) approximation methods  

• Stochastic gradient descent (in Machine Learning) is based on Stochastic 
Approximation Theory

9
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f(x) = 𝔼 g(Yx, x)

x

Stochastic Approximation Methods

 

given samples  of 

xn+1 = xn + ang(yn, xn)

y0, y1, … Yx1
, Yx2

, …

convergence of  to rootxn
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•  real-valued random variable 
parametrised by  

•  the probability of  for given  

• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 

Yx
x

P[Yx] Yx x

P[Yx]

g(y, x)

x 𝔼 g(Yx, x) = 0
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Stochastic Gradient Descent 

 a loss function,  model param. 

Problem: Find  s.t.  is minimal 

 

Training set:   

 

(  learning rate) 

SGD:  converges to critical point of loss 
function

L(y, x) x

x 𝔼 L(Yx, x)

g(y, x) = − ∇xL(y, x)

y1, y2, …

xn+1 = xn + ang(yn, xn)

an

(xn)

Stochastic Approximation Methods

11

•  real-valued random variable 
parametrised by  

•  the probability of  for given  

• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 

Yx
x

P[Yx] Yx x

P[Yx]

g(y, x)

x 𝔼 g(Yx, x) = 0



Robbin-Monro 
Stochastic 

Approximation Method
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Robbins-Monro (1951) Stochastic Approximation Algorithm 

 

Robbins-Monro (1951):  
 convergence of  when  

Assumes: 
• ,  ,   

•  bounded w. p. 1 

• function  
- non-decreasing 

- solution for  exists 
- derivative at solution is positive

xn+1 = xn + ang(yn, xn)

L2 xn g(y, x) = b − y

an → 0 Σ an = ∞ Σ a2
n < ∞

Yx

f(x) = 𝔼[Yx]

f(x) = b
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•  real-valued random variable 
parametrised by  

•  the probability of  for given  

• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 

Yx
x

P[Yx] Yx x

P[Yx]

g(y, x)

x 𝔼 g(Yx, x) = 0



Dvoretzky (1956)
Assumptions: 

 

 (dependent on history of ) 

• , w. p. 1 

•  

There exists  such that 

 

 such that 

, , 

Tn : ℝn → ℝ

Y1, Y2, … x1, x2, …

𝔼[Yn |X1, …, Xn] = 0

Σ 𝔼[Y2
n] < ∞

x*

|Tn( ⃗x) − x* | ≤ max(αn, (1 + βn) |xn − x* | − γn)

αn, βn, γn ∈ ℝ+

αn → 0 Σ βn < ∞ Σ γn = ∞

Result: 
The iteration 

        

converges a.s. to 

xn+1 = Tn(x1, …, xn) + Yn

x*

• Vast generalisation of Robbins-
Monro result 

• Iteration has two parts: 

- Deterministic part which is 
assume to converge to solution 

- Stochastic part with expected 
value of zero and bounded 
variance noise terms

deterministic





Dvoretzky Theorem 
(Derman-Sachs Proof )
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Derman-Sacks Proof (1959)
• Borel-Cantelli lemma (1st) 

• Chebyshev inequality 

• Abel’s test 

• Slowdown lemma 

• Kolmogorov inequality* 

• Variance lemma* 

• “Lemma 1” about  converging and diverging sequences and seriesℝ
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Σ P[Xn] < ∞ ⇒ P[Xn i . o.] = 0

P[ max
1≤k≤n

|X1 + … + Xk | ≥ λ) ≤ 1/λ2Var[X1 + … + Xn]

P[ |X − μ | ≥ kσ] ≤ 1/k2

Σ an conv ∧ bn mon . and bounded ⇒ Σ anbn conv

Σ an conv ⇒ ∃bn(bn → 0 ∧ Σ an/bn conv)

Σ 𝔼 X2
n < ∞ ⇒ Σ Xn a . s .

Xn indep .*



Abel’s Test
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Abel’s Test
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Lemma (Abel’s Test).  If  converges and  is monotone and 
converges then  converges.

Σnan (bn)n∈ℕ
Σnanbn

Proof: Summation by parts.

Quantitative data: Functional converting moduli of convergence for  and 
 into a modulus of convergence for . 

Σnan
(bn)n∈ℕ Σnanbn
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Slowdown Lemma
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Slowdown Lemma

22

Slowdown lemma.  If  converges (with ) then there exists a sequence 
 which converges to  such that  also converges.

Σnan an ≥ 0
(bn)n∈ℕ 0 Σnan/bn

Proof: Take .bn = Σi≥nan

Quantitative data: Finite approximation to infinite sum in , modulus of 
convergence for  and modulus of convergence for  given one for .

bn
(bn)n∈ℕ Σnan/bn Σnan
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Derman-Sachs Lemma 1



Lemma 1

Lemma 1.  , , , ,   sequences in  

 (i) , , ,  non-negative (  can be negative) 

(ii) , , ,  converges 

(iii) , for all large enough  

Then  

an bn cn δn ξn ℝ

an bn cn ξn δn

lim an = 0 Σ bn < ∞ Σ cn = ∞ Σ δn

ξn+1 ≤ max(an, (1 + bn)ξn + δn − cn) n

ξn → 0

• Quantitative data: Constructive, modulus of convergence for  given moduli for 
assumptions and  from which point (iii) holds.

ξn
N
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Variance Lemma



Variance Lemma
Variance lemma. If 

 (i) , w. p. 1 

(ii)  

Then  converges almost surely.

𝔼[Zn |X1, …, Xn] = 0

Σn 𝔼[Z2
n] < ∞

Σn Zn

Proof: Apply Kolmogorov inequality to .SN = ΣN
n=0Zn

• Quantitative data: Modulus of almost sure convergence for  given modulus of 
convergence for .

ΣnZn
Σn𝔼[Z2

n]
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Main Proof



Let . By the Variance Lemma 

       converges a. s. 

By Chebyshev inequality and Borel-Cantelli lemma 

     , a. s., for large enough  

It follows that 

     , a. s., for large enough  

Then, apply Lemma 1  pointwise on this event of prob. 1

Zn = Yn sgn(Tn)

Σ Zn

|Zn | ≤ αn n

|Xn+1 | ≤ max( . . . ) n

Proof
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The End
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Kolmogorov Strong Law of Large Numbers 

 a r. v. (independent of )       

Problem: Find  s.t.  

Instance: 

 

 

(given samples ) 

SLLN:  converges to  a.s.

Y x

x 𝔼 Y = x

g(y, x) = y − x
xn+1 = xn + (yn − xn)/(n + 1)

y0, y1, …

(xn) 𝔼 Y

Stochastic Approximation Methods
•  real-valued random variable 

parametrised by  

•  the probability of  for given  

• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 

Yx
x

P[Yx] Yx x

P[Yx]

g(y, x)

x 𝔼 g(Yx, x) = 0

34
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Banach Fixed-Point Theorem 

Contraction mapping  

Problem: Find  s.t.  

Instance: 

        

 

 

BFT:  converges to f.p. of 

ϕ : ℝ → ℝ

x ϕ(x) = x

Yx = ϕ(x)
g(y, x) = y − x

xn+1 = xn + (ϕ(xn) − xn)/(n + 1)

(xn) ϕ

Stochastic Approximation Methods

35

•  real-valued random variable 
parametrised by  

•  the probability of  for given  

• Assume we can only observe  via 
sampling 

•  a given function 

• Problem: Find  such that 

Yx
x

P[Yx] Yx x

P[Yx]

g(y, x)

x 𝔼 g(Yx, x) = 0



Dvoretzky    Robbins-Monro⇒

xn+1 = xn + anZxn

Tn(x1, …, xn) = xn + an f(xn)

Yn(x1, …, xn) = an(Zxn
− f(xn))

f(u) = 𝔼(Zu)

(Robbins-Monro)

xn+1 = Tn(x1, …, xn) + Yn(x1, …, xn)(Dvoretzky)



Convergence of Sequences  of Random Variables



Almost Sure Convergence



A sequence  is converging if (xn) ∈ ℝ

∀ε > 0∃N ∀m, n ≥ N( |xn − xm | < ε)

A sequence of r. v.  is converging almost surely if (Xn) ∈ Ω → ℝ

P[{ω : ∀ε > 0∃N ∀m, n ≥ N( |Xn(ω) − Xm(ω) | < ε)}] = 1

A sequence of r. v.  converges almost uniformly if (Xn) ∈ Ω → ℝ

∀ε, δ > 0∃N (P[{ω : ∀m, n ≥ N( |Xn(ω) − Xm(ω) | < ε)}] ≥ 1 − δ)
Avigad-Dean-Rute (2011)

Egorov T
heorem


