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Soundness
• Soundness theorem: 
 

• The logical axioms are sound by the Diller-Nahm interpretation

• Quantifiers need extra care

• Soundness of non-logical axioms easy to verify

• Interpreting induction already requires a ‘monotonicity’ property

A(n) ⊢ B(n) ⇒ n ≤ℕ m, ∀b ∈ tmad{A(n)}a
b ⊢ {B(n)}sma

d
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• It is useful to assume that  contains ‘star’ types, i.e.  — finite 
sequences or subsets of 

HAω τ*
τ

• No disjunction yet…

• We discuss monotonicity property when adding A ∨ B

• Interpretation does not rely on majorizability (yet!)

• We use majorizability when interpreting  into HAω HAω
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, we can indeed bound  by , i.e.

x, y > 2−k x ∈ [p, q]
y ∈ [r, s] n s2k

∀x, yℝ(x, y >ℝ 0 → ∃nℕ(nx >ℝ y))
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Inverse
• The following is also interpretable


• In this case we are given that  and that  for some 


• Hence, we can find an interval which bounds  in terms of  and 

x ∈ [p, q] |x | ≥ 2−k k

y p, q k

∀xℝ(x ≠ℝ 0 → ∃yℝ(xy = 1))
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ρ→τ f* :≡ ∀x*∀x ≤H
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Quantifications over finite types
• We can lift the interpretation of  
 
 
 

ℕ

• to all finite types using Howard’s majorizability

{∃nℕA}a,m
B :≡ ∃n ≤ℕ m∀b ∈ B {A}a

b

{∀nℕA}f
b,m :≡ ∀n ≤ℕ m {A}fm

b

{∃xτA}a,x*
B :≡ ∃x ≤H

τ x*∀b ∈ B{A}a
b

{∀xτA}f
b,x*:≡ ∀x ≤H

τ x*{A}fx*
b



An Interpretation of HAω

{s = t} :≡ s = t
{A ∧ B |a,c

b,d :≡ {A}a
b ∧ {B}c

d

{A ∨ B |a,c
B,D :≡ ∀b ∈ B{A}a

b ∨ ∀d ∈ D{B}c
d

{A → B |f,g
a,d :≡ ∀b ∈ gad {A}a

b → {B}fa
d

{∃xτA |a,x*
B :≡ ∃x ≤H

τ x*∀b ∈ B{A}a
b

{∀xτA |f
b,x* :≡ ∀x ≤H

τ x*{A}fx*
b



Majorizability in finite types + ℝ
• Lift  and  to all types n ≤ℕ m x ∈ℝ [p, q]

n ≤H
ℕ m :≡ n ≤ℕ m

x ≤H
ℝ [p, q] :≡ x ∈ [p, q]

f ≤H
ρ→τ f* :≡ ∀x*∀x ≤H

ρ x*( fx ≤H
τ f*x*)



Probability Space



Probability spaces (Ω, ℱ, P)
• Sample space  can be an abstract space with uniform interpretation 
 
 

Ω

{∃ωΩA}a
B :≡ ∃ωΩ ∀b ∈ B {A}a

b

{∀ωΩA}a
b :≡ ∀ωΩ {A}a

b
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Probability spaces (Ω, ℱ, P)
• Sample space  can be an abstract space with uniform interpretation 
 
 

Ω

• , with some axioms, e.g. 
 
ℱ : (Ω → 𝔹) → 𝔹

• , with some axioms, e.g.P : (Ω → 𝔹) → [0, 1]

{∃ωΩA}a
B :≡ ∃ωΩ ∀b ∈ B {A}a

b

{∀ωΩA}a
b :≡ ∀ωΩ {A}a

b

∀AΩ→𝔹(ℱ(A) =𝔹 T → ℱ(A) =𝔹 T)

∀AΩ→𝔹(ℱ(A) =𝔹 T → P(A) ≥ 0) P(λωΩ . T) = 1)



Probability spaces (Ω, ℱ, P)
• Sample space  can be an abstract space with uniform interpretation 
 
 

• Given the uniform interpretation of  the interpretation of  is also 
uniform:

Ω

𝔹 Ω → 𝔹

{∃ωΩA}a
B :≡ ∃ωΩ ∀b ∈ B {A}a

b

{∀ωΩA}a
b :≡ ∀ωΩ {A}a

b

{∃AΩ→𝔹A}a
B :≡ ∃AΩ→𝔹 ∀b ∈ B {A}a

b

{∀AΩ→𝔹A}a
b :≡ ∀AΩ→𝔹 {A}a

b



Work in progress…


