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m>(b,z,y) / m> (f,a) | bt(7) | VeCra A W, (z) Interpretation
if-(b,z,y) / f(a) T Ala/x] true Dialectica
if -(b,z,y) / f(a) V™ A true Modified realizability
if -(b,z,y) / f(a) Ve < aA | true / z < x (combination not sound)
if-(b,z,y) / f(a) Ve €-ra A Diller-Nahm

max,(z,y) / f(a) Ala/x] (combination not sound)
max.,(z,y) / f(a) VT A Bounded modified realizability

max,(z,y) / f(a) Ve <*a A Bounded functional interpretation

max,(xz,y) / f(a) Ve €ra A Bounded Diller-Nahm
xUy / Ala/x] Herbrand Dialectica ( ~ Dialectica)

zUy /

z

Ve A Herbrand realizability (for IL)

Ve <*a A Herbrandized bfi

Ve €.a A Herbrand Diller-Nahm

mC._mC_mC_m(

Fig. 1. Summary of instantiations (with the two novel interpretations in bold).
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SOME LOGICAL METATHEOREMS
WITH APPLICATIONS IN FUNCTIONAL ANALYSIS

ULRICH KOHLENBACH

ABSTRACT. In previous papers we have developed proof-theoretic techniques
for extracting effective uniform bounds from large classes of ineffective exis-
tence proofs in functional analysis. Here ‘uniform’ means independence from
parameters in compact spaces. A recent case study in fixed point theory sys-
tematically yielded uniformity even w.r.t. parameters in metrically bounded
(but noncompact) subsets which had been known before only in special cases.
In the present paper we prove general logical metatheorems which cover these
applications to fixed point theory as special cases but are not restricted to
this area at all. Our theorems guarantee under general logical conditions such
strong uniform versions of non-uniform existence statements. Moreover, they
provide algorithms for actually extracting effective uniform bounds and trans-
forming the original proof into one for the stronger uniformity result. Our
metatheorems deal with general classes of spaces like metric spaces, hyper-
bolic spaces, CAT(0)-spaces, normed linear spaces, uniformly convex spaces,
as well as inner product spaces.
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Abstract

In finite type arithmetic, the real numbers are represented by rapidly converging Cauchy sequences of rational
numbers. Ulrich Kohlenbach introduced abstract types for certain structures such as metric spaces, normed
spaces, Hilbert spaces, etc. With these types, the elements of the spaces are given directly, not through the
mediation of a representation. However, these abstract spaces presuppose the real numbers. In this paper, we
show how to set up an abstract type for the real numbers. The appropriateness of our construction works in
tandem with the bounded functional interpretation.
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An Interpretation of HA

s =1
A, AMBY,

i {A %B}Zi{ = Vb Egad{A}z N {B}]:? ‘

a,c .
(AAB)<

: { EInNA}%’m = dn <ymVb € B{A}}
/“ {‘v’nNA}];’m = Vn <y m{A}J;m

A — daVb{A}, (daVbA[a;b))
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= ka{A}f
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VaN(tn = 0 - ImN(snm = 0))

Elf‘v'k‘v’n < k(tn =0 - dm < fk(snm O))
= ka{A}f

Vk‘v’n < k(tn = O — dm < gbk(snm O))
Vk{A}¢
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Soundness

* Soundness theorem:
An) = B(n) = n<ym,Vb € tmad{A(n)}, = {B(n)} "™
* The logical axioms are sound by the Diller-Nahm interpretation
e Quantifiers need extra care
* Soundness of non-logical axioms easy to verify

* |nterpreting induction already requires a ‘monotonicity’ property
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Remarks

e This is an interpretation of HA into HA®

e It is useful to assume that HA® contains ‘star’ types, i.e. 7% — finite
sequences or subsets of 7

* No disjunction yet...

» We discuss monotonicity property when adding A v B

* |nterpretation does not rely on majorizability (yet!)

« We use majorizability when interpreting HA® into HA®
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Interpreting disjunction A v B

« Add a new sort for the booleans B, call it HA[B]

* Interpret new sort ‘uniformly’, i.e.
1dz7AYy =dz27°Vb e BlAY})
(VZBA})e .= V7B{A}¢

 Disjunction A V B is an abbreviation for

1b°((b=T - A)AN(b=F — B))

e Hence:

{AVB} =VbeB{A},vVVd e D{B},



An Interpretation (with disjunction)

S =1
(A}, AMBY,
(A — BY* :=Vb € gad {A}] — {B}]

s =y 1}
{A/\B}“"’ :

{In“A}e™ .= 3n <y mVb € B{A}]
(VnNAY, = Vn <y m{A})"
(AV B}y, = Vb € B{A})vVd € D{B}; |
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Soundness of disjunction A v B

« How do we interpret A V A — A with a uniform interpretation of disjunction?

» We have two witnesses a; and a, and we must produce an a s.t.
Vb' € B{A} vVb' € B{A}? — {A}]

» Define m_(a, a,) inductively as:

mN(nl, nz) = max(nl, n,)

) MOnOtonicity property: p—w(fl f2) = /Xx.m (flx fZX)
a m(a,,a,) I S
{A}bl — {A}b 1>
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Bounded quantifiers

e Can add primitive bounded quantifiers

* |nterpret them ‘uniformly’
{dn SymA}y =dn <ymVb € B{A})
\Vn <ymAY}, :=Vn <ymiA})
 Axioms for bounded quantifiers are interpretable:
In <y mA < In(n < ymAA)
Vn <y mA < Vah(n <ym — A)
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» Add a new sort for the reals R, let’s call it HA[R]

* One option: Interpret reals by bounding pairs of rationals

{Ix"AYoP = 3x € [p,q)Vb € B{A}]
{VxRA}Z,p’q =Vx € [p,ql{A }];pq

* |nterpret relations between reals as

(x=p Yy} =|x—y| <27
(x<py}f=x+2"<y
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Soundness of disjunction A v B

» Define m_(a,, a,) inductively as:

| My (7, 1p) 1= max(ny, n,) ‘
?, mg([py, q,1; 1pa, o)) = [min(py, p,), max(q,, g,)]
" m,«(A, Ay) == A UA, “

m,_.(fi.f>) := Ax. m(fix, fox)

 Monotonicity property:

(A} — (A}
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Adding abstract spaces, e.g. R

» We can ensure that N are the natural numbers in R by assuminge: N — |
with axioms

e0) =0 VnNe(Sy(n) = Sgle(n)))
. Statements involving e( - ) are interpretable, e.g.
vnN IxR(e(n) =n X)
+ has interpretation (with ¢pm = [0,m])

Vm, kVn < mdx € gm(|e(n) — x| < 27K
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Archimedean property

* Consider the Archimedean property
Vx, yX(x, y >n 0 — An"(nx >R V)

o If we know that x,y > 2% and that they live in interval x € |p, g] and
y € [r, s], we can indeed bound 7 by s2k e,

Vx,y € [p,gl(x,y >n -k 5 Jn < szk(nx >R y))



Inverse

* The following is also interpretable
Vx¥(x #5 0 = Iy (xy = 1))
- In this case we are given that x € [p, ¢] and that | x| > 27" for some k

» Hence, we can find an interval which bounds y in terms of p, g and k
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Bounded quantification in R

» Bounded quantifiers Vx € [p, g] A(x) and dx € |p, g] A(x) are not always
uniform, but almost:

{Ix e [p.qlA}y, =3xe[p—-279+27"]Vb € B{A}]

{Vx € [p,qlA}, P :=Vxe[p-— =80 g + 2—gb]{A}z

* The following ‘uniform boundedness principle’ is interpretable:

Vx € [p,q]An"A(x,n) - ANVx € [p,g]In < NA(x, n)
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Howard majorizability

o Lifts n <y m to all types

H % . K
n<yhti=nsyn

H — H H
J < [TEVXFVX <F XxF(fx <7 OFFa)
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Quantifications over finite types

» We can lift the interpretation of N
{In“A}e™ .= In <y mVb € B{A})
{Vn" A }];,m =Vn < ymiA }];m

» to all finite types using Howard’s majorizability

{ HXTA}%’X*ZE Jx < x*Vb & B{A};}
(VXTAY  :=Vx < x*{A }];x*

b.x*"



An Interpretation of HA®

{S — t} =5=1 3
{AABI,), = {A}; A Bl |

{AVBI3S, = Vb € B{A} v Vd € D{B);

{A — B ‘f =Vb € gad (A}, — {B}ZZ
{ Ix7A |5 = Ax <M x*Vb € B{A}¢
{vfo \ = Vo < A

bx* =



Majorizability In finite types + R
e Liftn <yymand x € [p, gl to all types

7
n<<ym:=nym

X SH [P,Q] =X E [paq]
fgf_w [T = Vx*Vx Sf XF(fr T fEx)
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Probability spaces (€2, &, P)

« Sample space €2 can be an abstract space with uniform interpretation
@) . — @)
(Jw®A}4 ;= J0Vb € B{A}¢
@) . — @)
{(Vw™A}, :=Vo {A}]

« F:(Q - B) - B, with some axioms, e.g.

VA B FA) = T > FA) = T)

e P: (2 - B) — [0, 1], with some axioms, e.g.

VASB(F(A) =, T — P(A) > 0) POw™.T)=1)




Probability spaces (€2, &, P)

« Sample space €2 can be an abstract space with uniform interpretation

(Jw®A}} = Jw™Vb € B{A}

(VoA}l :=Vo{A}Y

e Given the uniform interpretation of
uniform:

3 the interpretation of {2 —

(JARBAY .= JARBYD € B{A)
(VAREA .= VARB (A}

B is also




Work In progress...



