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Heyting Arithmetic

Assume  formalised with three predicate symbols 

Falsity  — nullary 

Natural number  — unary 

Equality  — binary

HA
⊥

ℕ(n)
n = m

Definition (Heyting arithmetic).

 is an abbreviation for  

 is an abbreviation for 

∀nℕA(n) ∀n(ℕ(n) → A(n))

∃nℕA(n) ∃n(ℕ(n) ∧ A(n))

Notation.
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A Uniform Realizability Interpretation

Associate to each -ary predicate symbol  an -ary relation 

 

between individuals and -realizers (or -bounds).

n P (n + m)
⃗x ◃P a

P P

Definition (Base Interpretation).

Realizers live in some (typed) partial combinatory algebra . 
Individuals live in some model  
We use  for tuples of elements of  and  for tuples of realizers

(A, ∙ )
ℳ

⃗x ℳ a

Notation.

For the unary predicate  we could take  to be: 

   (precise)                  (uniform) 

ℕ(n) n ◃ℕ ⋅

n ◃ℕ m :≡ n = m n ◃ℕ ⟨ ⟩ :≡ ℕ(n)

Example.
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A Uniform Realizability Interpretation

Assume a fixed PCA  and base interpretation. Let: (A, ∙ )

a ur P( ⃗x) :≡ ⃗x ◃P a
a, b ur A ∧ B :≡ (a ur A) ∧ (b ur B)

f ur A → B :≡ ∀a((a ur A) → ( f ∙ a ↓ ∧ f ∙ a ur B))
a ur ∃xA :≡ ∃x(a ur A)
a ur ∀xA :≡ ∀x(a ur A)

Definition (Uniform Realizability Interpretation).

a, b ur ∃nℕA :≡ ∃n ◃ℕ a (b ur A)
f ur ∀nℕA :≡ ∀a∀n ◃ℕ a ( f ∙ a ↓ ∧ f ∙ a ur A)

It follows that…
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Kleene Realizability

Let: 

 

Take Kleene’s first algebra  as the PCA.

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ m :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

𝒦1

Definition (Kleene Base Interpretation).

n, a ur ∃nℕA(n) ⇔ a ur A(n)
a ur ∀nℕA ⇔ ∀n({a}(n) ↓ ∧ {a}(n) ur A)

It follows that…
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Kreisel Modified Realizability

Let: 

 

Take Gödel’s system T as the typed PCA.

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ mℕ :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Kreisel Base Interpretation).

nℕ, a ur ∃nℕA(n) ⇔ a ur A(n)
f ur ∀nℕA ⇔ ∀nℕ( f(n) ur A)

It follows that…
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Herbrand Realizability

Assume an extra unary predicate  (for  is a standard number). Let: std(n) n

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ ⟨ ⟩ :≡ ℕ(n)
n ◃std S :≡ n ∈ S

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Herbrand Base Interpretation).

a ur ∃nℕA(n) ⇔ ∃nℕ(a ur A(n))
a ur ∀nℕA(n) ⇔ ∀nℕ(a ur A(n))

Sℕ*, a ur ∃nstdA(n) ⇔ ∃n ∈ S (a ur A(n))
f ur ∀nstdA ⇔ ∀S ∀n ∈ S ( f(S) ur A)

It follows that…
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Classical (Berger) Modified Realizability

Fix unary atomic predicate . Let: 

 

Take Gödel’s system T as the typed PCA.

P⊥(n)

⟨ ⟩ ◃⊥ n :≡ P⊥(n)
n ◃ℕ mℕ :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Classical Base Interpretation).

Combination of modified realizability and Friedman’s A-translation 

We are then able to realize  

Similar to Krivine’s (classical) realizability

¬¬∃nℕP⊥(n) → ∃nℕP⊥(n)

Remarks.
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Aschieri-Berardi Learning Realizability

Assume a set of states . Parametrised by an , let: 

 

Take Gödel’s system T (with  as an extra base type) as the typed PCA.

S s ∈ S

⟨ ⟩ ◃⊥ γS→S :≡ γ(s) ≠ s
n ◃ℕ αS→ℕ :≡ n = α(s)

(n, m) ◃= γS→S :≡ γ(s) = s → n = m

S

Definition (Aschieri-Berardi Base Interpretation).

αS→ℕ, a ur ∃nℕA(n) ⇔ a ur A(α(s))
f ur ∀nℕA ⇔ ∀nℕ( f(n) ur A)

It follows that…
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Quantifiers are “naturally” uniform 

Qualified quantifications (e.g. ) carry computational 

content because of the qualifying predicate  

Currently working with Fernando Ferreira on uniform functional 
interpretations: 

New interpretations of function spaces  

Functional interpretation of extensionality 

Systematic treatment of bounded (uniform) quantifiers

∃nℕA(n)
ℕ(n)

ρ → τ

Summary
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