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This paper studies modified bar recursion, a higher type recursion scheme which has
been used in (BBC98) and (BOO05) for a realizability interpretation of classical analysis.
A complete clarification of its relation to Spector’s and Kohlenbach’s bar recursion, the

fan functional, Gandy’s functional I" and Kleene’s notion of S1-S9 computability is given.
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Abstract

This article presents a parametrized functional interpretation. Depending on the choice of two parameters one
obtains well-known functional interpretations such as Godel's Dialectica interpretation, Diller-Nahm's variant of the
Dialectica interpretation, Kohlenbach's monotone interpretations, Kreisel's modified realizability, and Stein's family
of functional interpretations. A functional interpretation consists of a formula interpretation and a soundness
proof. | show that all these interpretations differ only on two design choices: first, on the number of
counterexamples for A which became witnesses for -A when defining the formula interpretation and, second, the
inductive information about the witnesses of A which is considered in the proof of soundness. Sufficient conditions
on the parameters are also given which ensure the soundness of the resulting functional interpretation. The
relation between the parametrized interpretation and the recent bounded functional interpretation is also

discussed
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Uniform Interpretations of Quantifiers

UNIFORM HEYTING ARITHMETIC 2003

ULRICH BERGER

Dedicated to Helmut Schwichtenberg on his 60th Birthday

Abstract. We present an extension of Heyting Arithmetic in finite types called Uniform Heyting
Arithmetic (HA") that allows for the extraction of optimized programs from constructive and classical
proofs. The system HA' has two sorts of first-order quantifiers: ordinary quantifiers governed by
the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly
that the quantified object is not computationally used in the proof. We combine a Kripke-style
Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant
of the refined A-translation due to Buchholz, Schwichtenberg and the author to extract programs
from a rather large class of classical first-order proofs while keeping explicit control over the levels of
recursion and the decision procedures for predicates used in the extracted program.

p1(r) mr A[po(r)/x] if A is non-Harrop
= Jzf A=
T emr Ar/x| if A is Harrop

rmr QA = Q(rmr A) where Q € {{Vz}, {3x}}
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Program extraction is performed via a ‘uniform’ realisability interpretation (Section 4.4).
Uniformity concerns the interpretation of quantifiers: A formula (Vz) A(x) is realised
uniformly by one object a that realises A(x) for all z, so a may not depend on z. Dually, a
formula (3x) A(x) is realised uniformly by one object a that realises A(x) for some x, so a
does not contain a witness for z. Expressions (formulas, predicates, operators) that contain

N/
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Typed lambda-calculus in classical Zermelo-Fraenkel

set theory
2001
Jean-Louis Krivine
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2 Place Jussieu 75251 Paris cedex 05

e-mail krivine@logique.jussieu.fr

In this paper, we develop a system of typed lambda-calculus for the Zermelo-Fraenkel
set theory, in the framework of classical logic. The first, and the simplest system of typed
lambda-calculus is the system of simple types, which uses the intuitionistic propositional
calculus, with the only connective —. It is very important, because the well known Curry-

The definition is given by induction on F':

|F— G| =(F| = |G|) ; Nz F| =, |Fla/z]|. =
Therefore :

t |- (F — G) is the formula (Vu € A)(u |- F — tu |- G) ;
—l t | Vx F is the formula Vz(t |- F).
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ARTICLE INFO ABSTRACT

Article history: We introduce constructive and classical systems for nonstandard arithmetic and show
Received 23 February 2012 how variants of the functional interpretations due to Goédel and Shoenfield can be
Received in revised form 12 July 2012 used to rewrite proofs performed in these systems into standard ones. These functional

Accepted 16 July 2012
Available online 3 August 2012
Communicated by J.M.E. Hyland

interpretations show in particular that our nonstandard systems are conservative extensions
of E-HA® and E-PA?, strengthening earlier results by Moerdijk and Palmgren, and Avigad
and Helzner. We will also indicate how our rewriting algorithm can be used for term
MSC: extraction purposes. To conclude the paper, we will point out some open problems and
03F10 directions for future research, including some initial results on saturation principles.

03F50 © 2012 Elsevier B.V. All rights reserved.
11U10
26E35
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shrix @(x) :=3x (shrd(x)),
s hrvx @(x) :=Vx (shrd(x)),

s,t hr'x @ (x) := 35’ es (thrd(s)),
s hrvstx @ (x) := Vs'x (s[x]hr & (x)).
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Uniformity in Proof Mining

Applied Proof Theory:
Proof Interpretations

and their Use
in Mathematics

This book gives an introduction to so-called proof interpretations, more specifically
various forms of realizability and functional interpretations, and their use in mathe-
matics. Whereas earlier treatments of these techniques (e.g. [362, 264, 121,365, 7])
emphasize foundational and logical issues the focus of this book is on applications
of the methods to extract new effective information such as computable uniform
bounds from given (typically ineffective) proofs. This line of research, which has its
roots in G. Kreisel’s pioneering work on ‘unwinding of proofs’ from the 50°s, has
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Heyting Arithmetic

Definition (Heyting arithmetic).

Assume HA formalised with three predicate symbols

@ Falsity L
@ Natural number N(7)

@ Equalityn = m

VnNA(n) is an abbreviation for Vn(N(n) — A(n))
InNA(n) is an abbreviation for IAn(N(n) A A(n))



Uniform Realizability Interpretation

A Uniform Realizability Interpretation

Realizers live in some (typed) partial combinatory algebra (A, e ).

Individuals live in some model
We use X for tuples of elements of .# and a for tuples of realizers

Definition (Base Interpretation).

Associate to each n-ary predicate symbol P an (n + m)-ary relation

Xx<pa

between individuals and P-realizers (or P-bounds).

Example.

For the unary predicate N(n) we could take n <y - to be:

ndym = n=m (precise) n<dy{) := N (uniform)

= |
g
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A Uniform Realizability Interpretation

Definition (Uniform Realizability Interpretation).

Assume a fixed PCA (A, ¢ ) and base interpretation. Let:

aur PX) = X<pa
a,bur AAB (a ur A) A (b ur B)

furA—>B = Va((aurA) - (feal A fea ur B))
aur 3xA = dx(aurA)
aurVxA = Vx(aurA)

It follows that... ‘

a,b ur IAnNA
f ur VrNA

dn <]Na(b U.I‘A)
VaVn dya (fea | A feaur A)

0.1
o
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Kleene Realizability

Definition (Kleene Base Interpretation).

Let:
O () = 1
nym = n=m
(n,m)d_() = n=m

Take Kleeness first algebra &'| as the PCA.

y

It follows that... ‘

n,a ur InNA(n) < aur A(n)
aurViN"A < Vn({a}l(n) | A {a}(n) ur A)

0.1
o



Kreisel Modified Realizability

Definition (Kreisel Base Interpretation).

Let:
(<) = 1
n<1NmN = =m
(n,m)d_() = n=m

Take Godel’s system T as the typed PCA.

y

It follows that... ‘

nNaur InNA(n) < aur A

furveMA o  VaN(f(n) ur A)

=
o



Herbrand Realizability

Definition (Herbrand Base Interpretation).

Assume an extra unary predicate std(n) (for n is a standard number). Let:
Oap() = 1
ndy () = N(»n)
ndyS = neSs
(n,m)<_{() = n=m

It follows that... ‘

InN(a ur A(n))

VnN(a ur A(n))

dn € S (a ur A(n))
VSVne S (f(S)urA)

a ur AnNA(n)
a ur VnNA(n)
SN, a ur An*9A(n)

f ur Vas9A

¢ ¢ ¢ ¢

0.1
o



Classical (Berger) Modified Realizability

Definition (Classical Base Interpretation).

Fix unary atomic predicate P, (n). Let:

(Y<,n = P,(n
n<]NmN = n=m
(nm)<_{() = n=m

Take Godel’s system T as the typed PCA.

@ Combination of modified realizability and Friedman’s A-translation

® We are then able to realize = —~3In P (n) = InNpP 1(n)

@ Similar to Krivine’s (classical) realizability

=
o
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Aschieri-Berardi Learning Realizability

Definition (Aschieri-Berardi Base Interpretation).

Assume a set of states S. Parametrised by an s € S, let:

(Y 7> =y #s
ndya>”N = n=als)
(n,m)d_y>~S = y(s)=s—->n=m

Take Godel’s system T (with S as an extra base type) as the typed PCA.

v

It follows that... ‘

>N aur InNA(m) o  aur A(as))

furviNA o VaN(f(n) ur A)

0.1
o
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The uniform functional interpretation with
informative types

F. Ferreira and P. Oliva

Definition 2.3 ((/-interpretation of Lg into L). Let be given a base interpretation of
Lg into L. For each formula A of Lg, we define its U-interpretation (A)¢ into L.
The definition is by induction on the logical structure of A.

For atomic formulas R(t1,...,t,), its U-interpretation is defined as the given infor-
mation relation (R(t1,...,t,))5 For L we define
(L) = 1.

Assuming that A and B have U-interpretations (A)g and (B)§, respectively, we define:

(AANB)yg = (A)p AN (B)g

(A— B)l'9 = Vbegad{A)g — (B)3®
(V27 A(z))y = Vz7(A(z))p

(327 A(z))e = 3Jz°Vb e B (A(z))2.
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summary

@ Quantifiers are “naturally” uniform
® Qualified quantifications (e.g. InNA(n)) carry computational
content because of the qualifying predicate N(7)

@ Currently working with Fernando Ferreira on uniform functional
interpretations:

® New interpretations of function spacesp — ©

e Functional interpretation of extensionality

e Systematic treatment of bounded (uniform) quantifiers
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Mathematical Intuitionism
Introduction to Proof Theory

A. G. Dragalin 1988

3. If a function algebraic model A of the language (1 is given, then, for
any formula of () one can define its value in the model. The value ||| of
a formula ¢ will be a certain form of the function pseudo-Boolean algebra,

1. A function pseudo-Boolean algebra is given by a triple (B, D,F ), where
B is a pseudo-Boolean algebra (the algebra of truth values) and D is a two-
place function with nonempty domain of definition and with values in the
algebra B. The nonempty set V = {x | 3¢((=, ¢q) € Dom D)} is called the set

— [[PI] 88 e TormT Jy /\J2, J1 vV J2, Of J1 9 J2:
— 4) If p has the form Vzy(z) or 3zn(z), then we define ||| = Vz||¥(z)|,
or, respectively, |l¢|| = 3z||n(z)||.

M e Pk AR Yzl =




