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logicexisting result 
in mathematics

stronger result!

mathematical 
insight

Unwinding of Proofs / Proof Mining

Proof mining is the process of logically analysing (ineffective) proofs in 
mathematics with the aim of obtaining new information.

Proof Mining (Kohlenbach).

Originated in 1950s with Kreisel’s applications of his  
no-counterexample interpretation 

Resurgence from 1990s with Kohlenbach’s applications of his  
monotone functional interpretation
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2 ∉ ℚ
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∀p, qℕ ( p
q

≠ 2)
∀p, qℕ ∃ε > 0 ( p

q
− 2 ≥ ε)

2 ∉ ℚ
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Suppose  

Suppose  

By , , so  (even) 

Hence,  

So,  (also even) 

By , a contradiction.                             

(1) p, q coprimes

(2) 2 = p/q
(2) 2q2 = p2 p = 2p′￼

2q2 = 4(p′￼)2

q = 2q′￼

(1) □

Proof. (qualitative/soft mathematics)

Suppose   

Then  (see qualitative proof) 

So  
Since (easy to derive)

 
we get 

 

That concludes the proof.                                 

(1) 2q > p > q not both even

2q2 ≠ p2

|2q2 − p2 | ≥ 1

( † ) |a2 − b2 | ≥ δ → |a − b | ≥ δ/(a + b)

| 2q − p | ≥ 1/( 2q + p) ≥ 1/4q
□

Proof. (quantitative/hard mathematics)

2 ∉ ℚ

Theorem.

| 2 − p/q | ≥ 1/4q2

Theorem.

https://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/
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Proof. (qualitative/soft mathematics)

2 ∉ ℚ

Theorem.

[ 2 = p/q]α

2q2 = p2

…
p, q evenp, q coprime

⊥

2 ≠ p/q
(α)

Proof. (quantitative/hard mathematics)

| 2 − p/q | ≥ 1/4q2

Theorem.

( ⋆ )

p, q not both even
. .

| 2 − p/q | ≥ 1/4q2

2q2 ≠ p2

|2q2 − p2 | ≥ 1

( ⋆ ) new mathematical insight

https://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/
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Proof Mining
[1992] Chebyshev Approximation (Kohlenbach) 

[2001] L1 Approximation (Kohlenbach/O.) 

[2000s] Fixed-point Theory  
(Kohlenbach, Lambov, Gerhardy, Briseid, Leuștean,…)  

[2010s] Ergodic Theory  
(Avigad, Gerhardy, Towsner, Kohlenbach, Leuștean, Safarik,…) 

[2010s] Combinatorics (Kreuzer) 

[2010-2020s] Fixed-point Theory  
(Kohlenbach, Ferreira, Leuștean, Sipoş, Nicolae, Dinis, Pinto,…) 

[2020s] Probability Theory (Arthan, O., Pischke, Neri, Powell,…)

https://nicholaspischke.github.io/bib/ref_date.html

https://sites.google.com/view/proofmining
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“Completing” Statements

Uniform continuity

∀ε > 0∃δ > 0∀x, y
( |x − y | < δ → | f(x) − f(y) | < ε)

Modulus of uniform continuity Φ

∀ε > 0∀x, y
( |x − y | < Φ(ε) → | f(x) − f(y) | < ε)

Convergence

∀ε > 0∃n∀i ≥ n ( |xi − c | < ε)

Modulus of convergence Ψ

∀ε > 0∀i ≥ Ψ(ε) ( |xi − c | < ε)

Uniqueness of solution

∀x1, x2

( f(x1) = 0 ∧ f(x2) = 0 → x1 = x2)

Modulus of uniqueness Θ
∀x1, x2 ∀ε > 0
( | f(x1) | , | f(x2) | < Θ(ε) → |x1 − x2 | < ε)

 not rational2

∀p, qℕ ( 2 ≠ p/q)
Modulus of distance Δ

∀p, qℕ ( | 2 − p/q | ≥ Δ(p, q))
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Functional Interpretations

A B C

control, counter-examples, …

values, data, witnesses, …

Turn logical dependence into functional dependence
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Functional Interpretations

Think of  as a game 

 strategies for Eloise 

 strategies for Abelard 

 who wins, for , 

(A+, A−, |A |x
y )

A+

A−

|A |x
y x ∈ A+ y ∈ A−

Games.

Functional interpretations associate formulas  to triples  

 is the set/type of evidence for  

 is the set/type of counter-evidence for  

 determines whether evidence  wins against counter-evidence 

A (A+, A−, |A | ⊆ A+ × A−)

A+ A

A− A

|A |x
y x ∈ A+ y ∈ A−

Definition.

 

 

 

A ≡ ∀p, qℕ ∃ε > 0( |p/q − 2 | ≥ ε)

A+ ≡ ℕ2 → ℚ+

A− ≡ ℕ2

|A |f
p,q ≡ |p/q − 2 | ≥ f(p, q)

Example (  game).2 ∉ ℚ



Functional Interpretations and Applied Proof Theory

Functional Interpretations

 f

g

A+ B+

B−A−

Implication  is interpreted as a pair of maps: 

  (evidence map) 

  (counter-evidence map) 

for  and , we must have 

A → B

f : A+ → B+

g : A+ → B− → A−

x ∈ A+ w ∈ B−

|A |x
g(x)(w) → |B |f(x)

w

Definition (Interpreting implication).

Functional interpretations associate formulas  to triples  

 is the set/type of evidence for  

 is the set/type of counter-evidence for  

 determines whether evidence  wins against counter-evidence 

A (A+, A−, |A | ⊆ A+ × A−)

A+ A

A− A

|A |x
y x ∈ A+ y ∈ A−

Definition.

|B |f(x)
w

|A |x
g(x)(w)

x :

w :
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Composition

 f1

g1

A+ B+

B−A−

 f2

g2

B+ C+

C−B−
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Composition

f2 ∘ f1 : A+ → C+

λxA+ . g2( f1(x)) ∘ g1(x) : A+ → C− → A−

 f1

g1

A+ B+

B−A−

 f2

g2

B+ C+

C−B−
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Logic

witnesses

counter-examples

 f1

g1

A+ B+

B−A−

 f2

g2

B+ C+

C−B−
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Functional Interpretations

∃ ∃

∀

∀∀

∃

∃∀

 f1

g1

A
+

B
+

B
−

A
−

 f2

g2

B
+

C
+

C
−

B
−
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Machine Learning (Neural Nets)

values/prediction

gradients

 f1

g1

A+ B+

B−A−

 f2

g2

B+ C+

C−B−
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Kohlenbach Monotone Interpretations

For each finite type  define , read “  majorizes ”, inductively as τ x ≤*τ a a x
n ≤*ℕ m :≡ n ≤ m

f ≤*ρ→τ g :≡ ∀a∀x ≤*ρ a( f(x) ≤*τ g(a))

Definition (Howard’73).

Given interpretation  for , its monotone realizer is an  such that (A+, A−, |A |x
y ) A a

∃x ≤*A+ a∀y |A |x
y

Definition (Kohlenbach’96).

If  but  then monotone realizer is uniform on  (only depends on bound )A(v) v ≤* t v t

Key Idea.
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Functional Interpretation of Linear Logic

Suppose each atomic  of  is associated with a triple . 

This can be extended to all formulas as 

P LL (P+, P−, |P | ⊆ P+ × P−)

|A ⊗ B |x,v
f,g :≡ |A |x

g(v) and |B |v
f(x) |A⊥ |y

x :≡ not |A |x
y

|A ⊕ B |b,x,v
y,w :≡ |A |x

y if b else |B |v
w |∀zA(z) |f

v,y :≡ |A(v) |f(v)
y

|A ⊸ B |f,g
x,w :≡ |A |x

g(w) implies |B |f(x)
w | !A |x

g :≡ ∀y ∈ g(x) |A |x
y

Definition (de Paiva’1989, Shirahata’2006).

Valéria de Paiva, A Dialectica-like model of linear logic, 1989

Masaru Shirahata, The Dialectica interpretation of first-order classical linear logic, 2006

| !A |x
g :≡ |A |x

g(x) | !A |x
g :≡ ∀y ≤* g(x) |A |x

y

| !A |x
g :≡ ∀y ∈ g(x) |A |x

y | !A |x
g :≡ ∀y ∈ g(x) |A |x

y ∧ A

| !A |x :≡ ∀y |A |x
y | !A |x :≡ ∀y |A |x

y ∧ A

Definition (Other interpretations — see next slide).
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Kleene 
realizability

Gödel Dialectica

Kreisel 
modified realizability

Diller-Nahm  
variant

Stein parametrised 
interpretations

Krivine  
realizability

Kohlenbach monotone 
interpretations

Bounded 
interpretations

Herbrand  
interpretations

40s 50s 60s 70s 80s 90s 00s 10s
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Parametrised interpretation of IL (2006) 

Parametrised interpretation of CLL and ILL (2007-2010) 

Hybrid functional interpretations (2008-2012) 

Interpretations with truth (2010)

P. O., Unifying functional interpretations, NDJFL, 2006

P. O., Modified realizability interpretation of classical linear logic, LICS, 2007

P. O., Computational interpretations of classical linear logic, WoLLiC, 2007

Gilda Ferreira & P. O., Functional interpretations of intuitionistic linear logic, CSL, 2009

P. O., Functional interpretations of intuitionistic linear logic, Information & Computation, 2010

Mircea-Dan Hernest & P. O., Hybrid functional interpretations, CiE, 2008

Jaime Gaspar & P. O., Proof interpretations with truth, MLQ, 2010

P. O., Hybrid functional interpretations of linear and intuitionistic logic, JLC, 2012

Unifying Functional Interpretations
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Two degrees of freedom…

| !A |a
b

|ℕ(n) |a

|A |a
b ∀b ∈ B |A |a

b ∀b |A |a
b

n = a

n ∈ a

n ≤ a

∀b ≤* B |A |a
b

ℕ(n)

Diller-NahmDialectica modified 
realizability

Herbrand f.i. 
(external)

Herbrand real. 
(external)

bounded mrbounded f.i.

Herbrand f.i. 
(internal)

Herbrand mr. 
(internal)

diaa Diller-Na maa reaa

precise

Herbra

bounded

uniform

Bruno Dinis & P. O., A parametrised functional interpretation of Heyting arithmetic, 2021

Fernando Ferreira & P. O., The uniform functional interpretation with informative types, in preparation

1. How to interpret atomic formulas

2.
 H

ow
 to

 in
te

rp
re

t c
on

tr
ac

tio
n

❌

❌

💡

💡

💡 💡

💡
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Functional Interpretations: 

Uniformity
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Assume  has interpretation . 

Let  and  and 

 

Let  and  and 

A(zτ) (A+, A−, |A | ⊆ A+ × A−)

(∃zτA)+ :≡ τ × A+ (∃zτA)− :≡ A−

|∃zτA(z) |v,x
y :≡ |A(v) |x

y

(∀zτA)+ :≡ τ → A+ (∀zτA)− :≡ τ × A−

|∀zτA(z) |f
v,y :≡ |A(v) |f(v)

y

Definition (Computational interpretation of quantifiers).

precise

Let  and  and 

 

Let  and  and 

(∃zτA)+ :≡ A+ (∃zτA)− :≡ (A−)*

|∃zτA(z) |x
S :≡ ∃zτ ∀y ∈ S |A(z) |x

y

(∀zτA)+ :≡ A+ (∀zτA)− :≡ A−

|∀zτA(z) |x
y :≡ ∀zτ |A(z) |x

y

Definition (Uniform interpretation of quantifiers).

uniform

Fernando Ferreira & P. O., The uniform functional interpretation with informative types, in preparation
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Uniform Functional Interpretation

1. Treat all quantifiers uniformly 

2. Add new atomic formulas  

3. Control interpretation of quantifications over  via the interpretation of   

    (precise)           or               (uniform)  

4. Function types  can be given new interpretations, including canonical one: 

 

5. Restricted (bounded) quantifiers  can be treated uniformly if 

 

is uniformly interpretable 

Iτ(xτ)

xτ Iτ(xτ)

| Iτ(xτ) |a :≡ x = a | Iτ(xτ) | :≡ true

ρ → τ

| Iρ→τ(ϕ) |f,g
x,w :≡ ∀zρ(∀y ∈ g(x, w) | Iρ(z) |x

y → | Iτ(ϕ(z)) |f(x)
w )

∀xτ(R(x) → A(x))

∀xτ(R(x) → Iτ(x))

Idea (F. Ferreira & P. O., work in progress).

Fernando Ferreira & P. O., The uniform functional interpretation with informative types, in preparation
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Uniform Functional Interpretation

With precise interpretation of  and canonical interpretation at function types 

 

the extensionality axiom for type 2 functionals becomes interpretable: 

Iℕ(n)

| Iρ→τ(ϕ) |f,g
x,w ≡ ∀zρ(∀y ∈ g(x, w) | Iρ(z) |x

y → | Iτ(ϕ(z)) |f(x)
w )

∀F2, α, β1(α =1 β → F(α) =0 F(β))

Proposition (F. Ferreira & P. O., work in progress).

Fernando Ferreira & P. O., The uniform functional interpretation with informative types, in preparation

With the bounding interpretation of  and canonical interpretation at function 

types, quantifications  and  can be treated uniformly 

Iℕ(n)
∀α ≤1 t A(α) ∃α ≤1 t A(α)

|∀α ≤1 t A(α) |x
y ≡ ∀α ≤1 t |A(α) |x

y |∃α ≤1 t A(α) |x
S ≡ ∃α ≤1 t ∀y ∈ S |A(α) |x

y

Proposition (F. Ferreira & P. O., work in progress).
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Kolmogorov

Gödel/Gentzen

Krivine 

Kuroda

20s 30s 40s 50s … 90s 00s

Negative (Double Negation) Translations
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⊢ 	¬¬(A∨¬A)

[A]α
A∨¬A

										[¬(A∨¬A)]γ
⊥
¬A

A∨¬A																							 [¬(A∨¬A)]γ
⊥

¬¬(A∨¬A)

α

→ I,	γ

⊢ 	A∨¬A

[A]α
A∨¬A

										[¬(A∨¬A)]γ
⊥
¬A

A∨¬A																							 [¬(A∨¬A)]γ
⊥

A∨¬A

α

PBC,	γ

Excluded Middle “Tamed”
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Kolmogorov

Gödel/Gentzen

Krivine 

Kuroda

20s 30s 40s 50s … 90s 00s

Negative (Double Negation) Translations
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If  proves  then  proves  CL Γ ⊢ A IL ΓG ⊢ AG

(A ∧ B)G ≡ AG ∧ BG (P( ⃗x))G ≡ ¬¬P( ⃗x)
(A ∨ B)G ≡ ¬¬(AG ∨ BG) (∀xA)G ≡ ∀xAG

(A → B)G ≡ AG → BG (∃xA)G ≡ ¬¬∃xAG

Theorem (Gödel/Gentzen 1933).

If  proves  then  proves  CL Γ ⊢ A IL ΓK ⊢ ¬¬AK

(A ∧ B)K ≡ AK ∧ BK (P( ⃗x))K ≡ P( ⃗x)
(A ∨ B)K ≡ AK ∨ BK (∀xA)K ≡ ∀x ¬¬AK

(A → B)K ≡ AK → BK (∃xA)K ≡ ∃xAK

Theorem (Kuroda 1951).

Gilda Ferreira & P. O., On the relation between various negative translations, 2012

Gödel/Gentzen and Kuroda can be seen as systematic simplifications of the 
Kolmogorov translation (“from outside” and “from inside”, respectively).

Theorem (Ferreira/O’2012).
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⊢ 	A∨¬A
Excluded Middle: Backtracking

Backtracking (learning) interpretation: 

Claim  

If claim gets used, with some , to get contradiction ( ) 

Backtrack, claim    (using given  )

A → ⊥

A ⊥

A A

Thierry Coquand, Computational Content of Classical, 2009

Stefano Berardi, Thierry Coquand & Susumu Hayashi, Games with 1-backtracking, 2010
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Functional interpretation of ¬¬A

If  has interpretation  then 

 

and 

A (A+, A−, |A |x
y )

(¬A)+ ≡ A+ → A− (¬A)− ≡ A+ |¬A |f
x ≡ ¬ |A |x

f(x)

(¬¬A)+ ≡ (A+ → A−) → A+ (¬¬A)− ≡ A+ → A− |¬¬A |ε
f ≡ ¬¬ |A |ε( f )

f(ε( f ))

Observation.

We call a functional  a selection function. 

For any (fixed)  the type mapping  is a (strong) monad. 

The interpretation of  is given by the product of selection 
functions  

Existence of certain selection function for  means  a “compact” types (Escardó)

ε : (X → R) → X

R JR(X) = (X → R) → X

¬¬A ∧ ¬¬B → ¬¬(A ∧ B)
⊗ : JR(X) × JR(Y ) → JR(X × Y )

X X

Definition (Martín Escardó & P. O.).

Martín Escardó & P. O., Computational interpretations of analysis via products of selection functions, 2010
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¬¬(∃nP(n) ∨ ∀n¬P(n))

 has (precise) interpretation: 

 
and 

 

Indeed, we can take 

A = ¬¬(∃nP(n) ∨ ∀m¬P(m))
A+ ≡ (𝔹 × ℕ → ℕ) → 𝔹 × ℕ A− ≡ 𝔹 × ℕ → ℕ

|A |ε
f ≡ {P(ε1( f ))) ε0( f )

¬P(ε1( f ))) ¬ε0( f )

ε( f 𝔹×ℕ→ℕ) = {(true, f(false,0)) P( f(false, 0))
(false, 0) ¬P( f(false, 0))

Example.

𝔹 × ℕ

Claim , i.e.  (witness  no relevant) 

If  is such that  we backtrack to  — i.e.  

∀m¬P(m) false 0
m = f(false,0) P(m) ∃nP(n) (true, m)

Intuition.
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Assume  

The finite “double negation shift” 

A− ≡ B− ≡ R

Induction

¬¬A ∧ ¬¬B → ¬¬(A ∧ B)
is interpreted by the binary product of selection functions:

⊗ : JR(A+) × JR(B+) → JR(A+ × B+)
To interpret induction it is sufficient to interpret:

∀i < n¬¬A(i) → ¬¬∀i < n A(i)

which can be done via the finite product of selection functions:

⨂
n

: Πi<n JR(A+) → JR(Πi<nA+)

Martín Escardó, P. O. & Thomas Powell, System T and the products of selection functions, 2011
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Countable choice

To interpret  it is sufficient to interpret AC0 DNS

∀nℕ ¬¬A(n) → ¬¬∀n A(n)

Countable choice  is the axiom schemaAC0

∀nℕ ∃xτAn(x) → ∃αℕ→τ ∀nAn(α(n))

using the unbounded product of selection functions

⨂ : Πn : ℕ JR(A+
n ) → JR(Πn : ℕ A+

n )

(shown to be equivalent to bar recursion)

Martín Escardó & P. O., Bar recursion and the product of selection functions, 2015
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Summary

Proofs often carry more information than what is stated in theorem 

Functional interpretations view formulas as triples 

                         

These can be seen as games between two players 

Implication is interpreted as two-way maps between games 

Two degrees of freedom: atomic formulas & contraction 

Negative translations are simplifications of Kolmogorov translation 

Realizers for double negated formulas are selection functions 

The product of selection functions (classically) interprets countable 
choice and comprehension  (equivalent to bar recursion)

A ↦ (A+, A−, |A | ⊆ A+ × A−)
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Thank You!


