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@ Realizability Interpretations
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Realizability Interpretations

@ Interpret aformula A as a set of (computable) functions A’
@ Interpret proofs of A as elements of A’
® Keyidea: “Skolemize” A as IXA,(X)
A" = {1 | A1)}
@ Eg.ifA = Vndp > nPrime(p) then
A" ={t | Vn(t(n) > n A Prime(¢(n)))}

@ So, from a proof that there are infinitely many primes we can
extract a program that computes arbitrarily large primes
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Realizability Interpretations

® Keyidea: “Skolemize” A as XA «(X)
A" = {1 | A D)}

Definition (Realizability Interpretation).

Define a r A by induction on the formula A:
()rPx) = PX)
a,brAANB = (@@rAAbDrB)
frA—-B = Va(larA) - (feal A fearB))
k,arInNA = arAlk/n]
frveNA = VeN(fm)rA)

@ SooA'={a |arAl,ie. Aef(f) can be defined inductively
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Realizability Interpretations

@ Skolemization relies on AC
VxPdyTA(x,y) = A7 VxPA(x, (X))
@ In general we do not have
VxPdy*A(x,y) - dy"VxPA(x,y)
@ But, sometimes we do!

e Pointwise continuity implies uniform continuity

VfdnVg... —» dnVf, g...

® Bounded collection (when A(n, m) monotone in m)
Vn <kdmAn,m)— AmVn < kA(n,m)
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@ Uniform Interpretations of Quantifiers
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Uniform Interpretations of Quantifiers

Typed lambda-calculus in classical Zermelo-Fraenkel

set theory
2001
Jean-Louis Krivine
U.F.R. de Mathématiques, Université Paris VII
2 Place Jussieu 75251 Paris cedex 05

e-mail krivine@logique.jussieu.fr

In this paper, we develop a system of typed lambda-calculus for the Zermelo-Fraenkel
set theory, in the framework of classical logic. The first, and the simplest system of typed
lambda-calculus is the system of simple types, which uses the intuitionistic propositional
calculus, with the only connective —. It is very important, because the well known Curry-

The definition is given by induction on F':

|F— G| =(F| = |G|) ; Nz F| =, |Fla/z]|. =
Therefore :

t |- (F — G) is the formula (Vu € A)(u |- F — tu |- G) ;
—l t | Vx F is the formula Vz(t |- F).
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Uniform Interpretations of Quantifiers

UNIFORM HEYTING ARITHMETIC 2003

ULRICH BERGER

Dedicated to Helmut Schwichtenberg on his 60th Birthday

Abstract. We present an extension of Heyting Arithmetic in finite types called Uniform Heyting
Arithmetic (HA") that allows for the extraction of optimized programs from constructive and classical
proofs. The system HA' has two sorts of first-order quantifiers: ordinary quantifiers governed by
the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly
that the quantified object is not computationally used in the proof. We combine a Kripke-style
Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant
of the refined A-translation due to Buchholz, Schwichtenberg and the author to extract programs
from a rather large class of classical first-order proofs while keeping explicit control over the levels of
recursion and the decision procedures for predicates used in the extracted program.

p1(r) mr A[po(r)/x] if A is non-Harrop
= Jzf A=
T emr Ar/x| if A is Harrop

rmr QA = Q(rmr A) where Q € {{Vz}, {3x}}
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Uniform Interpretations of Quantifiers

Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 1:1—1:62 2003 Submitted  Jun. 01, 2021
https://Imcs.episciences.org/ Published  Jul. 06, 2023

COMPUTING WITH INFINITE OBJECTS: THE GRAY CODE CASE

DIETER SPREEN ©“ AND ULRICH BERGER ©°

“ Department of Mathematics, University of Siegen, 57068 Siegen, Germany
e-mail address: spreen@math.uni-siegen.de

® Department of Computer Science, Swansea University, The Computational Foundry, Swansea
University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
e-mail address: u.berger@swansea.ac.uk

\ /7 N/ X

Program extraction is performed via a ‘uniform’ realisability interpretation (Section 4.4).
Uniformity concerns the interpretation of quantifiers: A formula (Vz) A(x) is realised
uniformly by one object a that realises A(x) for all z, so a may not depend on z. Dually, a
formula (3x) A(x) is realised uniformly by one object a that realises A(x) for some x, so a
does not contain a witness for z. Expressions (formulas, predicates, operators) that contain

N/
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Uniform Interpretations of Quantifiers

A functional interpretation for nonstandard arithmetic 2012

Benno van den Berg®*!, Eyvind Briseid 2, Pavol Safarik -3

a Mathematisch Instituut, Universiteit Utrecht, PO Box 80010, 3508 TA, Utrecht, Netherlands
b Department of Mathematics, The University of Oslo, Postboks 1053, Blindern, 0316 Oslo, Norway
¢ Fachbereich Mathematik, Technische Universitdt Darmstadt, SchlofsgartenstrafSe 7, 64289 Darmstadt, Germany

ARTICLE INFO ABSTRACT

Article history: We introduce constructive and classical systems for nonstandard arithmetic and show
Received 23 February 2012 how variants of the functional interpretations due to Goédel and Shoenfield can be
Received in revised form 12 July 2012 used to rewrite proofs performed in these systems into standard ones. These functional

Accepted 16 July 2012
Available online 3 August 2012
Communicated by J.M.E. Hyland

interpretations show in particular that our nonstandard systems are conservative extensions
of E-HA® and E-PA?, strengthening earlier results by Moerdijk and Palmgren, and Avigad
and Helzner. We will also indicate how our rewriting algorithm can be used for term
MSC: extraction purposes. To conclude the paper, we will point out some open problems and
03F10 directions for future research, including some initial results on saturation principles.

03F50 © 2012 Elsevier B.V. All rights reserved.
11U10
26E35

Keywords:

Proof theory

Functional interpretations
Nonstandard arithmetic

Shrdxd(x) :=3dx (ghrcb(x)),
s hrVx & (x) :=Vx (§ hrfP(X)),

s,t hr'x @ (x) := 35’ es (thrd(s)),
s hrvstx @ (x) := Vs'x (s[x]hr & (x)).

(internal)

(external)
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Uniformity in Proof Mining

Applied Proof Theory:
Proof Interpretations

and their Use
in Mathematics

This book gives an introduction to so-called proof interpretations, more specifically
various forms of realizability and functional interpretations, and their use in mathe-
matics. Whereas earlier treatments of these techniques (e.g. [362, 264, 121,365, 7])
emphasize foundational and logical issues the focus of this book is on applications
of the methods to extract new effective information such as computable uniform
bounds from given (typically ineffective) proofs. This line of research, which has its
roots in G. Kreisel’s pioneering work on ‘unwinding of proofs’ from the 50°s, has
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Plan

@ A Uniform Realizability Interpretation
(parametrised by a base interpretation)
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Heyting Arithmetic

Definition (Heyting arithmetic).

Assume HA formalised with three predicate symbols

@ Falsity L
@ Natural number N(7)

@ Equalityn = m

VnNA(n) is an abbreviation for Vn(N(n) — A(n))
InNA(n) is an abbreviation for IAn(N(n) A A(n))
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A Uniform Realizability Interpretation

Definition (Base Interpretation).

Associate to each n-ary predicate symbol P an (n + m)-ary relation

X<pa

between individuals and P-realizers (or P-bounds).

Examples.

For the unary predicate N(n) we could take n <y, - to be:
ndym = n=m (precise)

n<m (bounded)

nqu .
ndyd = n€S (Herbrand)

ndy() = true (uniform)
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A Uniform Realizability Interpretation

Definition (Uniform Realizability Interpretation).

Given a base interpretation. Let:
aur PX) = Xx<pa
a,burAAB (a ur A) A (b ur B)

furA—->B = Va((@urA)— (feal| A fea ur B))
aur 3xA = dx(aurA)
aurVxA = Vx(aurA)

It follows that... ‘

a,b ur IAnNA

f ur VrNA

dn <]Na(b U.I‘A)
VaVn dya (fea | A feaur A)

0.1
o
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@ Some Base Interpretations



Uniform Realizability Interpretations CCC’25

Kleene Realizability

Definition (Kleene Base Interpretation).

Let:
()< () = 4
nym = n=m
(n,m)<d_() = n=m

It follows that... ‘

n,a ur AnVA(n) < aur A(n)
aurViNA o Vn({al(n) | A {a}(n) ur A)

0.1
o
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Kreisel Modified Realizability

Definition (Kreisel Base Interpretation).

Let:
O () = 1
n<1NmN = n=m
(n,m)<d_() = n=m

v

It follows that...

nN,aur InNA(n) < aur A

furvViNA o VaN(f(n) ur A)

0.1
2



Herbrand Realizability

Definition (Herbrand Base Interpretation).

Assume an extra unary predicate std(n) (for n is a standard number). Let:
Oap() = 1
ndy() = true
ndyS = neSs
(n,m)<_{() = n=m

It follows that... ‘

InN(a ur A(n))

VnN(a ur A(n))

dn € S (a ur A(n))
VSVne S (f(S)urA)

a ur AnNA(n)
a ur VnNA(n)
SN, a ur An*9A(n)

f ur Vas9A

¢ ¢ ¢ ¢

0.1
o



Classical Modified Realizability

Definition (Classical Base Interpretation).

Fix unary atomic predicate P, (n). Let:

(Y<,n = P,(n)
n<leN = n=m
(nm)<_() = n=m

@ Combination of modified realizability and Friedman’s A-translation
® We are then able to realize == 3In"P (n) — InNpP 1(n)

@ Similar to Krivine’s (classical) realizability

=
o



Uniform Realizability Interpretations CCC’25

Aschieri-Berardi Learning Realizability

Definition (Aschieri-Berardi Base Interpretation).

Assume a set of states S. Parametrised by an s € S, let:

(Y, 775 = y(9)#s

S—N N = a(s)

n<ya

(n,m) <_ yS575

y(s)=s > n=m

y

It follows that... ‘

>N aur InNA(m) o  aur A(a(s))

furvVeMA <  VvaN(f(n) ur A)

0.1
o
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The uniform functional interpretation with
informative types

F. Ferreira and P. Oliva

Definition 2.3 ((/-interpretation of Lg into L). Let be given a base interpretation of
Lg into L. For each formula A of Lg, we define its U-interpretation (A)¢ into L.
The definition is by induction on the logical structure of A.

For atomic formulas R(t1,...,t,), its U-interpretation is defined as the given infor-
mation relation (R(t1,...,t,))5 For L we define
(L) = 1.

Assuming that A and B have U-interpretations (A)g and (B)§, respectively, we define:

(AANB)yg = (A)p AN (B)g

(A— B)l'9 = Vbegad{A)g — (B)3®
(V27 A(z))y = Vz7(A(z))p

(327 A(z))e = 3Jz°Vb e B (A(z))2.
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summary

@ Quantifiers are “naturally” uniform (non-computational)
® Qualified quantifications (e.g. InNA(n)) carry computational
content because of the qualifying predicate N(7)

@ Currently working with Fernando Ferreira on uniform functional
interpretations:

® New interpretations of function spacesp — ©

e Functional interpretation of extensionality

e Systematic treatment of bounded (uniform) quantifiers



