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Realizability Interpretations

@ Interpret aformula A as a set of (computable) functions A’
@ Interpret proofs of A as elements of A’
® Keyidea: “Skolemize” A as IXA,(X)
A" = {1 | A1)}
@ Eg.ifA = Vndp > nPrime(p) then
A" ={t | Vn(t(n) > n A Prime(¢(n)))}

@ So, from a proof that there are infinitely many primes we can
extract a program that computes arbitrarily large primes
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Realizability Interpretations

® Keyidea: “Skolemize” A as XA «(X)
A" = {1 | A D)}

Definition (Realizability Interpretation).

Define a r A by induction on the formula A:
()rPx) = PX)
a,brAANB = (@@rAAbDrB)
frA—-B = Va(larA) - (feal A fearB))
k,arInNA = arAlk/n]
frveNA = VeN(fm)rA)

@ SooA'={a |arAl,ie. Aef(f) can be defined inductively
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Realizability Interpretations

@ Skolemization relies on AC
VxPdyTA(x,y) = A7 VxPA(x, (X))
@ In general we do not have
VxPdy*A(x,y) - dy"VxPA(x,y)
@ But, sometimes we do!

e Pointwise continuity implies uniform continuity

VfdnVg... —» dnVf, g...

® Bounded collection (when A(n, m) monotone in m)
Vn <kdmAn,m)— AmVn < kA(n,m)



The Effective Topos

J.M.E. Hyland
Department of Pure Mathematics, Cambridge, England

Corollary 15.2. The “Uniformity Principle”
VolVX € P(N).3n € N.¢(X,n) — dn € NVX € P(N).¢(X,n)]

holds in Eff.
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Uniform Interpretations of Quantifiers

Typed lambda-calculus in classical Zermelo-Fraenkel

set theory
2001
Jean-Louis Krivine
U.F.R. de Mathématiques, Université Paris VII
2 Place Jussieu 75251 Paris cedex 05

e-mail krivine@logique.jussieu.fr

In this paper, we develop a system of typed lambda-calculus for the Zermelo-Fraenkel
set theory, in the framework of classical logic. The first, and the simplest system of typed
lambda-calculus is the system of simple types, which uses the intuitionistic propositional
calculus, with the only connective —. It is very important, because the well known Curry-

The definition is given by induction on F':

|F— G| =(F| = |G|) ; Nz F| =, |Fla/z]|. =
Therefore :

t |- (F — G) is the formula (Vu € A)(u |- F — tu |- G) ;
—l t | Vx F is the formula Vz(t |- F).
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Uniform Interpretations of Quantifiers

UNIFORM HEYTING ARITHMETIC 2003

ULRICH BERGER

Dedicated to Helmut Schwichtenberg on his 60th Birthday

Abstract. We present an extension of Heyting Arithmetic in finite types called Uniform Heyting
Arithmetic (HA") that allows for the extraction of optimized programs from constructive and classical
proofs. The system HA' has two sorts of first-order quantifiers: ordinary quantifiers governed by
the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly
that the quantified object is not computationally used in the proof. We combine a Kripke-style
Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant
of the refined A-translation due to Buchholz, Schwichtenberg and the author to extract programs
from a rather large class of classical first-order proofs while keeping explicit control over the levels of
recursion and the decision procedures for predicates used in the extracted program.

p1(r) mr A[po(r)/x] if A is non-Harrop
= Jzf A=
T emr Ar/x| if A is Harrop

rmr QA = Q(rmr A) where Q € {{Vz}, {3x}}
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Uniform Interpretations of Quantifiers

A functional interpretation for nonstandard arithmetic 2012

Benno van den Berg®*!, Eyvind Briseid 2, Pavol Safarik -3

a Mathematisch Instituut, Universiteit Utrecht, PO Box 80010, 3508 TA, Utrecht, Netherlands
b Department of Mathematics, The University of Oslo, Postboks 1053, Blindern, 0316 Oslo, Norway
¢ Fachbereich Mathematik, Technische Universitdt Darmstadt, SchlofsgartenstrafSe 7, 64289 Darmstadt, Germany

ARTICLE INFO ABSTRACT

Article history: We introduce constructive and classical systems for nonstandard arithmetic and show
Received 23 February 2012 how variants of the functional interpretations due to Goédel and Shoenfield can be
Received in revised form 12 July 2012 used to rewrite proofs performed in these systems into standard ones. These functional
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interpretations show in particular that our nonstandard systems are conservative extensions
of E-HA® and E-PA?, strengthening earlier results by Moerdijk and Palmgren, and Avigad
and Helzner. We will also indicate how our rewriting algorithm can be used for term
MSC: extraction purposes. To conclude the paper, we will point out some open problems and
03F10 directions for future research, including some initial results on saturation principles.
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Shrdxd(x) :=3dx (ghrcb(x)),
s hrVx & (x) :=Vx (§ hrfP(X)),

s,t hr'x @ (x) := 35’ es (thrd(s)),
s hrvstx @ (x) := Vs'x (s[x]hr & (x)).

(internal)

(external)
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Heyting Arithmetic

Definition (Heyting arithmetic).

Assume HA formalised with three predicate symbols

@ Falsity L
@ Natural number N(7)

@ Equalityn = m

VnNA(n) is an abbreviation for Vn(N(n) — A(n))
InNA(n) is an abbreviation for IAn(N(n) A A(n))
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A Uniform Realizability Interpretation

Definition (Base Interpretation).

Associate to each n-ary predicate symbol P an (n + m)-ary relation

X<pa

between individuals and P-realizers (or P-bounds).

Examples.

For the unary predicate N(n) we could take n <y, - to be:
ndym = n=m (precise)

n<m (bounded)

nqu .
ndyd = n€S (Herbrand)

ndy() = true (uniform)
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A Uniform Realizability Interpretation

Definition (Uniform Realizability Interpretation).

Given a base interpretation. Let:
aur PX) = Xx<pa
a,burAAB (a ur A) A (b ur B)

furA—->B = Va((@urA)— (feal| A fea ur B))
aur 3xA = dx(aurA)
aurVxA = Vx(aurA)

It follows that... ‘

a,b ur IAnNA

f ur VrNA

dn <]Na(b U.I‘A)
VaVn dya (fea | A feaur A)

0.1
o
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@ Some Base Interpretations
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Kleene Realizability

Definition (Kleene Base Interpretation).

Let:
()< () = 4
nym = n=m
(n,m)<d_() = n=m

It follows that... ‘

n,a ur AnVA(n) < aur A(n)
aurViNA o Vn({al(n) | A {a}(n) ur A)

0.1
o
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Kreisel Modified Realizability

Definition (Kreisel Base Interpretation).

Let:
O () = 1
n<1NmN = n=m
(n,m)<d_() = n=m

v

It follows that...

nN,aur InNA(n) < aur A

furvViNA o VaN(f(n) ur A)

0.1
2



Herbrand Realizability

Definition (Herbrand Base Interpretation).

Assume an extra unary predicate std(n) (for n is a standard number). Let:
Oap() = 1
ndy() = true
ndyS = neSs
(n,m)<_{() = n=m

It follows that... ‘

InN(a ur A(n))

VnN(a ur A(n))

dn € S (a ur A(n))
VSVne S (f(S)urA)

a ur AnNA(n)
a ur VnNA(n)
SN, a ur An*9A(n)

f ur Vas9A

¢ ¢ ¢ ¢

0.1
o



Classical Modified Realizability

Definition (Classical Base Interpretation).

Fix unary atomic predicate P, (n). Let:

(Y<,n = P,(n)
n<leN = n=m
(nm)<_() = n=m

@ Combination of modified realizability and Friedman’s A-translation
® We are then able to realize == 3In"P (n) — InNpP 1(n)

@ Similar to Krivine’s (classical) realizability

=
o
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Aschieri-Berardi Learning Realizability

Definition (Aschieri-Berardi Base Interpretation).

Assume a set of states S. Parametrised by an s € S, let:

(Y, 775 = y(9)#s

S—N N = a(s)

n<ya

(n,m) <_ yS575

y(s)=s > n=m

y

It follows that... ‘

>N aur InNA(m) o  aur A(a(s))

furvVeMA <  VvaN(f(n) ur A)

0.1
o
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summary

@ Quantifiers are “naturally” uniform (non-computational)
® Qualified quantifications (e.g. InNA(n)) carry computational
content because of the qualifying predicate N(7)

@ Currently working with Fernando Ferreira on uniform functional
interpretations:

® New interpretations of function spacesp — ©

e Functional interpretation of extensionality

e Systematic treatment of bounded (uniform) quantifiers



