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Interpret a formula  as a set of (computable) functions  

Interpret proofs of  as elements of  

Key idea: “Skolemize”  as  

                                      

E.g. if  then 

                 

So, from a proof that there are infinitely many primes we can 
extract a program that computes arbitrarily large primes

A Ar

A Ar

A ∃ ⃗xAef( ⃗x)

Ar :≡ { ⃗t ∣ Aef( ⃗t )}

A ≡ ∀n∃p ≥ n Prime(p)
Ar :≡ {t ∣ ∀n(t(n) ≥ n ∧ Prime(t(n)))}

Realizability Interpretations
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Realizability Interpretations

Key idea: “Skolemize”  as  

                                     

A ∃ ⃗xAef( ⃗x)

Ar :≡ { ⃗t ∣ Aef( ⃗t )}

Define  by induction on the formula :  a r A A

⟨ ⟩ r P( ⃗x) :≡ P( ⃗x)
a, b r A ∧ B :≡ (a r A) ∧ (b r B)

f r A → B :≡ ∀a((a r A) → ( f ∙ a ↓ ∧ f ∙ a r B))
k, a r ∃nℕA :≡ a r A[k /n]

f r ∀nℕA :≡ ∀nℕ( f(n) r A)

Definition (Realizability Interpretation).

So, , i.e.  can be defined inductivelyAr ≡ {a ∣ a r A} Aef( ⃗t )
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Skolemization relies on  

                         

In general we do not have 

                                

But, sometimes we do! 

Pointwise continuity implies uniform continuity 

 

Bounded collection (when  monotone in ) 

AC
∀xρ ∃yτA(x, y) → ∃fρ→τ ∀xρA(x, f(x))

∀xρ ∃yτA(x, y) → ∃yτ ∀xρA(x, y)

∀f ∃n∀g… → ∃n∀f, g…

A(n, m) m
∀n ≤ k∃m A(n, m) → ∃m∀n ≤ k A(n, m)

Realizability Interpretations
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Uniform Interpretations of Quantifiers

2001
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Uniform Interpretations of Quantifiers

2003
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Uniform Interpretations of Quantifiers

2012

(internal)

(external)
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Heyting Arithmetic

Assume  formalised with three predicate symbols 

Falsity  — nullary 

Natural number  — unary 

Equality  — binary

HA
⊥

ℕ(n)
n = m

Definition (Heyting arithmetic).

 is an abbreviation for  

 is an abbreviation for 

∀nℕA(n) ∀n(ℕ(n) → A(n))

∃nℕA(n) ∃n(ℕ(n) ∧ A(n))

Notation.
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A Uniform Realizability Interpretation

Associate to each -ary predicate symbol  an -ary relation 

 

between individuals and -realizers (or -bounds).

n P (n + m)
⃗x ◃P a

P P

Definition (Base Interpretation).

For the unary predicate  we could take  to be: 

          (precise)               

       (bounded)  

        (Herbrand)  

             (uniform) 

ℕ(n) n ◃ℕ ⋅

n ◃ℕ m :≡ n = m
n ◃ℕ m :≡ n ≤ m
n ◃ℕ S :≡ n ∈ S

n ◃ℕ ⟨ ⟩ :≡ true

Examples.
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A Uniform Realizability Interpretation

Given a base interpretation. Let: 

a ur P( ⃗x) :≡ ⃗x ◃P a
a, b ur A ∧ B :≡ (a ur A) ∧ (b ur B)

f ur A → B :≡ ∀a((a ur A) → ( f ∙ a ↓ ∧ f ∙ a ur B))
a ur ∃xA :≡ ∃x(a ur A)
a ur ∀xA :≡ ∀x(a ur A)

Definition (Uniform Realizability Interpretation).

a, b ur ∃nℕA :≡ ∃n ◃ℕ a (b ur A)
f ur ∀nℕA :≡ ∀a∀n ◃ℕ a ( f ∙ a ↓ ∧ f ∙ a ur A)

It follows that…



Uniform Realizability Interpretations                                                                                                                                                                                                      BLC’25

Plan

Realizability Interpretations 
(background) 

Uniform Interpretations of Quantifiers 
(a bit of history…) 

A Uniform Realizability Interpretation 
(parametrised by a base interpretation) 

Some Base Interpretations 
(examples of base interpretations)



Uniform Realizability Interpretations                                                                                                                                                                                                      BLC’25

Kleene Realizability

Let: 

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ m :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Kleene Base Interpretation).

n, a ur ∃nℕA(n) ⇔ a ur A(n)
a ur ∀nℕA ⇔ ∀n({a}(n) ↓ ∧ {a}(n) ur A)

It follows that…
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Kreisel Modified Realizability

Let: 

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ mℕ :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Kreisel Base Interpretation).

nℕ, a ur ∃nℕA(n) ⇔ a ur A(n)
f ur ∀nℕA ⇔ ∀nℕ( f(n) ur A)

It follows that…
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Herbrand Realizability

Assume an extra unary predicate  (for  is a standard number). Let: std(n) n

⟨ ⟩ ◃⊥ ⟨ ⟩ :≡ ⊥
n ◃ℕ ⟨ ⟩ :≡ true
n ◃std S :≡ n ∈ S

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Herbrand Base Interpretation).

a ur ∃nℕA(n) ⇔ ∃nℕ(a ur A(n))
a ur ∀nℕA(n) ⇔ ∀nℕ(a ur A(n))

Sℕ*, a ur ∃nstdA(n) ⇔ ∃n ∈ S (a ur A(n))
f ur ∀nstdA ⇔ ∀S ∀n ∈ S ( f(S) ur A)

It follows that…
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Classical Modified Realizability

Fix unary atomic predicate . Let: P⊥(n)

⟨ ⟩ ◃⊥ n :≡ P⊥(n)
n ◃ℕ mℕ :≡ n = m

(n, m) ◃= ⟨ ⟩ :≡ n = m

Definition (Classical Base Interpretation).

Combination of modified realizability and Friedman’s A-translation 

We are then able to realize  

Similar to Krivine’s (classical) realizability

¬¬∃nℕP⊥(n) → ∃nℕP⊥(n)

Remarks.
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Aschieri-Berardi Learning Realizability

Assume a set of states . Parametrised by an , let: S s ∈ S

⟨ ⟩ ◃⊥ γS→S :≡ γ(s) ≠ s
n ◃ℕ αS→ℕ :≡ n = α(s)

(n, m) ◃= γS→S :≡ γ(s) = s → n = m

Definition (Aschieri-Berardi Base Interpretation).

αS→ℕ, a ur ∃nℕA(n) ⇔ a ur A(α(s))
f ur ∀nℕA ⇔ ∀nℕ( f(n) ur A)

It follows that…
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Quantifiers are “naturally” uniform (non-computational) 

Qualified quantifications (e.g. ) carry computational 

content because of the qualifying predicate  

Currently working with Fernando Ferreira on uniform functional 
interpretations: 

New interpretations of function spaces  

Functional interpretation of extensionality 

Systematic treatment of bounded (uniform) quantifiers

∃nℕA(n)
ℕ(n)

ρ → τ

Summary


