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Abstract

The field of AI-assisted music creation has made significant strides, yet ex-

isting systems often struggle to meet the demands of iterative and nuanced

music production. These challenges include providing sufficient control over the

generated content and allowing for flexible, precise edits. This thesis tackles

these issues by introducing a series of advancements that progressively build

upon each other, enhancing the controllability and editability of text-to-music

generation models.

First, I introduce Loop Copilot, a system that tries to address the need for

iterative refinement in music creation. Loop Copilot leverages a large language

model (LLM) to coordinate multiple specialised AI models, enabling users to

generate and refine music interactively through a conversational interface. Cen-

tral to this system is the Global Attribute Table, which records and maintains

key musical attributes throughout the iterative process, ensuring that modifi-

cations at any stage preserve the overall coherence of the music. While Loop

Copilot excels in orchestrating the music creation process, it does not directly

address the need for detailed edits to the generated content.

To overcome this limitation, MusicMagus is presented as a further solu-

tion for editing AI-generated music. MusicMagus introduces a zero-shot text-

to-music editing approach that allows for the modification of specific musical

attributes, such as genre, mood, and instrumentation, without the need for re-

training. By manipulating the latent space within pre-trained diffusion models,

MusicMagus ensures that these edits are stylistically coherent and that non-

targeted attributes remain unchanged. This system is particularly effective in

maintaining the structural integrity of the music during edits, but it encounters

challenges with more complex and real-world audio scenarios.

Building on the advancements of the previous systems, Instruct-MusicGen

tries to address the remaining limitations by incorporating instruction tuning

into the MusicGen model. This approach enables precise and efficient editing

of music through text-based instructions, such as adding, removing, or modify-

ing specific musical stems. Instruct-MusicGen integrates a text fusion module

and an audio fusion module, allowing the model to process instructions and

audio inputs concurrently and produce high-quality edited music. This system

not only achieves greater precision in edits but also broadens the applicability of

music language models to more complex and dynamic production environments,

offering a scalable and efficient solution.



Collectively, these contributions form a robust framework that significantly

enhances the controllability and editability of AI systems in music production.

By progressively addressing the limitations of each previous approach, this the-

sis advances the state of the art in AI-assisted music creation, enabling more

flexible, precise, and dynamic music production processes.
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Chapter 1

Introduction

1.1 Motivation

The convergence of artificial intelligence (AI) and music creation is reshaping

the landscape of artistic expression and production workflows. Over the past

decade, advances inAI-generated content (AIGC), driven by techniques like

deep learning and large language models (LLMs), have enabled AI systems to

compose, arrange, and even improvise music in ways that come close to human

creativity. These systems can now generate full-length compositions [Evans

et al., 2024b], assist in songwriting [Ding et al., 2024, Donahue et al., 2023], and

offer personalised recommendations for sound design [Yakura and Goto, 2023],

marking a shift in how music is created and consumed.

Recent breakthroughs, such as Stable Audio [Evans et al., 2024a,b], Mu-

sicLM [Agostinelli et al., 2023], and MusicGen [Copet et al., 2024], have

demonstrated the power of large-scale music foundation models to generate

high-quality music pieces. While these systems have made significant strides in

enabling users with minimal formal musical training to generate complete music

compositions, they are still in the early stages of being adopted by profession-

als. Several critical challenges remain, particularly when it comes to meeting

the nuanced and iterative requirements of professional music production. While

AI-generated music tools have made music creation more accessible and efficient,

they fall short in key areas:

• Controllability: Current AI music systems can generate high-quality

music but often lack the fine-grained control required by musicians and

producers. Professional music production demands precision, where users

must control and modify specific musical elements such as rhythm, har-

mony, instrumentation, and emotional tone. However, AI systems fre-
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quently produce music that is difficult to adjust on a detailed level, making

it hard to tailor the output to the artist’s vision.

• Editability: Music production is an iterative process. Artists seldom

create a final product in a single step; they refine and rework their com-

positions over multiple iterations. However, most AI tools treat music

generation as a one-off process, where users have little or no capacity to

modify the generated content without starting from scratch. This lack of

editability limits the practicality of these tools in real-world production

environments, where iterative refinements are the norm.

• Intuitive Interaction: Although AI tools have advanced considerably,

many still require users to engage with complex interfaces or possess tech-

nical knowledge, such as understanding model parameters or programming

languages. For musicians focused on creativity, such technical barriers can

be a major deterrent, preventing widespread adoption of AI technologies in

music production. An intuitive, natural interface that allows musicians to

interact with AI systems conversationally—rather than through technical

inputs—could unlock the true potential of these tools.

These limitations underscore a gap between the current capabilities of AI

music systems and the demands of musicians. As the boundaries of AI-generated

content continue to expand, addressing these shortcomings is essential not only

for increasing the accessibility of AI tools but also for ensuring that AI systems

truly augment human creativity without compromising artistic control.

In light of these challenges, the motivation for this thesis is to explore how

AI systems can be enhanced to offer more control, editability, and user-friendly

interactions in music creation. This research seeks to bridge the gap between

current AI capabilities and the needs of professional and amateur musicians by

proposing a series of solutions that push AI music systems closer to real-world

applicability, ultimately empowering artists to harness AI as a collaborative

creative tool.

1.2 Aim

The primary aim of this thesis is to develop AI-assisted music systems that over-

come the limitations identified in controllability, editability, and user interaction.

These systems are intended to bridge the gap between the existing capabilities

of AI-generated content tools and the practical needs of music production.

The overarching objective is to design systems that allow musicians and

producers to interact with AI in a more intuitive and seamless manner, while
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retaining control over the fine-grained details of their compositions. This re-

search aims to extend the creative possibilities of AI, not just by generating new

music, but by empowering users to refine, edit, and direct the output in ways

that align with their artistic intent. Specifically, this thesis investigates how

AI systems can be structured to support iterative editing and natural language

control within the music creation process, paving the way for more versatile and

collaborative AI music tools.

1.3 Research Questions

To achieve this aim, the following key research questions will be addressed:

Research Question 1: How can we design text-to-music

models that offer musicians fine-grained control over vari-

ous musical elements during the creative process?

Current text-to-music (TTM) systems often lack the ability to control specific

musical attributes, such as rhythm, harmony, or instrumentation, with the pre-

cision required by musicians. This research question explores how models can

be designed to allow users to control and adjust these musical elements in a way

that integrates naturally into their creative workflows. By embedding controlla-

bility into AI music models, the goal is to provide users with direct manipulation

of individual components, facilitating the creation of music that matches their

vision.

Research Question 2: How can AI systems support iter-

ative and flexible editing of AI-generated music, allowing

musicians to refine their compositions seamlessly?

Human music creation is inherently iterative, requiring continuous adjustments

and refinements. This question examines how AI models can support itera-

tive workflows, where musicians can easily modify generated content without

starting from scratch. By enabling flexible editing, the research seeks to de-

velop systems that preserve the structural integrity of the music while allowing

specific attributes to be reworked in response to user feedback.
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Research Question 3: How can AI music systems be made

more intuitive, allowing users to interact with these tech-

nologies in a more natural manner?

The technical complexity of current AI music tools often creates a barrier to

their adoption. This question focuses on designing systems that allow users to

interact with AI music tools in more natural and intuitive ways. Possible di-

rections include the use of conversational interfaces or other simplified control

mechanisms. The goal is to lower the technical barrier for musicians, enabling

more synergistic collaboration between human creativity and AI-generated con-

tent.

1.4 Thesis Structure

The thesis is organised as follows:

Chapter 1 Introduction

This chapter provides the motivation behind the research, outlines the

aims and objectives of the thesis, and presents an overview of the struc-

ture and contributions. It sets the stage for the subsequent chapters by

highlighting the challenges in current AI-assisted music creation systems

and introducing the proposed solutions.

Chapter 2 Background

This chapter offers a comprehensive review of the existing literature and

technologies in AI-assisted music creation. It covers fundamental concepts

in music generation, text-to-music synthesis, and controllable music gener-

ation. The chapter also introduces key technologies underlying the work,

such as large language models, diffusion models, and music language mod-

els. It concludes by identifying gaps in current research, providing context

for the contributions.

Chapter 3 Loop Copilot: Conducting AI Ensembles for Music Generation and

Iterative Editing

This chapter introduces Loop Copilot, the first major contribution. It de-

tails the system’s architecture, including the integration of multiple spe-

cialised AI models coordinated by a large language model. The chapter

explains the concept of the Global Attribute Table and its role in main-

taining musical coherence during iterative editing. It also presents a user

study evaluating the system’s effectiveness and limitations in real-world

scenarios.
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Chapter 4 MusicMagus: Zero-Shot Text-to-Music Editing via Diffusion Mod-

els

This chapter presents MusicMagus, the second major contribution. It

explores the use of diffusion models for zero-shot text-guided music editing.

The chapter details the methodology for manipulating the latent space to

achieve specific musical attribute modifications while preserving overall

structure. It discusses the system’s strengths in music editing and its

limitations with more complex operations.

Chapter 5 Instruct-MusicGen: Unlocking Text-to-Music Editing for Music

Language Models via Instruction Tuning

This chapter introduces Instruct-MusicGen, the most advanced contribu-

tion. It describes the integration of instruction tuning with music language

models to enable precise, text-guided editing of musical content. The chap-

ter describes how the system combines both text and audio inputs to carry

out complex edits. It also discusses the system’s capabilities in handling a

wide range of editing tasks and its potential impact on professional music

production workflows.

Chapter 6 Conclusions and Future Work

The final chapter summarises the key findings and contributions of the

thesis. It reflects on how the presented work advances the field of AI-

assisted music creation and discusses its potential impact on the music

industry. The chapter also identifies remaining challenges and outlines

promising directions for future research, including potential improvements

to the proposed systems and new avenues for exploration in AI-music

interaction.

1.5 Contributions

The contributions of this thesis represent significant advancements in the field

of AI-assisted music creation, particularly in enhancing the controllability and

editability of text-to-music generation systems. This thesis introduces novel

approaches that progressively address the limitations of existing systems, cul-

minating in a framework for flexible and precise music editing. The main con-

tributions of this thesis are:

1. Loop Copilot: An LLM-Orchestrated Multi-Model System for

Iterative Music Creation
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• Developed a system that leverages a large language model to coordi-

nate multiple specialised AI music models.

• Introduced the Global Attribute Table (GAT) concept for maintain-

ing musical coherence during iterative editing.

• Demonstrated the feasibility of using natural language interactions

for complex music generation and editing tasks.

• Conducted a user study to evaluate the system’s effectiveness in real-

world music production scenarios.

2. MusicMagus: Zero-Shot Text-to-Music Editing via Diffusion Mod-

els

• Pioneered a novel approach for zero-shot text-guided music editing

using pre-trained diffusion models.

• Developed techniques for manipulating the latent space of diffusion

models to achieve specific musical attribute modifications.

• Demonstrated the ability to perform stylistically coherent edits with-

out the need for additional training.

• Addressed limitations in stem level editing and preserving non-targeted

musical elements during edits.

3. Instruct-MusicGen: Text-to-Music Editing for Music Language

Models via Instruction Tuning

• Applied instruction tuning to the MusicGen model to enable precise

and efficient editing through text-based instructions.

• Developed a dual-modality fusion process for concurrent processing

of text instructions and audio inputs.

• Expanded the capabilities of music language models to handle com-

plex editing tasks, including adding, removing, or modifying specific

musical stems.

• Demonstrated the scalability and efficiency of the system in handling

a wide range of music production scenarios.
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1.6 Associated publications

The work presented in this thesis has been shared at international peer-reviewed

conferences and workshops, published as preprints, or is currently under review.

The following list categorizes all publications associated with this thesis by the

author’s contribution and the peer-review status.

1.6.1 Peer-reviewed publications (First author)

1. Yixiao Zhang, Gus Xia, Mark Levy, and Simon Dixon, “COSMIC:

A Conversational Interface for Human-AI Music Co-Creation”,

in Proceedings of the 21st International Conference on New Interfaces

for Musical Expression (NIME 2021), Shanghai, China, June 14–18, 2021

([Zhang et al., 2021]).

In this work, I developed the system and led the design and evaluation

of the experiments. Mark Levy and Simon Dixon, as my PhD supervi-

sors, provided guidance on research design and manuscript preparation.

Gus Xia contributed to the algorithm development and provided valuable

feedback on the experimental setup.

2. Yixiao Zhang, Yukara Ikemiya, Gus Xia, Naoki Murata, Marco AMart́ınez-

Ramı́rez, Wei-Hsiang Liao, Yuki Mitsufuji, and Simon Dixon, “MusicMagus:

Zero-Shot Text-to-Music Editing via Diffusion Models”, in Pro-

ceedings of the 33rd International Joint Conference on Artificial Intelli-

gence (IJCAI 2024) - AI, Arts & Creativity Track, Jeju, South Korea,

2024 ([Zhang et al., 2024b]).

I played a leading role in this project during my internship at Sony, fo-

cusing on system design and experimentation. Gus Xia and Simon Dixon

provided substantial theoretical guidance and manuscript reviews. Yukara

Ikemiya and Yuki Mitsufuji, from Sony, contributed to discussions and

implementation details, while Naoki Murata, Marco A Mart́ınez-Ramı́rez,

and Wei-Hsiang Liao assisted with data processing and system evaluation.

1.6.2 Preprints and papers under review (First author)

3. Yixiao Zhang, Akira Maezawa, Gus Xia, Kazuhiko Yamamoto, and Si-

mon Dixon, “Loop Copilot: Conducting AI Ensembles for Music

Generation and Iterative Editing”, arXiv preprint arXiv: 2310.12404,

2023 ([Zhang et al., 2023b]).

This work builds on my internship at Yamaha, where I was the lead con-

tributor, developing the core system and conducting experiments. Akira
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Maezawa provided key insights during idea generation, experiment setup,

and manuscript preparation. Gus Xia acted as an external collaborator

and provided theoretical guidance. Kazuhiko Yamamoto assisted with ex-

periments and collaborative efforts. Simon Dixon offered overall guidance

and feedback on the project direction.

4. Yixiao Zhang, Yukara Ikemiya, Woosung Choi, Naoki Murata, Marco A

Mart́ınez-Ramı́rez, Liwei Lin, Gus Xia, Wei-Hsiang Liao, Yuki Mitsufuji,

and Simon Dixon, “Instruct-MusicGen: Unlocking Text-to-Music

Editing for Music Language Models via Instruction Tuning”,

arXiv preprint arXiv:2405.18386, 2024 ([Zhang et al., 2024a]).

This work represents the core of my research during my internship at Sony,

where I took the lead in system design, experimentation, and writing. Si-

mon Dixon and Gus Xia contributed to research direction and theoretical

framing, while Liwei Lin joined in the manuscript preparation, leverag-

ing their expertise from earlier works on content-based controls. Yukara

Ikemiya, Yuki Mitsufuji, and other co-authors provided crucial support

during the research meetings and discussions.

1.6.3 Peer-reviewed publications (Contributing author)

5. Liwei Lin, Gus Xia, Junyan Jiang, and Yixiao Zhang, “Content-based

controls for music large language modeling”, in Proceedings of the

25th International Society for Music Information Retrieval Conference (IS-

MIR 2024), San Francisco, CA, USA, November 10–14, 2024 ([Lin et al.,

2023]).

My contributions included participation in experimental design and dis-

cussions, data analysis, and assisting with the writing of the manuscript. I

played a collaborative role in refining the concept of content-based controls

for large music language models.

6. Liwei Lin, Gus Xia, Yixiao Zhang, and Junyan Jiang, “Arrange, In-

paint, and Refine: Steerable Long-term Music Audio Generation

and Editing via Content-based Controls”, in Proceedings of the 33rd

International Joint Conference on Artificial Intelligence (IJCAI 2024) - AI,

Arts & Creativity Track, Jeju, South Korea, 2024 [Lin et al., 2024].

This paper represents a follow-up to [5], where I contributed significantly

to the conceptualization of experiments, offered critical revisions to the

manuscript, and assisted in data analysis and discussion.

Chapter 3 includes content from [1] and [3]. [1] introduced COSMIC, a
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conversational interface for human-AI music co-creation, where I was the main

contributor, leading system development and experimentation, with Mark Levy

and Simon Dixon offering research design and writing support, and Gus Xia

assisting with the algorithm development. [3] presented Loop Copilot, a system

for conducting AI ensembles for music generation and iterative editing, which

was developed during my internship at Yamaha. I was the primary contributor,

with Akira Maezawa providing support in idea generation and writing, Gus

Xia offering theoretical guidance, and Simon Dixon giving feedback on project

direction.

Chapter 4 is based on [2], which introduced MusicMagus, a system for zero-

shot text-to-music editing via diffusion models. This work was conducted during

my internship at Sony, where I was the lead researcher, developing the system

and conducting experiments. Yukara Ikemiya, Yuki Mitsufuji, and other co-

authors at Sony contributed to discussions and provided practical implemen-

tation support. Simon Dixon and Gus Xia played supervisory roles, giving

guidance on theoretical aspects and the manuscript.

Chapter 5 includes contents from [4] and [5]. [5] and [6] are precursor works

on content-based controls for music language modeling and long-term music

audio generation and editing, respectively. While I was not the first author

of these works, I contributed to idea discussions, data analysis, and writing

support. [4] forms the core of this chapter, presenting Instruct-MusicGen for

text-to-music editing, where I was the lead contributor, responsible for system

design, experimentation, and manuscript preparation, with strong support from

co-authors during my internship at Sony.
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Chapter 2

Background

In this chapter, I explore the fundamental concepts and state-of-the-art methods

central to this thesis, focusing on text-to-music backbone models and techniques

for enhancing their controllability and editability. I begin by examining the

basic knowledge underlying music and text representations, including symbolic,

audio, and time-frequency representations, as well as modern music encoders

and cross-modal representations.

I then delve into two main categories of text-to-music backbone models:

diffusion models and audio language models. For diffusion models, I discuss

Denoising Diffusion Probabilistic Models (DDPMs), Latent Diffusion Models

(LDMs), and related innovations. In the realm of audio language modelling, I

explore Vector Quantised Variational Autoencoders (VQ-VAEs), Residual Vec-

tor Quantisation (RVQ), and autoregressive models, with a particular focus on

MusicGen and its architecture, training, and performance.

A comparison between diffusion models and audio language models is pre-

sented, highlighting the strengths and applications of each approach. I also in-

troduce Parameter-Efficient Finetuning (PEFT) techniques, such as Low-Rank

Adaptation (LoRA) and Llama-Adapter, which play a crucial role in adapting

pretrained models for specific tasks.

Finally, I address the aspect of enriching controllability and editability for

music generation models, which is critical to this thesis. This includes various

approaches to enhancing control, specific techniques used in music generative

models, and post-training generation models with control mechanisms. I also

explore specialised editing models and agent-based methods for compositional

music generation and editing.

This comprehensive background provides the foundation for understanding

the advancements and innovations presented in subsequent chapters, setting the

stage for our exploration of novel methodologies in text-to-music generation and
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control.

2.1 Basic Knowledge

Imagine I have a music audio track and its corresponding text description. Given

a text, x: “A romantic pop song with piano and guitar accompaniment.” The

corresponding music is represented in waveform as y. Before diving into formal

definitions, I will use this example to illustrate related terms and concepts.

2.1.1 Music and Text Representations

The processing of text and music audio presents unique challenges due to their

inherently unstructured nature. To enable effective analysis and generation, it

is usually necessary to transform both text and music into structured data rep-

resentations, often in the form of high-dimensional vectors or matrices (some

models are capable of operating directly on raw audio data). These represen-

tations serve as the foundation for various downstream tasks, including natural

language processing, music information retrieval, and cross-modal learning.

Text Representations

At the most fundamental level, text data is stored as string objects within com-

putational systems. However, the low-level nature of strings makes them unsuit-

able for the numerical operations required by machine learning algorithms, so

they must first be transformed into more abstract, higher-level representations.

Consequently, a series of transformations must be applied to convert raw text

into a format amenable to computational analysis.

The initial step in this process is tokenisation, a linguistic technique that

decomposes a continuous string of text into discrete units called tokens. These

tokens may represent individual words, subwords, or characters, depending on

the chosen tokenisation strategy. Subsequently, each token is mapped to a

numerical index based on a predefined vocabulary, effectively translating the

text into a sequence of integers.

Given the high-dimensional and sparse nature of natural language, it is ad-

vantageous to further transform these token sequences into dense vector repre-

sentations. This process, known as encoding, maps the discrete tokens into a

continuous high-dimensional space. Formally, this encoding can be expressed as

a function f : x 7→ zx, where x represents the original text and zx denotes its

encoded representation in a high-dimensional vector space.

The encoding process is designed to capture the semantic relationships and

contextual information present in natural language. By projecting text into
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a high-dimensional space, these encodings enable machine learning models to

discern subtle linguistic patterns and relationships that may not be immediately

apparent in the original text.

Several text encoders have been developed to perform this crucial transfor-

mation. Among the most prominent are T5 [Raffel et al., 2020], BERT [Devlin

et al., 2018], and RoBERTa [Liu et al., 2019], each employing distinct archi-

tectural and training paradigms to generate rich, contextual representations of

text:

1. T5 (Text-To-Text Transfer Transformer) [Raffel et al., 2020]: T5

represents a paradigm shift in natural language processing by recasting

all NLP tasks within a unified text-to-text framework. This approach

enables T5 to address a diverse array of linguistic challenges, including

but not limited to machine translation, text summarisation, and question

answering. The architecture of T5 is predicated on a sequence-to-sequence

model, which is trained to transmute input text into output text through

a series of encoder and decoder transformations. This universal approach

allows T5 to capture a wide spectrum of linguistic features and inter-

textual relationships, making it exceptionally versatile for various NLP

applications.

2. BERT (Bidirectional Encoder Representations from Transform-

ers) [Devlin et al., 2018]: BERT’s innovation lies in its bidirectional

training regime, which enables the model to comprehend the context of a

word by considering both its preceding and subsequent context simulta-

neously. This bidirectional approach represents a significant advancement

over unidirectional language models. BERT’s architecture is based on the

transformer model, which utilises self-attention mechanisms to weigh the

importance of different words in a sequence when computing representa-

tions. The result is a set of deep, contextual embeddings for each word,

which can be fine-tuned for a multitude of downstream NLP tasks, includ-

ing sentiment analysis, named entity recognition, and text classification.

3. RoBERTa (A Robustly Optimised BERT Pretraining Approach)

[Liu et al., 2019]: RoBERTa builds upon the foundational architecture

of BERT while introducing several key optimisations to enhance its per-

formance and robustness. These enhancements include training on signif-

icantly larger datasets, removing the next sentence prediction objective,

and using larger batch sizes. Additionally, RoBERTa utilises longer se-

quences during training, allowing it to capture long-range dependencies

more effectively. These modifications collectively result in a more pow-
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erful and versatile language model, capable of producing highly nuanced

and context-aware representations.

These encoders are part of a broader evolution in text embedding methods,

which has progressed from static embeddings, such as GloVe [Pennington et al.,

2014] and ELMo [Peters et al., 2018], to dynamic contextualised embeddings

introduced by models like BERT. As the scale of these models has increased, so

too has their ability to capture complex patterns in text, although this comes

with higher computational demands. In recent years, large language models

(LLMs) have shifted towards decoder-only architectures, such as GPT. Despite

this trend, in domains like music text analysis, models from the second genera-

tion of encoders—T5, BERT, RoBERTa—continue to play a central role, since

they keep a balance in both effectiveness and performance within the context

of music-text multimodal learning.

These advanced text encoders transform raw text into dense vector represen-

tations that encapsulate semantic meanings, syntactic structures, and complex

inter-word relationships. In the context of music generation, these sophisticated

text representations can be leveraged to condition generative models, guiding

the music creation process to align with specific textual descriptions or semantic

concepts.

Music Representations

The representation of music for machine learning applications presents unique

challenges due to its multi-faceted nature, encompassing temporal, spectral, and

structural dimensions. Music representations can be broadly categorised into

two main classes: symbolic representations and audio representations. Each

of these categories offers distinct advantages and is suited to different types of

musical analysis and generation tasks.

Symbolic Representations Symbolic music representations encode musical

information in a discrete, event-based format, abstracting away from the contin-

uous nature of audio signals. These representations typically capture high-level

musical concepts such as notes, chords, rhythm, and dynamics. The most preva-

lent format for symbolic music representation is the Musical Instrument Digital

Interface (MIDI) protocol, which encodes musical events as a series of messages

specifying pitches, note onsets, durations (by calculating time deltas between

note on and off messages), velocities, and other performance parameters.

Symbolic music representation has evolved significantly over time, start-

ing with early formats like piano rolls, MusicXML, MIDI, and ABC notation.

While these formats provided a foundation for digital music encoding, they also
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revealed limitations such as sparsity and difficulty in capturing nuanced musi-

cal details. Much like text tokenisation, where natural language is represented

as sequences of discrete tokens, symbolic music representations face the chal-

lenge of converting non-sequential musical elements into serial forms that can

be efficiently modelled. However, unlike language, where word order plays a

dominant role, music inherently involves multiple, simultaneous streams of in-

formation (melody, harmony, rhythm), making its serialisation more complex

and less straightforward.

Symbolic Domain Music Encoders Early symbolic representations like

piano rolls and MIDI often suffer from sparsity and quantisation issues, partic-

ularly when it comes to representing expressive performances. Recent research

has sought to address these limitations by developing more sophisticated en-

coding schemes that aim for tighter, more structured representations of music.

For example, models such as PianoTree VAE [Wang et al., 2020c] attempt to

model music on a score level, focusing on hierarchical structures that reflect mu-

sic’s inherent nesting of notes within chords and phrases. On the other hand,

performance-based models like REMI [Huang and Yang, 2020] and CWT [Hsiao

et al., 2021] focus on capturing the nuances of performance, introducing tokens

that encode rhythmic, harmonic, and temporal information.

Despite these advancements, symbolic music tokenisation still faces inherent

trade-offs. REMI, for example, offers a more compact and structured encoding

compared to MIDI, but it relies on fixed temporal grids, which can result in a

loss of expressive timing and rhythmic precision. This quantisation problem, as

noted by PerTok [Lenz and Mani, 2024] and other models, limits the ability to

capture subtle performance details such as rubato and swing, which are crucial

for realistic music generation. Tokenizers like CWT and PerTok have emerged

in response to this challenge, aiming to balance compactness with performance

fidelity by modeling both local and global musical structures.

While symbolic representations remain competitive in music processing tasks

due to their compactness, editability, and interpretability, they have not domi-

nated recent advances in music-text multimodal models. A key reason for this

is the relative scarcity of symbolic music data compared to audio data. Audio-

based approaches have benefited from the sheer volume of available data, which

has driven recent breakthroughs in multimodal systems. This inherent limita-

tion poses a challenge for the continued development of symbolic representations

in the context of large-scale, data-driven machine learning models. Neverthe-

less, symbolic encoding remains a critical area of research for its advantages in

specific tasks such as music generation, analysis, and manipulation.
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Audio Representations Audio representations deal directly with the con-

tinuous, time-varying pressure waves that constitute musical sounds. While

raw audio waveforms contain the full fidelity of a musical signal, their length

and complex temporal structure make them challenging to process directly with

many machine learning algorithms. Consequently, various transformations and

feature extraction techniques are employed to convert raw audio into more

tractable representations that capture salient musical characteristics.

Time-frequency representations aim to capture both the temporal evolution

and spectral content of audio signals, providing a rich description of musical

timbre, harmony, and rhythm.

1. Spectrogram: A spectrogram is a visual representation of the spectrum

of frequencies in a sound or other signal as they vary with time. It is typ-

ically computed using the Short-Time Fourier Transform (STFT), which

applies the Fourier transform to windowed segments of the audio signal.

The resulting spectrogram S(t, f) represents the magnitude of the STFT,

where t denotes time and f denotes frequency.

Mathematically, the STFT can be expressed as:

STFT{x(t)}(τ, ω) =
∫ ∞

−∞
x(t)w(t− τ)e−jωtdt, (2.1)

where x(t) is the input signal, w(t) is the window function, τ is the time

shift, and ω is the angular frequency.

Spectrograms offer a detailed view of the frequency content of a signal

over time, making them useful for tasks such as instrument recognition,

onset detection, and audio source separation.

2. Mel-spectrogram: A mel-spectrogram is a variant of the spectrogram

that applies a mel-scale filterbank to the power spectrum. The mel scale

is a perceptual scale of pitches judged by listeners to be equal in distance

from one another. This transformation aligns the frequency representation

more closely with human auditory perception.

The conversion from Hz to mel can be approximated by:

m = 2595 log10(1 +
f

700
), (2.2)

where f is the frequency in Hz and m is the corresponding mel value.

Mel-spectrograms are widely used in music information retrieval tasks due

to their ability to capture perceptually relevant features of music while

reducing the dimensionality of the representation.
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3. Mel-frequency Cepstral Coefficients (MFCCs): MFCCs are a com-

pact representation of the short-term power spectrum of a sound, based

on a linear cosine transform of a log power spectrum on a nonlinear mel

scale of frequency. The process of computing MFCCs involves:

• Computing the power spectrum of windowed frames of the audio

signal.

• Applying a mel-scale filterbank to the power spectra.

• Taking the logarithm of the filterbank energies.

• Computing the discrete cosine transform (DCT) of the log filterbank

energies.

Mathematically, the MFCCs can be expressed as:

MFCC[n] =

K∑
k=1

log(S[k]) cos[n(k − 0.5)
π

K
], (2.3)

where S[k] represents the log-energy output of the k-th filter in the mel-

scale filterbank, and K is the total number of filters.

MFCCs are particularly effective at capturing the timbral characteristics

of sound and have been widely used in speech recognition, music genre

classification, and instrument identification tasks.

Audio Domain Music Encoders From an informatics perspective, audio

encoders efficiently compress audio data into rich, task-agnostic representations,

enabling powerful downstream music analysis and generation tasks. Earlier

models such as Variational Autoencoders (VAEs) [Kingma and Welling, 2013]

and WaveNet [Van Den Oord et al., 2016] laid the groundwork for compact rep-

resentations, while large-scale pretrained models like Jukebox [Dhariwal et al.,

2020] have demonstrated the ability to retain domain-specific knowledge. When

probed using a simple two-layer MLP, these models reveal that their large-scale

training allows them to capture a wealth of useful information for various tasks.

Audio encoders have developed along two main lines: one leverages prior

knowledge of musical theory, while the other focuses on scaling up model pa-

rameters to gain advantages in performance. The latter approach, which relies

on sheer model size and training data, has recently achieved greater success. The

following models represent the latest advances in this field, each contributing to

audio representation learning through different architectures and techniques.
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1. HTS-AT (Hierarchical Token-Semantic Audio Transformer) [Chen

et al., 2022]: HTS-AT is a transformer-based model designed specifically

for sound classification and detection. Key features of HTS-AT include:

• A hierarchical structure to reduce model size and training time.

• A token-semantic module for mapping final outputs into class feature

maps, enabling audio event detection and localisation.

HTS-AT achieves state-of-the-art results on AudioSet [Gemmeke et al.,

2017], ESC50 [Piczak, 2015], and Speech Command V2 datasets [Warden,

2018], demonstrating high performance and efficiency.

2. PaSST (Patchout Fast Spectrogram Transformer) [Koutini et al.,

2021]: PaSST applies a novel training method to transformers on audio

spectrograms. The key innovations of PaSST include:

• Patch extraction and linear projection to form a sequence for the

transformer.

• Patchout, a method to reduce computation and memory complexity

during training, also functioning as a regulariser.

PaSST achieves state-of-the-art performance on Audioset with efficient

training on a single consumer-grade GPU.

3. MERT (Music undERstanding model with large-scale self-supervised

Training) [Yizhi et al., 2023]: MERT is a model that incorporates

teacher models to provide pseudo labels in a masked language modelling

style acoustic pre-training. Key aspects of MERT include:

• A combination of an acoustic teacher based on Residual Vector Quan-

tisation Variational AutoEncoder (RVQ-VAE) [Zeghidour et al., 2021]

and a musical teacher based on the ConstantQ Transform (CQT).

• A multi-task paradigm balancing acoustic and musical representation

learning.

MERT demonstrates strong performance on various music understanding

tasks and attains state-of-the-art overall scores.

While there are no clear superior or inferior models in this space, each of

these modern audio encoders finds its own niche in different tasks, and they

coexist in parallel, contributing to the broader landscape of audio representation

learning.
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Cross-Modal Representation: CLAP and Its Variants

The increasing interest in cross-modal learning has led to the development of

models that can jointly process and align representations from different modal-

ities. One of the most representative models in this domain is CLAP (Con-

trastive Language-Audio Pretraining), introduced by Wu et al. [2023a], which

extends the principles of CLIP (Contrastive Language-Image Pretraining) [Rad-

ford et al., 2021] to the audio domain, enabling joint representation learning of

music and text.

Multimodal alignment tasks inherently deal with the heterogeneity between

different modalities, such as text and audio, which represent information in

fundamentally different ways. Cross-modal machine learning aims to resolve this

by aligning the representations of these distinct modalities into a shared space,

where they can be processed together more effectively. In the context of this

thesis, which focuses on text-to-music generation, cross-modal representations

offer an improved framework for linking text-based inputs with music outputs,

ultimately allowing for better multimodal integration.

Key features of CLAP include:

• Dual Encoder Architecture: CLAP employs separate encoders for

processing audio and text inputs. The audio encoder is typically based on

a convolutional or transformer architecture, while the text encoder utilises

pretrained language models such as BERT or RoBERTa.

• Contrastive Learning Objective: CLAP is trained using a contrastive

learning approach, where the model learns to maximise the similarity be-

tween embeddings of matching audio-text pairs while minimising the sim-

ilarity between non-matching pairs.

• Large-Scale Pretraining: CLAP is pretrained on large datasets (LAION-

630K) 1 of audio-text pairs, allowing it to learn general-purpose audio and

text representations that can be fine-tuned for various downstream tasks.

The contrastive learning objective of CLAP can be formalised as:

L = − log
exp(sim(fa(xi), ft(yi))/τ)∑
j exp(sim(fa(xi), ft(yj))/τ)

, (2.4)

where fa and ft are the audio and text encoders respectively, xi and yi are

corresponding audio and text inputs, sim is a similarity function (typically

cosine similarity), and τ is a temperature parameter.

1LAION-630K dataset: https://github.com/LAION-AI/audio-dataset/tree/main/

laion-audio-630k.
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Although CLAP is one of the most representative multimodal models, it is

not the only one in the field. Several variants and other approaches [Ghosh et al.,

2023, Yuan et al., 2024b] have recently emerged, each pushing the performance

of multimodal alignment models further. The development of CLAP and its

successors represents a significant step towards achieving unified multimodal

understanding of music and language, with applications ranging from music

cognition to creative AI applications. In the context of text-to-music generation,

these models offer a more coherent way to align text and music modalities,

addressing the inherent heterogeneity in multimodal tasks and driving forward

the potential for cross-modal translation and generation.

2.1.2 Pretraining, Continued Pretraining, Post-training,

and Finetuning

The processes of pretraining, continued pretraining, post-training, and finetun-

ing form a cohesive workflow commonly used in large-scale model training.

Each phase builds on the previous one to incrementally refine the model’s

versatility and task-specific performance. While continued pretraining is less

frequently applied, it can significantly enhance a model’s ability to handle com-

plex or specialised data. Post-training and finetuning further optimise the model

for adaptability and precision, ensuring its effectiveness in specific applications.

1. Pretraining: This is the initial phase where a model is trained on a vast

and varied dataset to discern general patterns and extract fundamental

features. In our research, I concentrate on pretraining text-to-music mod-

els to grasp the intrinsic connections between textual inputs and their

musical counterparts. This foundational step utilises an extensive corpus

of paired text and music to construct a versatile base model that can

interpret and produce music from textual descriptions.

2. Continued Pretraining: Following the initial pretraining, continued

pretraining involves further training on additional data to enhance the

model’s generalisation capabilities. Although not that common, this step

is helpful to strengthen the model’s understanding with more data.

3. Post-training: Post-training is a transitional phase where the model

undergoes adjustments and optimisations based on the insights gained

from pretraining. This step might involve techniques such as knowledge

distillation or model compression, aiming to make the model more efficient

or suitable for deployment in specific environments.

4. Finetuning: The final stage involves finetuning the model on a smaller,
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Figure 2.1: The forward and backward process of the diffusion model.

task-specific dataset. This step tailors the model to meet specific require-

ments, such as generating music that adheres to particular styles or incor-

porating user-defined constraints. Finetuning often introduces new control

mechanisms, enabling the model to generate music that is more aligned

with detailed textual descriptions and additional user inputs.

5. Supervised Fine-tuning (SFT): As a subset of finetuning, SFT focuses

on further honing the model’s performance under the guidance of labeled

data. This supervised approach ensures that the model not only adapts

to the task but also maintains a high level of accuracy and consistency in

its outputs.

2.2 Text-to-Music Backbone Models

In this section, I will explore the backbone models that are fundamental to

this thesis in text-to-music generation. These models provide the underlying

architecture and mechanisms through which text inputs are transformed into

music outputs.

2.2.1 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs)

DDPMs [Ho et al., 2020] operate by gradually adding noise to the data and then

learning to reverse this process, effectively denoising the data to generate new

samples. The model is trained on a forward diffusion process that progressively

adds Gaussian noise to the data, and a reverse process that learns to denoise

the data.
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Forward Process. The forward process q adds noise to the data y over T

time steps:

q(yt|yt−1) = N (yt;
√
αtyt−1, (1− αt).I), (2.5)

where αt is a schedule parameter that controls the variance of the noise added at

each step. Here, N denotes a normal distribution. The term
√
αtyt−1 represents

the mean of the noisy data at step t, and (1−αt)I represents the variance, which

is controlled by αt. This process adds a small amount of noise at each step.

This process can be iteratively applied starting from the original data y0:

q(y1:T |y0) =
T∏

t=1

q(yt|yt−1). (2.6)

After enough steps, yT becomes almost pure noise. The idea is that by the

end of the forward process, the data should be sufficiently noisy, resembling a

Gaussian distribution.

Reverse Process. The reverse process p aims to denoise y by estimating the

original data distribution. It is defined as:

pθ(yt−1|yt) = N (yt−1;µθ(yt, t),Σθ(yt, t)), (2.7)

where µθ(yt, t) and Σθ(yt, t) are parameterised by neural networks and are

learned during training. In the reverse process, the model predicts the pre-

vious step yt−1 from the current step yt. The mean µθ and the variance Σθ are

learned functions that depend on yt and the time step t.

The reverse process can be written as:

pθ(y0:T ) = p(yT )

T∏
t=1

pθ(yt−1|yt). (2.8)

This represents the application of the reverse process over T steps, starting

from almost pure noise yT . The reverse process is essentially a learned denoising

pathway that recovers the original data distribution from the noisy version.

Training Objective. The training objective is to minimise the difference be-

tween the forward and reverse processes, which can be expressed as a variational

lower bound:

L = Eq

[
T∑

t=1

DKL(q(yt−1|yt, y0)|pθ(yt−1|yt))

]
, (2.9)
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where DKL denotes the Kullback-Leibler divergence between the true forward

process and the learned reverse process. The objective function L is the expected

sum of the Kullback-Leibler divergences between the true distribution and the

predicted distribution at each step. Minimising this loss function trains the

model to accurately reverse the diffusion process.

Latent Diffusion Models (LDMs)

Latent diffusion models [Dhariwal and Nichol, 2021] build on the principles of

DDPM but operate in a latent space rather than directly on the data space.

This approach can reduce computational complexity and improve efficiency,

making it particularly suitable for high-dimensional data like music. The key

advantage of LDMs is that they handle the diffusion process in a compressed

representation of the data, which significantly reduces the computational burden

while preserving the essential characteristics of the data.

Encoding and Decoding. In latent diffusion models, the data y is first

mapped to a lower-dimensional latent space z using an encoder:

z = E(y). (2.10)

The encoder E compresses the high-dimensional data y into a lower-dimensional

latent representation z, which retains the essential features of the original data.

After the diffusion process is applied in the latent space, the denoised latent

variables are mapped back to the data space using a decoder:

ŷ = D(z). (2.11)

The decoder D reconstructs the data ŷ from the denoised latent variables z,

producing an output that is similar to the original data.

Forward and Reverse Processes in Latent Space. The forward process

q and reverse process p in the latent space are defined similarly to DDPM:

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I) (2.12)

The forward process in the latent space adds Gaussian noise to the latent

variables z at each step, similar to the forward process in DDPM but operating

on the compressed representation.

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (2.13)
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Figure 2.2: The diagram of DDIM models.

The reverse process in the latent space predicts the previous latent variable

zt−1 from the current latent variable zt, using learned functions µθ and Σθ.

The objective remains to minimise the difference between the forward and

reverse processes, but this time in the latent space:

L = Eq

[
T∑

t=1

DKL(q(zt−1|zt, z0)|pθ(zt−1|zt))

]
. (2.14)

The training objective is to minimise the Kullback-Leibler divergence be-

tween the true forward process and the learned reverse process in the latent

space, ensuring accurate reconstruction of the original data from the latent

variables.

Denoising Diffusion Implicit Models (DDIM) and Fast Sampling

Denoising Diffusion Implicit Models (DDIMs) [Song et al., 2021] enhance the

efficiency of sampling in diffusion models by introducing a deterministic alterna-

tive to the stochastic reverse process found in Denoising Diffusion Probabilistic

Models (DDPMs). This deterministic approach allows for faster sampling while

maintaining the quality of the generated outputs.

DDPMs require many steps to gradually denoise data, which can be compu-

tationally expensive and slow. DDIMs address this limitation by modifying the

reverse process to follow a deterministic path, eliminating the need for sampling

from a Gaussian distribution at each step. This deterministic reverse process

can be described as:

yt−1 =
√
αt−1

(
yt −

√
1− αtϵθ(yt, t)√

αt

)
+

√
1− αt−1ϵθ(yt, t). (2.15)

In this equation, ϵθ(yt, t) represents the predicted noise component at step
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t, obtained from a neural network, and αt is the noise schedule parameter. By

following this deterministic path, DDIMs can generate samples with fewer steps

compared to the stochastic sampling of DDPMs.

To understand DDIMs in detail, it is crucial to grasp several key concepts:

1. Noise Schedule Parameter (αt): This parameter controls the amount

of noise added at each step of the forward diffusion process. It typically

follows a schedule that starts with large values and gradually decreases, al-

lowing the model to add less noise as it progresses. This schedule is critical

in ensuring that the model can effectively learn the denoising process.

2. Predictive Noise Model (ϵθ): The neural network ϵθ is trained to

predict the noise that was added to the data at each step.

3. Deterministic Reverse Process: Unlike the stochastic nature of DDPMs,

where each step involves sampling from a Gaussian distribution, DDIMs

use a deterministic formula to revert the noisy data back to its original

state. This deterministic nature reduces the variability and randomness

in the generated samples, leading to more consistent outputs.

To implement DDIMs, the training phase involves a forward process that

progressively adds Gaussian noise to the data, defined by:

q(yt|yt−1) = N (yt;
√
αtyt−1, (1− αt)I). (2.16)

A neural network ϵθ is trained to predict the noise added at each step by

minimising the difference between the predicted noise and the actual noise:

Ltrain = Eq

[
|ϵθ(yt, t)− ϵ|2

]
. (2.17)

During sampling, the trained model applies the deterministic reverse pro-

cess, starting from pure noise yT and iteratively generating the final sample y0.

For text-to-music generation, text embeddings are incorporated into the neural

network ϵθ, conditioning the generation process on the text input. The modified

reverse process becomes:

yt−1 =
√
αt−1

(
yt −

√
1− αtϵθ(yt, t, x)√

αt

)
+

√
1− αt−1ϵθ(yt, t, x). (2.18)

Stochastic Differential Equation (SDE) Interpretation of DDPMs

The forward diffusion process in DDPMs can be viewed through the lens of

a Stochastic Differential Equation (SDE). An SDE provides a continuous-time
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perspective on the discrete-time forward diffusion process. In this framework,

the forward process is seen as a continuous-time stochastic process governed by

the SDE:

dXt = −
1

2
β(t)Xtdt+

√
β(t)dWt, (2.19)

where Xt is the state of the system at time t, β(t) is a time-dependent diffusion

coefficient, and Wt is a Wiener process representing the source of random noise.

This equation describes how noise is continuously added to the data over time,

leading to a gradual loss of information.

Ordinary Differential Equation (ODE) Interpretation of DDIMs

DDIMs, on the other hand, offer a deterministic counterpart to the stochas-

tic diffusion process. Instead of an SDE, the reverse process in DDIMs can

be interpreted as an Ordinary Differential Equation (ODE), which governs a

deterministic trajectory from noise back to the original data:

dXt

dt
= −1

2
β(t)Xt +

√
β(t)ϵθ(Xt, t), (2.20)

where ϵθ(Xt, t) is the predicted noise component at time t obtained from the

trained neural network. This ODE formulation allows for fast and determinis-

tic sampling, as it removes the stochasticity present in the reverse process of

DDPMs.

Connecting DDPMs and DDIMs Through SDE and ODE

The SDE interpretation of DDPMs and the ODE interpretation of DDIMs high-

light the transition from a stochastic to a deterministic framework. Both models

start with the same goal: to denoise data that has been corrupted by additive

Gaussian noise. However, they achieve this goal through different methods.

In DDPMs, the SDE provides a probabilistic framework that captures the

inherent uncertainty in the diffusion process. The reverse process in DDPMs

is inherently stochastic, aiming to estimate the posterior distribution of the

data at each step. This stochastic nature leads to slower sampling as each step

requires a draw from a probability distribution.

In contrast, DDIMs employ an ODE to guide the reverse process determin-

istically. By removing the stochastic component, DDIMs can significantly speed

up the sampling process without compromising the quality of the generated out-

puts. This deterministic approach makes DDIMs more efficient for applications

requiring real-time or rapid generation.
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Fast Sampling in DDIMs

The fast sampling in DDIMs is achieved by utilising the deterministic reverse

process derived from the ODE. This process can be summarised as:

Xt−∆t = Xt −
1

2
β(t)Xt∆t+

√
β(t)ϵθ(Xt, t)∆t, (2.21)

where ∆t is the time step size. By choosing appropriate values for ∆t, the num-

ber of steps required for sampling can be reduced, leading to faster generation

times.

DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model

Sampling

Diffusion Probabilistic Models (DPMs) typically require a large number of steps

for accurate sampling, which can be slow and computationally expensive. DPM-

Solver [Lu et al., 2022] is an efficient method that addresses this issue by using

a fast Ordinary Differential Equation (ODE) solver, significantly reducing the

number of steps required for sampling.

DPM-Solver leverages the fact that the reverse diffusion process can be

viewed as solving an ODE. By applying advanced ODE solvers, DPM-Solver

can generate high-quality samples in as few as ten steps. The core idea is to

approximate the reverse diffusion process using a discretised ODE, which can

be solved efficiently using numerical methods.

The forward diffusion process can be described by the following Stochastic

Differential Equation (SDE):

dy = f(y, t)dt+ g(t)dw, (2.22)

where y is the data, f and g are functions defining the drift and diffusion

coefficients, and dw represents the Wiener process. The reverse process, which

aims to denoise the data, can be reformulated as an ODE:

dy =
(
f(y, t)− g(t)2∇y log pt(y)

)
dt. (2.23)

In this formulation, f(y, t) captures the deterministic part of the process,

while g(t)2∇y log pt(y) represents the gradient of the log probability, which acts

as a correction term to guide the data back to its original distribution.

DPM-Solver approximates this ODE using advanced numerical solvers, such

as Runge-Kutta methods, which can efficiently handle the discretisation of the

reverse process. These solvers can adapt the step size dynamically, ensuring

that the approximation remains accurate while minimising the computational
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burden.

In practice, DPM-Solver can be integrated into existing diffusion models

by replacing the standard reverse diffusion process with the ODE-based solver.

This integration results in faster sampling times and reduced computational

costs, making it suitable for real-time applications like text-to-music generation.

DDIM Inversion and Text Inversion

Denoising Diffusion Implicit Models (DDIMs) introduce an efficient determin-

istic sampling method for diffusion models. A particularly useful feature of

DDIMs is their ability to invert the generative process, which means one can

map generated samples back to latent variables. This inversion is crucial for ap-

plications like text-to-music generation, where conditioning on text input must

be precise and controllable.

DDIM Inversion DDIM inversion is the process of mapping generated sam-

ples ŷ0 back to their latent representations z. This inversion allows for editing or

modifying the generated samples by manipulating their latent representations

and then re-generating the samples using the reverse DDIM process.

Given the deterministic nature of DDIMs, the inversion process can be de-

scribed as follows. The forward process starts from the initial data y0 and adds

noise according to the schedule parameter αt:

q(yt|yt−1) = N (yt;
√
αtyt−1, (1− αt)I). (2.24)

In the reverse process, using the learned neural network ϵθ(yt, t), the deter-

ministic reverse process predicts yt−1 from yt:

yt−1 =
√
αt−1

(
yt −

√
1− αtϵθ(yt, t)√

αt

)
+

√
1− αt−1ϵθ(yt, t). (2.25)

To invert the generative process, it is needed to estimate the latent variable z

that corresponds to the generated sample ŷ0. This involves applying the forward

diffusion process in reverse:

zt =
ŷ0 −

√
1− αtϵθ(ŷ0, t)√

αt
(2.26)

This equation estimates the latent variable zt from the generated sample ŷ0

by removing the noise component predicted by the neural network.
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Text Inversion Text inversion in the context of DDIMs involves incorporat-

ing text embeddings into the diffusion model to guide the generation process.

This conditioning allows for more accurate and contextually relevant generation,

particularly in tasks like text-to-music generation.

To incorporate text x into the DDIM framework, I use text embeddings ϕ(x),

which are integrated into the neural network ϵθ(yt, t, ϕ(x)). This conditioning

ensures that the generated samples align with the textual input.

First, represent the text x using a pretrained text encoder, producing em-

beddings ϕ(x):

ϕ(x) = TextEncoder(x). (2.27)

Next, modify the noise prediction network to incorporate text embeddings,

producing a conditioned noise estimate:

ϵθ(yt, t, ϕ(x)) = NeuralNetwork(yt, t, ϕ(x)). (2.28)

Finally, integrate the text-conditioned noise prediction into the reverse pro-

cess:

yt−1 =
√
αt−1

(
yt −

√
1− αtϵθ(yt, t, ϕ(x))√

αt

)
+
√
1− αt−1ϵθ(yt, t, ϕ(x)). (2.29)

This modified reverse process uses text embeddings to influence the denoising

steps, producing samples that reflect the input text x.

The inversion process with text conditioning involves estimating the latent

variables that correspond to a generated sample conditioned on text input.

This can be achieved by incorporating the text embeddings into the inversion

equation:

zt =
ŷ0 −

√
1− αtϵθ(ŷ0, t, ϕ(x))√

αt
. (2.30)

This formula estimates the latent variable zt from the generated sample ŷ0

and the text-conditioned noise prediction ϵθ(ŷ0, t, ϕ(x)).

Related Work on Diffusion-Based Text-to-Music Backbone Models

The evolution of diffusion-based text-to-music models reflects a series of incre-

mental innovations and refinements, each building on the strengths of its pre-

decessors while addressing specific limitations. These models can be grouped

into several categories based on their shared architectures, conditioners, and im-

provements in output quality. Table 2.1 provides an overview of these models.
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The journey began with Riffusion (2022), which applied diffusion processes

to music using methods initially designed for image generation, without mak-

ing specific optimisations for musical outputs. This set the stage for subsequent

models likeMousai (2023) andNoise2Music (2023), which moved beyond Rif-

fusion by employing cascaded 1D UNet architectures, specifically conditioned on

T5, to generate longer, higher-quality waveforms. These models demonstrated

a significant step forward by directly targeting music generation with dedicated

architectures.

In the same period, TANGO (2023) and its refined version, Mustango

(2023), emerged, sharing the same VAE and 2D UNet architecture while utilis-

ing the FLAN-T5 conditioner. Mustango introduced subtle improvements over

TANGO, maintaining the same core framework but optimising performance and

generation efficiency. Similarly, the AudioLDM family, consisting of Audio-

LDM, MusicLDM, and AudioLDM 2, followed a trajectory of continuous

refinement. MusicLDM is essentially a fine-tuned version of AudioLDM, while

AudioLDM 2 brought separate improvements specifically to the encoder, en-

hancing flexibility and adaptability across various tasks.

Meanwhile, Stable Audio (2024) and Stable Audio 2 further advanced

the field. Stable Audio employed a VAE and 1D UNet architecture conditioned

on CLAP, generating up to 95-second audio outputs. Stable Audio 2 extended

this capability by introducing DiT (Diffusion Transformers), significantly in-

creasing the length of generated outputs to up to 4 minutes and 45 seconds,

marking a notable leap in generation length and quality.

Lastly, Jen-1 and Jen-1 Composer (2023) introduced more sophisticated

features, including support for multitrack generation in Jen-1 Composer, built

on the foundation of MAE and 1D UNet architectures. These models leveraged

FLAN-T5 for conditioning, focusing on producing high-quality stereo wave-

forms, with Jen-1 Composer expanding capabilities to multitrack outputs for

more complex compositions.

Riffusion. Riffusion [Forsgren and Martiros, 2022] is one of the pioneering

projects in the field of text-to-music generation using diffusion models. The core

component of Riffusion is its use of a latent text-to-image diffusion model, specif-

ically a fine-tuned Stable-Diffusion-v1-5 checkpoint, to create spectrograms from

text. These spectrograms visually represent the audio and are subsequently

converted into sound using the Griffin-Lim algorithm. This method allows for

real-time music generation, showcasing the potential of diffusion models in au-

dio synthesis. However, the reliance on Griffin-Lim limits the audio quality

waveform reconstruction; the length of audio is also limited to only 5 seconds.

Riffusion was trained on a dataset composed of paired text and spectrogram
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images, leveraging the LAION-5B dataset for text-image pairs and additional

audio data. Despite its foundational nature and certain limitations in audio

fidelity, Riffusion has significantly influenced subsequent research by demon-

strating the feasibility of using diffusion models for generating music from tex-

tual descriptions. The project is available for public use and experimentation

through its web app and model repository.

Moûsai. Moûsai [Schneider et al., 2023] is another pioneering research model

in the field of text-to-music generation, marking the first significant exploration

into diffusion-based methods for this purpose. It bridges the gap between tex-

tual descriptions and music by employing a highly efficient, expressive, and

long-context handling approach. Moûsai leverages a cascading two-stage latent

diffusion model that can generate high-quality stereo music at 48kHz, spanning

multiple minutes from textual inputs. The core component of Moûsai is its

diffusion autoencoder, which first compresses the audio into a magnitude-only

spectrogram and then decodes it back to waveform using a custom 1D U-Net.

This structure enables the model to efficiently handle long-term musical struc-

ture and produce real-time music generation on consumer GPUs. The dataset

used for training Moûsai includes a large collection of high-quality music samples

paired with textual descriptions, facilitating the model’s capability to generate

music that reflects the provided text.

Noise2Music. Noise2Music [Huang et al., 2023] is one of the pioneering mod-

els in the field of text-to-music generation, particularly notable for its use of dif-

fusion models to directly generate audio waveforms from textual descriptions.

This model addresses the challenge of generating high-fidelity music by employ-

ing a two-stage diffusion process. The first stage involves a generator model that

produces an intermediate representation conditioned on the text input, while

the second stage involves a cascader model that enhances the fidelity of this

intermediate representation to produce high-quality audio.

The core component of Noise2Music is its diffusion-based architecture, which

leverages a 1D Efficient U-Net for the generator and cascader models. The gen-

erator model first generates a low-fidelity audio waveform at 3.2kHz conditioned

on the text. This low-fidelity audio is then upsampled and refined by the cas-

cader model to produce a high-fidelity audio waveform at 16kHz. This two-stage

approach allows the model to effectively compress and refine audio information,

leading to improved audio quality.

For its training, Noise2Music utilises a large-scale dataset that includes Mu-

sicCaps [Agostinelli et al., 2023], AudioSet [Kim et al., 2019], and MagnaTa-

gATune [Law et al., 2010]. These datasets provide a diverse range of music
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samples paired with detailed textual descriptions, enabling the model to learn

complex mappings between text and music. The model also employs pretrained

large language models to generate paired text for the audio in the training set

and to extract text embeddings for conditioning the diffusion models.

TANGO. TANGO [Ghosal et al., 2023] is a versatile text-to-audio generation

model that leverages a latent diffusion model (LDM) to generate high-quality

audio, including music, from textual descriptions. Initially designed for general

text-to-audio tasks, TANGO was later adapted to include music generation

capabilities.

The core component of TANGO is its use of the instruction-tuned large

language model FLAN-T5 [Chung et al., 2024] as the text encoder, which gen-

erates detailed text embeddings from input descriptions. These embeddings are

then used to guide the LDM in constructing a latent audio representation. The

model utilises a 1D U-Net architecture within the LDM for both the forward

and reverse diffusion processes, enabling it to handle the complexities of audio

generation effectively.

TANGO employs a cascading approach for diffusion, with a generator model

producing an intermediate audio representation at a lower fidelity (e.g., 3.2kHz),

which is then refined by a cascader model to a higher fidelity (e.g., 16kHz). This

two-stage process helps in compressing and then enhancing the audio quality, en-

suring that the final output is both high-fidelity and true to the textual prompt.

Mustango. Mustango [Melechovsky et al., 2024a] extends the capabilities of

the TANGO model by incorporating music-specific metadata to enhance con-

trollability over the generated music. This model allows users to provide detailed

musical instructions in addition to general text descriptions, enabling control

over aspects such as chords, beats, tempo, and key.

The core component of Mustango is its use of MuNet, a Music-Domain-

Knowledge-Informed UNet module. MuNet integrates these music-specific fea-

tures, predicted from the text prompt, into the diffusion denoising process. This

approach ensures that the generated music adheres to the specified musical prop-

erties, offering a high degree of control over the output.

For training, TANGO utilises datasets such as AudioCaps, which contain

extensive audio clips paired with human-written captions. Despite training

on a relatively smaller dataset compared to other models, TANGO achieves

impressive performance, owing to its robust architecture and the efficiency of

its instruction-tuned text encoder.
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AudioLDM and MusicLDM. AudioLDM [Liu et al., 2023] and MusicLDM

[Chen et al., 2024] are innovative models in the field of text-to-audio and text-

to-music generation. Both models leverage Latent Diffusion Models (LDMs)

and the Contrastive Language-Audio Pretraining (CLAP) framework to bridge

the gap between text and audio representations. Here I discuss each model and

compare their approaches.

AudioLDM generates audio from textual descriptions using a diffusion model

operating in a latent space. It aims to create high-fidelity audio samples by

leveraging the pretrained CLAP model to align text and audio embeddings.

The core of AudioLDM involves two main components: the CLAP model

and the Latent Diffusion Model (LDM). The CLAP model provides a shared

embedding space for both text and audio. During training, audio embeddings

from the CLAP model are used to condition the LDM. This conditioning is

achieved through a Feature-wise Linear Modulation (FiLM) mechanism, which

modulates the latent diffusion process using the text embeddings during infer-

ence. This approach allows the model to learn from audio-only data during

training and use text embeddings for generation.

AudioLDM is trained on a variety of datasets, including AudioSet and

FSD50K, which provide diverse audio samples paired with textual descriptions.

The model benefits from a large amount of audio data to learn robust audio

representations.

MusicLDM builds on the architecture of AudioLDM but introduces two sig-

nificant modifications to enhance its performance for music generation. First,

it retrains the CLAP model on text-music pair datasets to improve its under-

standing of musical contexts. Second, MusicLDM employs beat-synchronous

mixup strategies for data augmentation. These strategies involve mixing audio

samples at synchronised beats, ensuring the resultant training data is musically

coherent. This beat-synchronous augmentation helps the model generate more

diverse and rhythmically accurate music.

MusicLDM is trained on specialised music datasets such as MusicCaps and

MusicBench. These datasets contain rich textual descriptions of music, which

help the model learn to generate music that aligns closely with detailed text

prompts.

While both AudioLDM and MusicLDM use LDMs and the CLAP frame-

work, MusicLDM’s enhancements make it particularly suited for generating

music. The beat-synchronous data augmentation and retraining of the CLAP

model on music-specific datasets allow MusicLDM to generate more musically

coherent and varied outputs compared to the more general audio generation ca-

pabilities of AudioLDM. However, both models face limitations in precise control

over the generated audio due to the global nature of CLAP embeddings and the
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gap between training (audio embeddings) and inference (text embeddings).

AudioLDM 2. AudioLDM 2 [Liu et al., 2024a] is an advanced text-to-music

generation model that improves upon its predecessor, AudioLDM, by integrat-

ing more detailed text representations and refining the conditioning process to

enhance the quality and controllability of the generated audio.

AudioLDM 2 generates high-fidelity audio, including music, from textual

descriptions by fusing comprehensive text representations with advanced diffu-

sion models. This model is designed to address the limitations in earlier models

regarding the precision and detail of the generated audio.

The core components of AudioLDM 2 include the use of Contrastive Language-

Audio Pretraining (CLAP) embeddings and a Latent Diffusion Model (LDM).

The model operates through a two-step process: 1, Conditioning Information

to LOA Translation: AudioLDM 2 introduces the concept of the “Language of

Audio” (LOA), an intermediate feature that bridges the gap between text and

audio representations. The LOA is derived using a self-supervised pretrained

AudioMAE [Huang et al., 2022a] model, which captures both semantic and

acoustic details of audio signals; 2, LOA to Audio Generation: The model uses

the LOA to condition the latent diffusion model, which generates the final audio

output. By employing a cross-attention mechanism, AudioLDM 2 can incorpo-

rate detailed text representations directly into the diffusion process. This allows

the model to utilise CFG, enhancing the precision and fidelity of the generated

audio.

AudioLDM 2 is trained on comprehensive datasets such as AudioSet and

MusicCaps, which provide a diverse range of audio samples paired with textual

descriptions. This extensive training data enables the model to learn robust

mappings between text and audio, improving its generalisation and performance

across various audio generation tasks.

Stable Audio 1 and 2. Stable Audio 1 [Evans et al., 2024a] is a diffusion

model designed for generating long-form, variable-length stereo audio, including

music, from text prompts. Unlike earlier models that produce fixed-length out-

puts, Stable Audio 1 introduces timing conditioning to generate audio of varying

lengths, making it suitable for creating long and complex audio sequences.

Stable Audio 1 employs a 907M parameter U-Net, incorporating residual,

self-attention, and cross-attention layers to denoise the latent representations

conditioned on text and timing embeddings. Memory-efficient attention mech-

anisms enable the handling of longer audio sequences.

Stable Audio 1 is trained on a dataset comprising over 800,000 audio files, to-

taling approximately 19,500 hours of music, sound effects, and single-instrument
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stems. The dataset, sourced from AudioSparx, includes detailed text metadata

for effective text-to-audio generation.

Stable Audio 2 [Evans et al., 2024b] is an advanced model designed for

long-form music generation using latent diffusion techniques. It builds upon

the foundations of Stable Audio 1, enhancing its capabilities to generate longer,

more complex music tracks with coherent structure. Stable Audio 2 can generate

music up to 4 minutes and 45 seconds in length, a significant improvement over

its predecessor.

The core components of Stable Audio 2 include: 1. Diffusion-Transformer

(DiT) [Peebles and Xie, 2023]: Unlike the convolutional U-Net structure used

in Stable Audio 1, Stable Audio 2 employs a Diffusion-Transformer (DiT). The

DiT integrates attention mechanisms and gated multi-layer perceptrons (MLPs)

with cross-attention layers to incorporate conditioning signals. This setup al-

lows for efficient handling of long sequences and the integration of detailed text

and timing information. The model uses rotary positional embeddings and ef-

ficient block-wise attention, combined with gradient checkpointing, to manage

the computational and memory demands of processing long temporal contexts.

The training process involves a multi-stage approach. Initially, the model is

pretrained to generate music up to 3 minutes and 10 seconds long, followed by

fine-tuning to extend the maximum length to 4 minutes and 45 seconds. This

phased training ensures the model can handle extended sequences effectively.

Jen-1. JEN-1 [Li et al., 2023] is a high-fidelity model designed for text-to-

music generation, leveraging an omnidirectional diffusion model that integrates

both autoregressive (AR) and non-autoregressive (NAR) training paradigms.

This dual approach allows JEN-1 to capture sequential dependencies in music

(via AR training) while also benefiting from the efficiency of parallel generation

(via NAR training).

The core component of JEN-1 is its hybrid diffusion model. This model

operates within a noise-robust latent embedding space obtained from a masked

audio autoencoder. The diffusion model utilises bidirectional modes to gather

comprehensive context and unidirectional modes to capture sequential depen-

dencies, providing a balanced approach to generating coherent and high-fidelity

music.

JEN-1 is trained on datasets such as MusicCaps, which contain extensive

audio clips paired with textual descriptions. These datasets enable the model

to learn the intricate mappings between text and music, enhancing its ability

to generate music that aligns well with textual prompts.
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Jen-1 Composer. JEN-1 Composer [Yao et al., 2023] extends the capabilities

of the original JEN-1 model to facilitate high-fidelity multi-track music genera-

tion. Building on JEN-1’s foundation, which integrates both autoregressive and

non-autoregressive training for text-guided music generation, JEN-1 Composer

introduces a unified framework that efficiently models the marginal, conditional,

and joint distributions over multi-track music.

JEN-1 Composer is designed for versatile and controllable multi-track music

generation. This model extends the single-track architecture of JEN-1 by con-

catenating multi-track latent representations, thus enabling the explicit mod-

elling of interdependencies between different tracks. The model employs a cur-

riculum training strategy that incrementally transitions from single-track gen-

eration to multi-track generation, improving its capacity to generate coherent

multi-track music.

JEN-1 Composer is also trained on the same dataset. Additionally, the

model leverages source separation tools like Spleeter and Demucs to augment its

training data, allowing it to learn from a diverse range of musical compositions

and enhancing its ability to generate high-fidelity music across multiple tracks.

MusicFlow. MusicFlow [Prajwal et al., 2024] explores a variant of diffusion

models called flow matching for text-to-music generation. This method aims

to improve training stability and efficiency while generating high-quality music.

Unlike diffusion models, flow matching focuses on modelling the conditional

distribution of semantic and acoustic features using two flow matching networks.

This approach achieves faster and more stable training with minor revisions

to existing diffusion techniques. MusicFlow does not represent a significant

breakthrough in text-to-music quality but opens a pathway for efficient model

training.

MusicFlow utilises a cascaded flow matching network for its generation pro-

cess. This involves two networks: one for modelling the semantic features ex-

tracted from text descriptions and another for acoustic features. The training

objective incorporates masked prediction, which enhances the model’s ability to

generalise to tasks like music infilling and continuation. By employing a flow

matching strategy, the model operates with fewer iterative steps and a smaller

parameter size compared to conventional diffusion models.

MusicFlow is trained on an internal dataset comprising a large collection

of music audio paired with textual descriptions. While specific datasets used

for training are not publicly detailed, it is noted that MusicCaps was used for

evaluation purposes, not training. This internal dataset enables the model to

learn complex associations between text and music, allowing for efficient and

effective music generation.
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2.2.2 Music Language Modelling

Music language modelling plays a crucial role in text-to-music generation by

enabling the system to understand and generate audio sequences. Several ad-

vanced models and techniques are employed to achieve this, including Vector

Quantised Variational Autoencoders (VQ-VAEs), Residual Vector Quantisation

(RVQ), and autoregressive models. Here, I will discuss these methods and their

contributions to text-to-music generation.

Vector Quantised Variational Autoencoders (VQ-VAEs)

VQ-VAEs [Van Den Oord et al., 2017] are a type of autoencoder that incor-

porates discrete latent variables, making them particularly effective for mod-

elling high-dimensional data such as audio. In the context of music generation,

VQ-VAEs encode the audio into a discrete latent space, which is then used to

generate new musical sequences by generating new latent codes.

Encoding and Decoding. In a VQ-VAE, the encoder E maps the input

audio y to a discrete latent space z:

z = E(y). (2.31)

The encoder transforms the high-dimensional audio input into a lower di-

mensional latent representation. This step is crucial for reducing the complexity

of the data while preserving its essential characteristics.

The decoderD then reconstructs the audio from the discrete latent variables:

ŷ = D(z). (2.32)

The decoder takes the compressed latent representation and reconstructs it

back into the audio signal, attempting to reproduce the original input as closely

as possible.

Quantisation. The latent space is quantised to a finite set of possible values,

which allows the model to capture the essential features of the audio:

zq = Quantize(z). (2.33)

Quantisation involves mapping the continuous latent variables to a discrete

set of values, making it easier for the model to learn and generate accurate

representations of the audio data.
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Residual Vector Quantisation (RVQ) and EnCodec

RVQ [Zeghidour et al., 2021] is an extension of VQ-VAEs that improves the

representation capacity by using multiple quantisation stages. EnCodec is an

advanced implementation of RVQ, developed by Meta AI, which leverages neural

networks for high-fidelity audio compression and generation.

Multi-stage Quantisation. In RVQ, the latent space is quantised in multiple

stages, each refining the representation:

zq1 = Quantize(z1), zq2 = Quantize(z2|zq1), . . . . (2.34)

In the equation, zq1 represents the quantised version of the latent variable

z1, obtained after the first quantisation stage. zq2 is the quantised latent vari-

able after the second stage, where the quantisation is conditioned on zq1 . This

pattern continues for subsequent stages, where each quantised latent variable

zqi is refined by the previous stage’s quantised output, progressively improving

the fidelity of the representation.

EnCodec Architecture. EnCodec [Kreuk et al., 2023] utilises a convolu-

tional encoder-decoder architecture with residual vector quantisation. It com-

presses the audio into a lower-dimensional representation and then reconstructs

it, maintaining high fidelity.

Encoder:

z = E(y). (2.31)

The encoder consists of multiple convolutional layers followed by a residual

vector quantisation bottleneck.

Decoder:

ŷ = D(z). (2.32)

The decoder mirrors the encoder, reconstructing the audio from the quantised

latent representation.

Performance: EnCodec is capable of compressing audio to various bitrates

while preserving high audio quality. It supports both monophonic and stereo-

phonic audio at different sample rates.

Autoregressive Models

Autoregressive models are fundamental in generating sequences where each step

depends on the previous ones, making them particularly well-suited for music

generation tasks. These models are designed to predict the next element in
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Encoder
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Vocoder

cross-attention & CFG

Auto-regressive Decoding

Figure 2.3: A simplified diagram of an audio language model. The encoder
compresses audio waveforms into discrete tokens, and a auto-regressive model
is responsible for generating new tokens. Text conditions can be fused through
the cross-attention module.

a sequence based on the previous elements, ensuring temporal coherence and

consistency in the generated music.

In the context of text-to-music generation, autoregressive models are often

built on RVQ tokens. RVQ tokens are generated by compressing audio data

into a lower-dimensional, quantised form using Residual Vector Quantisation.

This hierarchical quantisation process allows for efficient and detailed audio

representation, which is crucial for high-fidelity music generation.

Residual Vector Quantisation involves multiple stages of quantisation. Each

stage refines the previous stage’s output, allowing for a detailed and accurate

representation of the audio data. The quantised tokens generated through RVQ

serve as the building blocks for the autoregressive models.

zq1 = Quantize(z1), zq2 = Quantize(z2|zq1), . . . . (2.35)

Here, zqi represents the quantised latent variables at each stage i.

Autoregressive Model Architecture Autoregressive models in text-to-music

generation typically employ transformer architectures due to their ability to han-

dle long-range dependencies and sequential data efficiently. These models are

conditioned on the quantised tokens generated by RVQ.

• Token Embedding:

Token Embedding = Embed(zq) (2.36)

The quantised tokens zq are embedded into a higher-dimensional space

suitable for the transformer model.
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• Sequence Generation:

p(y) =

T∏
t=1

p(yt|y1:t−1). (2.37)

The autoregressive model generates the sequence one step at a time, with

each step yt conditioned on all previous steps y1:t−1.

• Transformer Decoder:

Decoder Output = TransformerDecoder(Token Embedding) (2.38)

The embedded tokens are passed through the transformer decoder, which

predicts the next token in the sequence.

Conditioning and Training Autoregressive models for text-to-music gen-

eration are often conditioned on text embeddings to align the generated music

with the given textual descriptions. This conditioning is achieved by incorpo-

rating text embeddings into the model’s architecture.

Text Embedding = T5(x). (2.39)

Here, x represents the textual description, and T5 is a pretrained text en-

coder that generates text embeddings.

The model is trained end-to-end, optimising the likelihood of the observed

sequences. During training, the model learns to predict the next token in the

sequence based on the previous tokens and the text conditioning.

L = −
T∑

t=1

log p(yt|y1:t−1, x). (2.40)

The training objective is to maximise the log-likelihood of the observed se-

quences, ensuring that the model generates sequences that are consistent with

both the previous tokens and the text descriptions.

Model Developments Recent breakthroughs like MusicLM (2023) estab-

lished the potential of language models for generating high-quality music, lever-

aging a hierarchical combination of SoundStream for audio synthesis and w2v-

BERT for maintaining long-term coherence. The use of MuLan embeddings

enabled the model to align music and text representations effectively, laying

the groundwork for future advancements in generating coherent, stylistically

rich music directly from textual descriptions. MusicGen (2023) continued this

trend by integrating EnCodec and T5 into a single-stage transformer framework,
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focusing on efficient token processing to generate longer, high-fidelity music se-

quences.

More recent models, such as MAGNeT (2024), introduced non-AR trans-

formers to enhance generation speed without sacrificing quality. MAGNeT uses

a masked generative approach, significantly reducing the time required to gener-

ate audio while still maintaining reasonable fidelity, thanks to its reliance on the

EnCodec model for high-quality tokenised representations. StemGen (2024)

took a different path by focusing on stem generation, offering greater flexibility

in music production by generating individual instrumental tracks conditioned

on existing stems and specific instrument categories.

In parallel, symbolic-domain language models have made strides in gen-

erating music using discrete musical representations. MuseCoCo (2023) in-

troduced a two-stage framework to separate text-to-attribute understanding

and attribute-to-music generation, offering precise control over the musical at-

tributes described in text. Models like ChatMusician (2024) extended these

ideas by leveraging large language models (LLMs) and training them on text-

based music representations such as ABC notation, further demonstrating the

versatility of language models in symbolic music generation. Despite limita-

tions in representing complex musical structures with character-level notation,

these models have shown significant potential in treating music generation as a

natural language task.

Audio-domain Language Models

MusicLM. MusicLM [Agostinelli et al., 2023] is capable of generating music

at 24 kHz that remains coherent over extended durations. MusicLM generates

raw audio, ensuring a natural and fluid progression in the music it creates. The

core architecture of MusicLM utilises a combination of SoundStream [Zeghidour

et al., 2021] for high-quality audio synthesis, w2v-BERT [Chung et al., 2021] for

maintaining long-term semantic coherence, and MuLan [Huang et al., 2022b] for

joint music-text embeddings. The SoundStream model provides acoustic tokens,

while w2v-BERT offers semantic tokens, ensuring that both fine acoustic details

and overall musical structure are captured. MuLan embeddings are used to

condition the model, with music embeddings employed during training and text

embeddings used during inference. This hierarchical approach allows MusicLM

to balance the generation of detailed and coherent music with adherence to

textual descriptions.

MusicLM is trained on a large and diverse dataset consisting of 280,000 hours

of music, enabling it to capture a wide range of musical styles and contexts. This

extensive dataset allows the model to learn complex mappings between textual
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descriptions and musical outputs, ensuring high fidelity and stylistic accuracy

in the generated music.

MusicGen MusicGen [Copet et al., 2024] integrates a single-stage transformer

LM with efficient token interleaving patterns. The transformer model processes

sequences of tokens (discrete audio representations) efficiently, capturing long-

range dependencies and enabling high-quality music generation from text inputs.

The model is trained end-to-end with text embeddings incorporated into the

neural networks that parameterise the diffusion and autoregressive processes.

This allows the model to learn the complex relationships between text and

music. MusicGen models are trained on 30-second chunks of audio but can

generate longer sequences with a windowing approach.

MAGNeT. MAGNeT [Ziv et al., 2024] is designed to generate high-quality

audio, including music, from textual descriptions using a single non-autoregressive

transformer model. Unlike autoregressive models that generate audio sequen-

tially, MAGNeT predicts spans of masked tokens in parallel, allowing for faster

audio generation. This parallel approach makes MAGNeT significantly faster

than models like MusicGen, though it does not achieve the same level of au-

dio quality. MaGNeT’s approach is similar to VampNet [Garcia et al., 2023],

while VampNet focuses more on unconditional music inpainting, and MaGNeT

supports text conditioning.

The core component of MAGNeT is its non-autoregressive transformer ar-

chitecture, which operates over multiple streams of audio tokens generated by

EnCodec. This approach leverages the EnCodec model, which provides a high-

quality latent representation of audio by using vector quantisation to encode

the audio into discrete tokens. MAGNeT employs a unique masking strategy

that focuses on spans of tokens rather than individual tokens, improving the

efficiency and coherence of the generated audio. This approach contrasts with

MusicGen, which uses an autoregressive transformer model, leading to differ-

ences in generation speed and quality.

MAGNeT is trained on a substantial dataset of 16,000 hours of audio,

sourced from licenced datasets such as the Meta Music Initiative Sound Collec-

tion, Shutterstock music collection, and Pond5 music collection. However, the

exact datasets used for training are not publicly available due to legal agreements

with the rights holders, and only a dummy dataset is provided for illustrative

purposes.

StemGen. StemGen [Parker et al., 2024] is a music generation model that

focuses on generating individual stems based on other stems, differing from other
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foundation models that typically aim to generate complete music tracks. This

approach allows for more granular control and flexibility in music production,

making it suitable for applications where individual instrumental tracks need to

be manipulated independently.

StemGen employs a LLaMa-type transformer model, leveraging a context-

mix and an instrument category as conditioning sources. This dual conditioning

approach helps ensure that the generated stems align well with the existing con-

text and specified instrumentation. The model operates on 32kHz audio, using

EnCodec to encode the audio into discrete tokens, which are then processed by

the transformer model. A trainable codebook with 18 entries, corresponding

to the General MIDI instrument categories, is used to translate conditioning

information into embeddings.

StemGen is trained on a combination of the publicly available Slakh dataset,

which consists of 145 hours of synthetic musical audio separated into stems, and

an internal dataset of 500 hours of licenced human-played music, also separated

into stems. The datasets include metadata specifying the instrument type of

each stem, allowing the model to learn detailed mappings between the context-

mix, instrument category, and the generated stems. This extensive training

setup enables StemGen to handle a wide range of musical contexts and instru-

mentation accurately.

Symbolic-domain Language Models

As symbolic music generation models, the large-scale models below represent

the latest methods for text-to-music generation. I list and discuss them as a

comparison with the audio language modelling methods.

MuseCoCo. MuseCoCo [Lu et al., 2023] is a model designed to gener-

ate symbolic music from text descriptions by employing a two-stage frame-

work. This approach separates the task into text-to-attribute understanding

and attribute-to-music generation stages, each trained independently. This sep-

aration allows MuseCoCo to effectively interpret and control various musical

attributes specified in the text, such as genre, mood, tempo, and key, enhancing

the model’s ability to generate music that aligns well with user specifications.

The core components of MuseCoCo include a robust attribute extraction

mechanism and a music generation model. The first stage, text-to-attribute

understanding, uses a pretrained language model to extract diverse musical at-

tributes from textual descriptions. These attributes are then transformed into

prefix tokens, which guide the subsequent music generation process. In the

second stage, attribute-to-music generation, the model leverages these tokens
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to produce symbolic music. This two-stage approach allows the model to han-

dle large amounts of unlabeled data efficiently, using self-supervised methods

to extract musical attributes and combining them to achieve complex musical

expressions.

MuseCoCo is trained on extensive symbolic music datasets, allowing it to

learn a wide variety of musical styles and structures. The training data consists

of a large collection of symbolic music notations paired with textual descriptions,

which include both objective attributes like tempo and key, and subjective at-

tributes like mood and genre. This dataset is primarily constructed using pub-

licly available symbolic music data, combined with synthesised text-attribute

pairs to enrich the training set.

Wu and Sun [2022] This study investigates the use of pretrained language

models (BERT, GPT-2, and BART) for the task of text-to-music generation. It

aims to generate complete and semantically consistent symbolic music scores di-

rectly from natural language descriptions. By leveraging pretrained checkpoints,

the study explores how these models can be adapted for generating music no-

tation from text, assessing their performance and the benefits they bring to the

text-to-music generation process.

The core component of the study is the use of pretrained language models

to generate music in ABC notation. This choice of notation, however, presents

certain limitations due to its character-level tokenisation, which can struggle

with capturing more complex musical nuances and dependencies. The models

are fine-tuned on a dataset of 282,870 English text-music pairs, using publicly

available checkpoints for BERT, GPT-2, and BART. The training involves ini-

tialising the model parameters from these checkpoints and adapting them for

music generation tasks. Despite these efforts, the study acknowledges the inher-

ent weaknesses of ABC notation in accurately representing the intricate details

of music, which can limit the expressiveness and quality of the generated music.

The training data for this study is derived from a combination of public

datasets, but the specific dataset used for training the models has not been

publicly released due to copyright restrictions. Instead, the authors have made

the WikiMusicText (WikiMT) dataset available, which includes 1,010 pairs of

text-music data for evaluation purposes. This dataset helps in evaluating the

performance of the models and provides a benchmark for future research. The

study highlights the potential of pretrained language models in the music gen-

eration domain while also pointing out the challenges and limitations posed by

the choice of music notation and the availability of high-quality training data.
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ChatMusician. ChatMusician [Yuan et al., 2024a] is a novel large language

model (LLM) developed to understand and generate music using a text-compatible

music representation known as ABC notation. This model integrates musical

abilities intrinsically within the LLM framework, allowing it to process and gen-

erate music through pure text tokenisation without relying on external multi-

modal structures. The primary aim of ChatMusician is to demonstrate that

LLMs can be adapted to handle the language of music, treating it as a second

language and enabling the generation of structured, full-length musical compo-

sitions conditioned on various musical attributes like chords, melodies, motifs,

and forms.

The core components of ChatMusician include continual pre-training and

fine-tuning of the LLaMA2 model on a curated dataset called MusicPile. Mu-

sicPile consists of 4.16 billion tokens, encompassing a variety of music scores,

music-related knowledge, and general language data. The dataset includes pub-

lic datasets such as Pile, Falcon-RefinedWeb, and Wikipedia, alongside spe-

cialised music data like KernScores and Bach music scores. Additionally, syn-

thetic data generated with the help of GPT-4 supplements the training corpus,

enhancing the model’s musical understanding and generation capabilities.

Despite its innovative approach, ChatMusician’s reliance on ABC notation

presents limitations. ABC notation, a character-level music representation, can

struggle to capture complex musical nuances and dependencies, potentially lim-

iting the expressiveness and detail of the generated music. However, the model

demonstrates significant potential by integrating musical capabilities into LLMs,

showing that these models can serve as effective tools for music composition and

understanding, even if they do not achieve state-of-the-art performance in sym-

bolic and audio music generation tasks. ChatMusician offers a novel approach

in the landscape of text-to-music generation by leveraging the capabilities of

LLMs to process and generate music through text alone.

2.2.3 Comparison Between Two Types of Backbone Mod-

els

In the field of text-to-music generation, two primary model types have emerged:

diffusion models and audio language models, each with unique advantages and

challenges.

Diffusion models, such as those used in Moûsai, Noise2Music, TANGO, Mus-

tango, AudioLDM, and MusicFlow, focus on iteratively refining an initial noisy

signal to generate high-fidelity audio outputs. They excel in capturing fine-

grained audio details and producing high-quality, coherent music. Advanced

sampling methods like DDIM and DPM-Solver have significantly reduced the
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time required for generating samples, making diffusion models more efficient.

Furthermore, techniques like progressive distillation can convert diffusion mod-

els to more efficient generative adversarial networks (GANs), balancing quality

and speed. These models are well-suited for applications where audio fidelity

and nuanced musical detail are paramount, despite requiring significant compu-

tational resources.

Audio language models like MusicGen and MusicLM leverage pretrained

language models to understand and generate music. These models often use

hierarchical structures to balance long-term coherence with detailed audio gen-

eration. Techniques such as non-autoregressive sampling, as seen in MAGNeT,

have further enhanced the efficiency of these models, making them faster and

more suitable for real-time applications. These models are generally more ef-

ficient than diffusion models, providing reasonable audio quality with faster

generation times. They are ideal for interactive music creation and scenarios

requiring quick iterations.

The choice between these two types depends on the specific application re-

quirements. Diffusion models are preferable for tasks that demand high-fidelity

audio and detailed musical nuances, especially in offline settings where genera-

tion quality is more important than speed. On the other hand, audio language

models are better suited for real-time applications and interactive scenarios due

to their efficiency and quicker generation capabilities. The integration of fast

sampling methods and efficient tokenisation techniques in both types of mod-

els continues to push the boundaries, making it crucial to consider the specific

needs and constraints of the application when choosing the appropriate model

type.

2.3 Parameter-Efficient Finetuning (PEFT)

Fine-tuning pretrained models is a critical process in adapting powerful ma-

chine learning systems to specific tasks, such as music generation. This process

allows the models to leverage their general understanding while acquiring spe-

cialised knowledge tailored to the task at hand. Parameter-Efficient Fine-tuning

(PEFT) is a subset of this process that seeks to achieve this adaptation with

minimal increase in the number of parameters, thus maintaining computational

efficiency and reducing the risk of overfitting.

One of the key challenges in music generation is capturing the complex and

nuanced structures inherent in musical compositions. Traditional fine-tuning

methods can be computationally expensive and may require a large number of

additional parameters. PEFT techniques, such as LoRA and Llama-adapter,

offer innovative solutions to this problem by introducing small, yet effective,
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Figure 2.4: Diagram of the Low-Rank Adaptation (LoRA) algorithm. LoRA
is a PEFT method that decomposes a large matrix into two smaller low-rank
matrices in the attention layers, which facilitates model finetuning.

modifications to the model’s existing architecture.

LoRA, for instance, employs low-rank matrices to adapt the attention mech-

anisms of transformers. By fine-tuning the cross-attention and self-attention

layers, LoRA allows the model to better understand and generate music with a

nuanced grasp of its structure.

The Llama-adapter, although a conceptual technique, presents an intriguing

approach to adapting the latent space of models like LLaMA, which are known

for their efficiency in language tasks. By transforming the latent vectors with

a matrix that represents musical characteristics, the Llama-adapter could po-

tentially enhance the model’s ability to generate music that aligns with specific

stylistic or structural requirements.

2.3.1 LoRA: Low-Rank Adaptation for Transformers

LoRA [Hu et al., 2021] is a technique designed to fine-tune pretrained models

with minimal additional parameters. In the context of music generation, LoRA

can be particularly effective for adapting the model’s cross-attention and self-

attention mechanisms to better capture the musical structure.

• Cross-Attention in Transformers: The cross-attention mechanism in

transformers allows the model to focus on different parts of the input

sequence when generating each token. By applying LoRA to the cross-

attention layers, we can introduce low-rank matrices A that adapt the
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attention weights w as follows:

w′ = A · w, (2.41)

where A is a low-rank matrix that captures the fine-grained control needed

for music generation.

• Self-Attention in Transformers: Self-attention allows the model to

focus on different parts of the generated sequence itself. Fine-tuning this

with LoRA involves adapting the self-attention weights v and k using a

low-rank matrix B as follows:

v′ = B · v, k′ = B · k (2.42)

This adaptation enables the model to better represent the internal struc-

ture of the music.

• Diffusion Cross-Attention: In models that combine diffusion processes

with attention mechanisms, LoRA can be applied to the cross-attention

layers to control the diffusion process. The diffusion cross-attention can

be formulated as:

w′ = D ·A · w, (2.43)

where D represents the diffusion process matrix and A is the low-rank

adaptation matrix.

2.3.2 Llama-Adapter: Adaptation for Latent Space Con-

trol

The Llama-adapter is a fine-tuning module that could be used to adapt the

latent space of a pretrained model like LLaMA [Touvron et al., 2023], which is

known for its efficiency and effectiveness in language tasks.

• Adapting Latent Space: The Llama-adapter could be used to adapt

the latent space of the LLaMA model to better represent musical features.

This could involve modifying the latent vectors z with a transformation

matrix T as follows:

z′ = T · z, (2.44)

where T is a matrix that captures the musical characteristics to be em-

phasised.

• Application in Music Generation: The adapted latent space could

then be used to influence the generation process, ensuring that the gen-
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Figure 2.5: The diagram of Llama-adapter architecture.

erated music adheres to specific stylistic or structural requirements. This

could be particularly useful for generating music in a specific genre or

style.

• Fine-Tuning with Music Data: After adapting the latent space, the

model could be further fine-tuned on a dataset of music to refine its under-

standing of musical patterns and structures. This would involve optimising

the parameters of the Llama-adapter to minimise the difference between

the generated music and the target music.

2.4 Controllability and Editability of Pretrained

Models

The focus of this section is on how to enable and extend the controllability and

editability of pretrained music generation models, making them more aligned

with real-world music-making applications, such as music inpainting, conditional
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music generation, music variation generation, etc. This involves exploring var-

ious approaches and techniques used in the field, including integrating control

mechanisms during model training, enhancing control post-training, and em-

ploying sophisticated editing methods.

2.4.1 Approaches to Enhancing Controllability and Ed-

itability

Previous approaches to control in small generative models often rely on disentan-

gling representations in latent space [Luo et al., 2019, Wang et al., 2020b, Bryan-

Kinns et al., 2023]. For large-scale music generative models, control mechanisms

are typically implemented through various strategies:

1. Integrating Trainable Control Modules into Pretrained Models:

This category focuses on augmenting pretrained large-scale models with

additional control mechanisms, enabling the generation of music that ad-

heres to specific parameters without retraining the entire model. Examples

include Music ControlNet [Wu et al., 2024], Diff-A-Riff [Nistal et al., 2024],

and JASCO [Tal et al., 2024], which introduce control modules or condi-

tioning methods to adjust dynamics, melody, rhythm, and other musical

attributes during the generation process.

2. Specialised Editing Models: These models are designed explicitly for

editing existing music content based on user instructions, often utilising

text guidance to modify or enhance music. For instance, AUDIT [Wang

et al., 2023] and InstructME [Han et al., 2023] perform various audio

editing tasks such as adding, dropping, replacing, inpainting, and super-

resolution, guided by human text instructions. They provide fine-grained

control over the editing process, allowing users to adjust specific aspects

of the music while preserving others.

3. Agent-Based Methods for Compositional Music Generation and

Editing: This approach employs agent-based systems or multi-modal AI

frameworks to enable interactive and compositional music generation and

editing, integrating large language models with other modalities. Exam-

ples include AudioGPT [Huang et al., 2024], which incorporates audio

foundation models to enhance large language models’ capabilities in pro-

cessing complex audio information and engaging in spoken dialogues, and

M2UGen [Hussain et al., 2023], which leverages large language models

for multi-modal music understanding and generation from diverse sources

such as music, images, and videos.
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4. Inference-Time Optimisation Methods: These methods focus on

controlling and editing music generation during the inference stage of

pretrained models without requiring additional training or fine-tuning.

Techniques like DITTO [Novack et al., 2024], SMITIN [Koo et al., 2024],

ZETA [Manor and Michaeli, 2024], and the approach by Rouard et al.

[2024] utilise inference-time optimisation, classifier probes, or zero-shot

editing to steer the output of generative models toward desired musical

characteristics. This allows for dynamic adjustments and fine-tuning of

the generated music to better match user intentions.

2.4.2 Integrating Trainable Control Modules into Pretrained

Models

Music ControlNet

Music ControlNet [Wu et al., 2024] presents a novel approach to enhancing the

controllability of music generation models. It is pioneering work that adapts

the ControlNet architecture, commonly used in image generation, for the do-

main of music. The primary goal is to introduce dynamic, melody, and rhythm

controls that allow users to fine-tune the output of music generation models

more precisely. By doing so, Music ControlNet aims to bridge the gap between

automated music generation and real-world music production requirements.

Music ControlNet integrates control signals into the generative process of

large-scale transformer-based models. The input consists of control signals and

initial music input. These control signals, which include dynamic markings,

melody lines, and rhythmic patterns, are processed through a series of transfor-

mations and then incorporated into the self-attention and cross-attention layers

of the transformer. This integration allows the model to adjust various aspects

of the music generation process based on the provided control signals, ensuring

that the generated music adheres to user specifications.

The model architecture can be formally described as follows:

• Input Representation: The input consists of control signals c and initial

music input x. Control signals can include dynamic markings, melody

lines, or rhythmic patterns.

• Control Module Integration: The control module is integrated into the

transformer-based generative model. The control signals c are processed

through a series of transformations:

c′ = Wc · c+ bc, (2.45)
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where Wc and bc are weight and bias parameters for the control signals.

• Attention Mechanisms: The modified control signals c′ are incorpo-

rated into the self-attention and cross-attention layers of the transformer.

For self-attention, the attention weights w are adjusted based on c′:

w′ = A · (w + c′), (2.46)

where A is a low-rank adaptation matrix. Similarly, for cross-attention,

the process is:

w′′ = B · (w′ + c′). (2.47)

• Output Generation: The adjusted attention weights are then used to

generate the output music sequence y:

y = Decoder(w′′). (2.48)

This process ensures that the generated music adheres to the control sig-

nals provided by the user.

Music ControlNet is evaluated on a diverse dataset comprising various mu-

sic genres and styles, including both MIDI files and audio recordings annotated

with dynamic, melody, and rhythm information. The experiments focus on

measuring the controllability and quality of the generated music. Results in-

dicate significant improvements in controllability compared to baseline models,

allowing users to effectively adjust dynamics, melody, and rhythm. The quality

of the generated music, assessed through both objective metrics like pitch accu-

racy and rhythmic consistency and subjective human evaluations, demonstrates

that Music ControlNet produces high-quality music that closely aligns with user

specifications.

Diff-A-Riff

Nistal et al. [2024] introduce a novel method for generating high-quality instru-

mental accompaniments designed to be adaptable to various musical contexts.

The model is based on Latent Diffusion Models (LDMs), offering control through

audio references, text prompts, or a combination of both, while producing 48kHz

stereo audio.

At the heart of the Diff-A-Riff system are two critical technological ele-

ments: a Consistency Autoencoder (CAE) with a high compression rate, which

improves inference time and memory usage, and the expressive power of Eluci-

dated Diffusion Models (EDMs). EDMs are known for their robust handling of
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complex data distributions and enhanced efficiency in model parameterisation

and inference. The model is trained to reconstruct accompaniments given a con-

text and a CLAP (Cross-modal Latent Audio Processing) embedding derived

from a random sub-segment of the target accompaniment itself.

JASCO

Tal et al. [2024] present a model named JASCO, which aims to enhance the

controllability and editability of text-to-music generation models. JASCO is a

temporally controlled text-to-music generation model that utilises both symbolic

and audio-based conditions. This approach allows for the generation of high-

quality music samples that are conditioned on global text descriptions as well as

fine-grained local controls. The model is based on the Flow Matching modelling

paradigm combined with a novel conditioning method, enabling local and global

control over music generation.

The components of JASCO include a source separation network for drum

extraction, an F0 saliency detector model for melody extraction, and a chord

progression extraction model for harmonic conditioning. The model leverages a

continuous latent representation of audio, obtained from a compression model,

and incorporates discrete token sequences for audio conditioning. JASCO ap-

plies information bottleneck layers in conjunction with temporal blurring to

extract relevant information with respect to specific controls. This allows the

incorporation of both symbolic and audio-based conditions in the same text-to-

music model.

In terms of algorithmic formulas, the paper introduces the Conditional Flow

Matching (CFM) objective function, which is defined as:

LCFM(θ; z0, z1, t|Y ) = |vθ(z, t|Y )− (z1 − (1− σmin) · z0)|2. (2.49)

where z0 ∼ N(0, I) is sampled noise, z1 ∼ S is the latent representation of a

data sample, and z = (1− (1− σmin) · t) · z0 + t · z1 is an interpolation between

the noise and the data sample. The model is trained to predict the vector

field of the continuous latent audio variable z, given t and a set of conditions

Y . Additionally, the paper discusses the use of a weighted loss function during

training, which is given by:

LWeightedCFM = Et∼U(0,1),z0∼N(0,1),z1∼S [(1 + t) · LCFM (θ; z0, z1, t|Y )] . (2.50)

67



2.4.3 Specialised Editing Models

AUDIT

Wang et al. [2023] presents AUDIT, a specialised text-guided audio editing

model that operates based on latent diffusion models. This model is designed

to perform various audio editing tasks such as adding, dropping, replacement,

inpainting, and super-resolution, guided by human text instructions. Unlike

previous methods that rely on pretrained text-to-audio models and require com-

plete descriptions of the output audio, AUDIT utilises simple edit instructions,

enhancing its flexibility and suitability for real-world applications. The model

demonstrates a novel approach to integrating control mechanisms within audio

editing tasks, focusing on the editability and controllability of the audio output

based on textual guidance. This work pioneers the field of specialised text-

guided audio editing models, providing a foundation for subsequent research in

this domain.

AUDIT employs a control mechanism that leverages triplet training data

consisting of instructions, input audio, and output audio. The model is trained

in a supervised manner, utilising the input audio and text instructions as con-

ditions to generate the edited audio output. This approach allows the model

to automatically learn which segments of the audio need modification, thereby

enhancing control over the editing process. The control mechanism in AUDIT is

distinct as it does not require a full description of the target audio, aligning with

the practical scenarios where detailed descriptions may not be available. This

method of control is innovative as it directly uses the input audio as conditional

input, forcing the model to ensure consistency of unedited segments before and

after the editing process.

AUDIT comprises several components, including a variational autoencoder

(VAE), a T5 text encoder, a diffusion network, and a vocoder. The VAE model

projects the input mel-spectrogram into a latent space and reconstructs it, while

the T5 encoder converts text instructions into embeddings. The diffusion net-

work operates in the latent space, guided by the text embeddings and the latent

representation of the input audio, to generate the edited audio. The vocoder

then reconstructs the waveform from the output mel-spectrogram. The training

loss of the autoencoder is expressed as:

LVAE = λ1L1 + λ2L2 + λKLLKL + λGANLGAN, (2.51)

where L1 and L2 are the L1 and L2 reconstruction losses, LKL is the Kullback-

Leibler loss, and LGAN is the GAN loss. The latent diffusion model is trained

to learn the distribution p(zout|zin, ctext), where zout is the latent representation
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of the edited mel-spectrogram, zin is the latent representation of the input mel-

spectrogram, and ctext is the embedding of the editing instruction. The training

loss for the latent diffusion model is given by:

LLDM = Ezin,zout,instruction

[
Eϵ∼N (0,I)

[
||ϵθ(zt, t, zin, ctext)− ϵ||2

]]
. (2.52)

The model is trained and evaluated on several datasets, including Audio-

Caps, AudioSet, FSD50K, and ESC50. These datasets consist of audio clips

with corresponding labels or captions, providing a rich source of data for train-

ing the triplet data required for the various editing tasks. The training process

involves generating approximately 0.6 million triplet data points, covering the

five editing tasks.

InstructME

Han et al. [2023] introduce InstructME, a novel framework for instruction-guided

music editing and remixing based on latent diffusion models. InstructME lever-

ages natural language instructions to perform music editing tasks such as adding,

removing, extracting, replacing, and remixing instrument tracks. The frame-

work is designed to maintain the intrinsic harmony and coherence of music,

which is often compromised by direct applications of image and audio modifi-

cation techniques. InstructME employs a multi-scale aggregation strategy and

incorporates chord progression matrices to enhance harmonic consistency during

editing. Additionally, it utilises a chunk transformer to handle extended mu-

sical pieces by discerning long-term temporal dependencies. The framework’s

effectiveness is demonstrated through both subjective and objective evaluations,

outperforming previous systems in music quality, text relevance, and harmony.

InstructME is composed of several key components, including a variational

autoencoder (VAE), a T5 text encoder, a diffusion network, and a chunk trans-

former. The VAE model compresses the input audio into a latent represen-

tation, which is then reconstructed by the decoder. The T5 encoder converts

text instructions into embeddings that guide the diffusion process. The diffu-

sion model, based on a time-conditional U-Net, generates new audio samples

from noisy embeddings, conditioned on text and source music embeddings. The

chunk transformer addresses the computational inefficiency of self-attention in

long music sequences by processing the data in chunks, thereby modelling long-

term dependencies with reduced computational cost. The control mechanism

in InstructME is achieved through a combination of classifier-free guidance and

classifier guidance, allowing for both fine-grained semantic control and flexibility

in generation.
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The objective function for model optimisation is the reweighted bound:

LDM = Eϵ,t,z0

[
|ϵ− ϵθ(t, T (y), zs, zt)|22

]
. (2.53)

In addition, the framework incorporates multi-scale aggregation and chord con-

ditioning to improve consistency and harmony:

LCDM = Eϵ,t,z0

[
|ϵ− ϵθ(t, ps, zs, zt)|22

]
, (2.54)

where ps denotes the chord progression matrix of the source music.

InstructME is trained on a collection of 417 hours of music audio, resampled

to a 24kHz sample rate and divided into non-overlapping 10-second clips. The

training data includes triplets of text instructions, source music, and target

music, covering remixing, adding, and replacement tasks.

2.4.4 Agent-based Methods for Compositional Music Gen-

eration and Editing

AudioGPT

Huang et al. [2024] introduces AudioGPT, a multi-modal AI system designed

to enhance the capabilities of large language models (LLMs) in processing com-

plex audio information and engaging in spoken dialogues. Unlike regular LLMs

that primarily focus on text, AudioGPT incorporates audio foundation mod-

els to enable understanding and generation tasks across speech, music, sound,

and talking head modalities. The system aims to improve the controllability

and editability of pretrained text-to-music models by integrating these audio

capabilities. The control mechanisms employed by AudioGPT include the use

of speech recognition, text-to-speech, and audio-to-text models to facilitate di-

alogue and audio processing, thereby enhancing the system’s ability to interact

with users in a more natural and intuitive manner.

AudioGPT is composed of several components that work in tandem to

achieve its objectives. The model can be divided into four main stages: 1.

Modality Transformation: This stage uses input/output interfaces such as auto-

matic speech recognition (ASR) and text-to-speech (TTS) to transform between

speech and text, bridging the gap between spoken language models and text-

based LLMs. 2. Task Analysis: The dialogue engine and prompt manager in

this stage help the LLM understand the user’s intention to process audio infor-

mation. 3. Model Assignment: Here, the LLM assigns audio foundation models

based on structured arguments for prosody, timbre, and language control. 4.

Response Generation: After the execution of foundation models, responses are
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generated and returned to the users.

These components collectively enable AudioGPT to perform a wide range

of tasks, including generating audio from text, synthesising speech and singing

voices, and processing audio for various applications.

M2UGen

Hussain et al. [2023] introduces a framework that leverages large language mod-

els (LLMs) for multi-modal music understanding and generation. The authors

aim to bridge the gap in research that combines both understanding and gener-

ation using LLMs. The M2UGen framework integrates the capabilities of LLMs

to comprehend and generate music from diverse sources of inspiration, including

music, images, and videos. This is achieved through the use of pretrained mod-

els such as MERT, ViT, ViViT, and LLaMA 2, and music generation models

like AudioLDM 2 and MusicGen. The framework also employs the MULLaMA

model to generate extensive datasets that support text/image/video-to-music

generation, facilitating the training of the M2UGen framework.

The M2UGen framework employs a systematic approach to controllability

and editability in text-to-music models. It incorporates multiple modal encoders

to represent image, video, and music inputs, utilising ViT and ViViT for image

and video modalities, and MERT as the music encoder. The feature representa-

tions from these encoders are fed into understanding adaptors, which are then

comprehended by the LLaMA 2 model. For music generation, the framework

explores two music decoders, AudioLDM 2 and MusicGen. The control mech-

anism in M2UGen is achieved through the integration of these components,

allowing for the generation of music based on multi-modal inputs. The frame-

work also supports music editing based on natural language prompts, enhancing

its editability.

The M2UGen framework is evaluated on a range of tasks, including mu-

sic question answering, text-to-music generation, image-to-music generation,

video-to-music generation, and music editing. The authors have generated

four datasets to train the model: MUCaps, MUImage, MUVideo, and MUEdit.

These datasets consist of text-music pairs, image-music pairs, video-music pairs,

and music editing instructions, respectively. The model is trained in a phased

manner, initially focusing on comprehending diverse modalities, followed by re-

fining the LLaMA 2 model’s capability to condition music generation based on

input captions. The final training stage employs a LoRA training strategy to

fine-tune the LLaMA 2 model, multi-modal understanding adapters, and output

projection layer.
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2.4.5 Inference-time Optimisation Methods

DITTO

Novack et al. [2024] introduce a framework called Diffusion Inference-Time T-

Optimisation (DITTO), which aims to enhance the controllability and editabil-

ity of pretrained text-to-music diffusion models at inference time. Unlike meth-

ods that focus on integrated control during pre-training or injecting modules

like adapters for control, DITTO operates by optimising the initial noise latents

to achieve a target output. This approach allows for fine-grained control over

various musical features without the need for further training or fine-tuning of

the underlying model.

The control mechanism in DITTO is based on optimising an arbitrary dif-

ferentiable feature matching loss. This enables the model to adjust its output

to match a desired feature, such as intensity, melody, or musical structure. The

framework leverages gradient checkpointing to ensure memory efficiency during

the optimisation process. This method stands out as it provides a training-

free way to control pretrained models, offering flexibility and efficiency in music

generation tasks.

The core components of the DITTO model include the pretrained diffusion

model, a feature extractor function f(·), a loss function L, and an optimiser.

The algorithm operates by initialising the noise latents xT , running the diffusion

sampling process to generate a music spectrogram x0, extracting features from

the generated content, and then optimising the initial noise latents to fit any

differentiable loss. The pseudo-code for the DITTO algorithm is as follows:

Algorithm 1 Pseudocode

1: Input: ϵθ, Sampler, T , f , L, y, xT , c, K, g
2: for i = 1 to K do
3: xt ← xT

4: for t = T to 1 do
5: xt−1 = Checkpoint(Sampler, ϵθ, xt, t, c)
6: end for
7: ŷ = f(x0)
8: xT ← xT − g(∇xT

L(ŷ, y))
9: end for

10: Output: x0

In this algorithm, ϵθ represents the diffusion model, T is the number of

sampling steps, f is the feature extractor, L is the loss function, y is the target

feature, xT is the initial noise latent, c is the text conditioning, K is the number

of optimisation steps, and g is the optimiser.
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SMITIN

Koo et al. [2024] present SMITIN (Self-Monitored Inference-Time INterven-

tion), an innovative approach for controlling autoregressive generative music

transformers. Unlike previous methods that focus on integrated control dur-

ing pre-training or injecting modules for control, SMITIN employs classifier

probes to steer the model’s attention heads towards capturing specific musical

traits. These probes are trained on a small dataset of audio examples and are

used to dynamically adjust the intervention strength at each generation step.

This ensures that the output incorporates the desired musical characteristics

while maintaining temporal coherence. The method is validated for both audio

continuation and text-to-music applications, demonstrating its effectiveness in

adding controls to large generative models without the need for retraining or

fine-tuning.

The core components of the SMITIN model are the pretrained autoregressive

music transformer, classifier probes, and a self-monitoring intervention mecha-

nism. The transformer generates music by predicting a sequence of audio frames,

with each layer consisting of multiple attention heads. The classifier probes are

trained to recognise specific musical traits and are used to modify the attention

heads’ outputs. The self-monitoring intervention mechanism dynamically ad-

justs the intervention strength based on the probe output, preventing excessive

intervention that could disrupt the music’s temporal coherence. The model also

incorporates a soft-weighting approach to determine the weights of the attention

heads, eliminating the need for empirical tuning.

ZETA

Manor and Michaeli [2024] explore two novel zero-shot editing techniques for

audio signals, leveraging pretrained diffusion models through DDPM inversion.

The first technique, named ZEro-shot Text-based Audio (ZETA) editing, adapts

a method from the image domain, allowing for text-guided manipulations of

audio signals. The second technique, called ZEro-shot UnSupervised (ZEUS)

editing, introduces an unsupervised approach to discover semantically meaning-

ful editing directions. These methods aim to enhance the controllability and

editability of text-to-music models without the need for training or test-time

optimisation, thereby providing a more flexible and efficient means of audio

editing.

The control mechanism employed in this paper is primarily through text

guidance in the ZETA technique and semantic perturbation in the ZEUS tech-

nique. In ZETA, the authors utilise classifier-free guidance (CFG) to steer

the generative process towards the desired text prompt, enabling edits such
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as changing the style or genre of a musical piece. In contrast, ZEUS relies

on perturbing the output of the denoiser in the directions of the top principal

components (PCs) of the posterior. This unsupervised approach allows for the

generation of variations that adhere to the original key, rhythm, and style, but

are not limited by text descriptions.

The components of the model include the pretrained AudioLDM2 model,

which operates in a latent space and generates mel-spectograms conditioned on

text. These mel-spectograms are then decoded into waveforms using HiFi-GAN.

The DDPM inversion is used to extract latent noise vectors corresponding to

the source signal. For the ZETA technique, the generative process is controlled

by changing the text prompt supplied to the denoiser model. For the ZEUS

technique, the output of the denoiser is perturbed along the top PCs of the

posterior covariance.

The algorithms presented in the paper involve the DDPM inversion process

and the application of PCs for editing. For the ZEUS technique, the perturba-

tion of the denoiser’s output is given by:

xt−1 = µt(xt) + γctλ
1/2
i vi|t′ + σtzt, t = T, . . . , 1 (2.55)

where ct is a correction factor, λ
1/2
i and vi|t′ are the eigenvalues and eigenvectors

of the posterior covariance, and γ is a user-chosen parameter controlling the

strength of the modification.

Rouard et al. [2024]

Rouard et al. [2024] propose two distinct strategies for conditioning a language

model-based music generation system with audio input. The first strategy,

known as textual inversion, utilises a pretrained text-to-music model to map

audio input to corresponding “pseudowords” in the textual embedding space.

The second strategy involves training a music language model from scratch,

jointly with a text conditioner and a quantised audio feature extractor. This

approach allows for the combination of textual and audio conditioning during

inference, balanced through a novel double classifier-free guidance method. The

paper contributes to the field by adapting the textual inversion method to a pre-

trained text-to-music model and introducing a style conditioner method based

on a frozen audio feature extractor, a transformer encoder, a Residual Vector

Quantizer (RVQ), and temporal downsampling.

The model’s components include a style conditioner that is jointly trained

with the language model. During training, a 30-second music excerpt paired

with a textual description is input to the model. The textual description is

processed through a frozen T5 tokenizer and transformer encoder, while the
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style encoder takes a random subsample of the input audio and encodes it. The

text and style latent representations are projected to match the dimension of the

transformer language model and provided as a prefix to the sequence to model.

The input audio is encoded by a pretrained EnCodec model, and the language

model is trained autoregressively with a cross-entropy loss. Additionally, the

tokens corresponding to the random subsample fed into the style encoder are

masked in the loss to reduce the model’s tendency to copy the style audio input.

The textual inversion method involves optimising the textual embedding by

taking successive gradient steps on the cross-entropy loss of the music language

model. The style conditioning method uses a style conditioner with bottlenecks

(RVQ and downsampling) to prevent transmitting all the information of the

conditioning audio excerpt to the model. The double classifier-free guidance

formula is given by:

ldouble CFG = l∅ + α [lstyle + β(ltext,style − lstyle)− l∅] , (2.56)

where lstyle and ltext,style are the logits of the model conditioned on style and

textual description, respectively, and α and β are parameters used to balance

the importance of the style and text conditioning.

2.5 Interactive Interfaces for Text-to-Music Sys-

tems

Interactive music creation interfaces have evolved significantly with the inte-

gration of artificial intelligence (AI) and machine learning technologies. These

interfaces aim to assist users in the music creation process by providing tools

that are both powerful and intuitive. Deruty et al. [2022] discussed the de-

velopment and practice of AI technology for the production of contemporary

popular music, highlighting the importance of integrating AI tools into the cre-

ative workflow of artists.

Before text-based interfaces were introduced, a number of interactive music

creation interfaces already existed. Some of these interfaces are built upon AI

models [Louie et al., 2020, Rau et al., 2022, Yakura and Goto, 2023], while

others extend traditional music software with AI capabilities, such as Band-

in-a-Box.2CoCoCo [Louie et al., 2020] is an interactive interface based on the

CoCoNet model [Huang et al., 2019], trained on Bach’s chorales to assist users

in composing four-part harmonies. The system allows users to steer the AI

generation process, enabling a collaborative composition experience. Rau et al.

2https://www.pgmusic.com/
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[2022] developed a front-end interface for the MelodyRNN model, where the

system provides multiple candidate melodies for users to choose from and allows

editing at different levels of granularity. These AI-based interfaces offer varying

degrees of control over the music creation process; however, their functionality

is typically tied to a single backend model, which limits their adaptability and

the range of tasks they can support.

Text-to-music generation can be regarded as a form of text-based interac-

tive music creation and itself considered a new interface. While these models

represent a significant advancement, their interfaces are often limited to sim-

ple text prompts and lack the interactive refinement capabilities that musicians

may require.

Given that text-to-music research is still a relatively new field, there is lim-

ited HCI research focused on discovering how users should best interact with

these models using improved interfaces. However, there are a few key develop-

ments in this area. One promising direction is the development of multiple con-

trol features, which can be enhanced through graphical user interfaces (GUIs).

With the appearance of libraries like Gradio 3, it has become easier to cre-

ate standard interfaces that facilitate model interaction. Recent text-to-music

models such as Suno 4 and Udio 5 have introduced user-friendly interfaces for

tasks like music inpainting, music continuation, and lyric modification. These

platforms aim to provide users with greater control over their music genera-

tion processes and incorporate a range of AIGC functionalities. For example,

the interfaces of Suno (Figure 2.66) and Udio (Figure 2.7) adopt the layouts

similar to traditional music or audio editing software, often divided into three

sections: the left panel for navigation or track management, the central panel

for interaction with control modules (such as adjusting musical parameters or

selecting generation options), and the right panel displaying a list of generated

music outputs. This design, which closely resembles the structure of popular

audio editing tools, appears to be becoming the standard in the field. On the

product level, it is evident that many developers are converging on this layout,

likely because it offers a familiar and intuitive user experience, allowing users

to easily manage and refine their generated content.

Another development includes tools like WavTools 7, which integrates text

prompts into existing Digital Audio Workstations (DAWs) to manipulate music

elements. While such integrations are not yet mainstream, they represent a

3https://www.gradio.app/
4https://suno.com/
5https://www.udio.com/
6Credit from https://www.reddit.com/r/SunoAI/comments/1e1tumo/customized_create_

screen_for_suno/
7https://wavtool.com/
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Figure 2.6: Screenshot of Suno.

Figure 2.7: Screenshot of Udio.
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significant step toward combining the flexibility of traditional music production

with the power of AI. However, there remains a gap in the literature regarding

the effectiveness of these interfaces, particularly in terms of user experience and

usability.

Although these tools present promising new directions for text-to-music gen-

eration, there is a lack of research quantifying how useful or intuitive these in-

terfaces are for users. Ronchini et al. [2024] conducted a user experience study

with PAGURI, investigating how musicians interact with text-to-music mod-

els and incorporating personalisation techniques to better meet users’ creative

needs.

Recent studies have also explored the use of text-to-audio models in interac-

tive interfaces. Yakura and Goto [2023] introduced IteraTTA, an interface that

allows users to explore both text prompts and audio priors in generating music

with text-to-audio models.

These works highlight the potential and challenges of interactive music cre-

ation interfaces powered by AI. While significant progress has been made, there

remains a need for interfaces that are both flexible and intuitive, supporting a

wide range of creative tasks and allowing for natural interaction between the

user and the system. Text-to-music generation, as a form of interactive inter-

face, opens new possibilities for next-generation music creation tools, although

it is not the only path forward. Our work seeks to demonstrate the potential of

such interfaces while acknowledging the diversity of approaches in this evolving

field.

2.6 Datasets and Metrics

2.6.1 Text-to-Music Datasets

Datasets play a crucial role in training and evaluating text-to-music generation

models and interactive music creation interfaces. However, the availability of

large-scale, publicly accessible datasets for music generation is limited due to

licensing restrictions. Many models are trained on proprietary datasets com-

prising vast amounts of music data that are not publicly released.

For evaluation purposes, smaller datasets with text-audio pairs have been

developed. MusicCaps [Agostinelli et al., 2023] is one such dataset, consist-

ing of 5.5k music-text pairs with rich textual descriptions provided by human

experts. Each example in MusicCaps includes a 10-second music clip from the

AudioSet dataset [Gemmeke et al., 2017] and a detailed caption focusing on how

the music sounds, rather than metadata like artist names.

Another dataset is the Song Describer Dataset (SDD) [Manco et al.,
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2023], which contains approximately 1.1k captions for 706 music recordings.

SDD is designed for evaluating models that address music-and-language tasks

such as music captioning, text-to-music generation, and music-language re-

trieval. The dataset provides comprehensive descriptions that can be used to

assess the quality of generated music in terms of adherence to textual prompts.

The two datasets mentioned above are commonly used as standard evalu-

ation benchmarks. Additionally, several other datasets have the potential to

contribute to the training of text-to-music datasets. Zhang et al. [2022b] in-

troduced the Song Interpretation Dataset, which provides triplets of audio,

lyrics, and lyric interpretations; Music captioning models Doh et al. [2023], Liu

et al. [2024b], Melechovsky et al. [2024b], Du et al. [2024] can be used to gener-

ate synthetic text descriptions for music audio and to improve the performance

of text-to-audio [Kong et al., 2024] and text-to-music [Xu et al., 2024] models

as augmented data.

2.6.2 Constructing Instruction Datasets

For text-based music editing and controllable music generation, standard datasets

are scarce. Researchers often generate their own datasets by processing existing

music data.

In the context of controllable music generation, datasets with metadata or

extracted audio features are commonly used to provide control signals. For ex-

ample, models may use tempo, pitch, or instrumentation information extracted

from music data to condition the generation process. However, there is no stan-

dardised dataset for controllable music generation, and researchers often rely on

custom datasets tailored to their specific needs.

For instance, Han et al. [2023] created the InstructME dataset by collecting

417 hours of music and generating triplet data (instruction, source music, target

music) for various editing tasks such as remixing, adding, removing, extracting,

and replacing musical elements. Similarly, Wang et al. [2023] generated triplet

training data for their model AUDIT, focusing on editing tasks like adding,

dropping, replacement, inpainting, and super-resolution.

The workflow for triplet data generation in the InstructME dataset is as

follows:

• Remix: Randomly select a clip and mix all its instrument tracks to cre-

ate the source music. Obtain rhythm and timing information from the

source music, then retrieve another clip with the same rhythm to serve as

the target music. Align the source and target music using time-step in-

formation and generate the instruction using a template like “Remix with

{instrument/genre}”.
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• Add: Choose a clip and select i instrument tracks (where i ∈ [1, 2, 3, 4])

to mix into the source music. Create the target music by adding another

instrument track to the source music. The instruction follows a template

such as “Add {instrument}”.

• Remove: Reverse the adding operation by using the target music from

the adding task as the source and the source music as the target. The

instruction template is “Remove {instrument}”.

• Extract: Select one instrument track from a clip to serve as the target

music. Mix this track with additional instruments to create the source

music. The instruction is “Extract {instrument}”.

• Replace: Choose two different instrument tracks and mix them with

other instruments to form the source and target music. The instruction

template is “Replace {instrument A} with {instrument B}”.

They provided specific text command templates and examples for each task

to facilitate the model’s learning of diverse editing instructions. Examples in-

clude “Add distorted electric guitar,” “Remove accordion,” “Extract viola,” “Re-

place flute with accordion,” and “Remix with drums, bass, guitar, piano.” This

structured approach to dataset construction enabled the model to learn various

editing operations in a controlled and scalable manner.

Task Text Command Template

Remix Remix with {instrument/genre}
Add Add {instrument}
Remove Remove {instrument}
Extract Extract {instrument}
Replace Replace {instrument A} with {instrument B}

Table 2.3: Text command templates used for generating instructions in the
InstructME dataset Han et al. [2023].

2.6.3 Evaluation Metrics

Evaluating the performance of text-to-music generation models involves both

objective and subjective metrics. Objective metrics provide objective measures

of the quality and relevance of the generated music. For instance, metrics like

Fréchet Distance (FD) can reflect perceptual audio quality by comparing statis-

tical distributions of audio features, while metrics like KL divergence and CLAP

score can assess semantic similarity and alignment with the input prompt. Sub-

jective metrics, on the other hand, are designed to evaluate human perceptions

of attributes such as musicality, creativity, and adherence to input prompts.
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Objective Metrics

Several quantitative metrics have been proposed to evaluate different aspects of

generated music:

• Fréchet Distance (FD): The Fréchet Distance measures the similarity

between the statistical distributions of the generated audio and a reference

dataset. Traditionally, FD is computed using features extracted by models

like VGGish [Kilgour et al., 2018], which operates at 16 kHz. However,

for high-fidelity audio at higher sampling rates, FDOpenL3 has been intro-

duced. OpenL3 [Cramer et al., 2019] accepts audio signals up to 48 kHz,

allowing for evaluation of full-bandwidth audio. FDOpenL3 computes the

Fréchet Distance in the OpenL3 feature space, capturing perceptual as-

pects of audio quality and diversity in generated samples.

• Kullback-Leibler Divergence (KL): The KL divergence measures the

difference between two probability distributions. In this context,KLPaSST

uses PaSST [Koutini et al., 2021], a state-of-the-art audio tagging model

trained on AudioSet [Gemmeke et al., 2017], to compute the KL divergence

over the predicted class probabilities between the generated and reference

audio. A lower KLPaSST indicates that the generated audio shares similar

semantic content with the reference audio, reflecting the model’s ability

to generate relevant content.

• CLAP Score: The CLAP (Contrastive Language-Audio Pretraining)

score [Wu et al., 2023a] computes the cosine similarity between the em-

beddings of the input text prompt and the generated audio, as obtained

from a CLAP model. A higher CLAP score indicates better alignment

between the textual description and the generated audio, measuring how

well the model captures the semantics of the input prompt.

These metrics have been adapted to handle variable-length and high-resolution

audio. For instance, to evaluate long-form audio, KLPaSST can be computed by

segmenting the audio into overlapping windows and averaging the predictions

[Copet et al., 2024]. Similarly, the CLAP score can be calculated using a feature

fusion approach, combining embeddings from different segments of the audio to

handle durations longer than the model’s default input length [Copet et al.,

2024]. These adaptations ensure that the metrics accurately reflect the quality

and relevance of longer and higher-fidelity audio samples generated by modern

models.
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Subjective Metrics

Subjective evaluation remains crucial in assessing the quality of generated mu-

sic, as it captures human perceptions that are difficult to quantify objectively.

Human listeners are typically asked to rate samples based on criteria such as:

• Overall Quality (OVL): Listeners rate the perceptual quality of the au-

dio, considering factors like sound fidelity, absence of artifacts, and general

pleasantness.

• Relevance to Text Input (REL): Listeners assess how well the gener-

ated music matches the given text prompt, evaluating the semantic align-

ment between the description and the audio.

Studies like those by Copet et al. [2024] and Huang et al. [2023] have con-

ducted human evaluations using platforms such as Amazon Mechanical Turk.

These studies ensure the reliability of the evaluations by filtering out outliers

and ensuring that listeners fully engage with the samples. For instance, Copet

et al. [2024] use the CrowdMOS package to filter noisy annotations and remove

unreliable raters. Subjective evaluations provide insights into the musicality and

creative aspects of the generated music that are not captured by quantitative

metrics.

Metrics for Music Editing

For music editing tasks, additional metrics are essential for evaluating the effec-

tiveness of editing operations.

Metrics such as the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [Roux

et al., 2019] are commonly used to assess the quality of source separation or the

removal of specific tracks from a mix. SI-SDR evaluates the fidelity of the

reconstructed signal compared to the original source while disregarding scale

differences.

Furthermore, classifiers can be used to verify whether certain attributes have

been successfully modified, such as confirming whether an instrument has been

replaced or a genre has been changed. Pretrained classifiers or evaluators pro-

vide a quantitative measure of whether the desired editing operations have been

performed as expected.

Several additional metrics can also be employed to address specific aspects

of music editing. For instance, in InstructME, the instruction accuracy (IA)

metric measures the relevance of the text-music pair by calculating the accuracy

of edited music tags, such as instrument, mood, and genre, compared to the

input command.
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Similarly, in Music ControlNet, various metrics are used to evaluate the

editing process. Melody accuracy checks whether the pitch classes (C, C#, etc.)

align between the input melody control and the generated output. Dynamics

correlation, calculated using Pearson’s correlation, assesses the relationship be-

tween the input and generated dynamics values, both on a micro and macro

scale. Micro correlation focuses on individual generations, while macro cor-

relation evaluates across multiple generations. Finally, Rhythm F1, based on

beat/downbeat detection, quantifies the alignment of timestamps between the

input rhythm control and the generated output, considering alignment within

70 milliseconds.

2.7 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the key

concepts, models, and techniques that form the foundation of text-to-music

generation and editing systems. I have explored various representations of music

and text, examined the architecture and functionality of backbone models such

as diffusion models and audio language models, and discussed the importance

of controllability and editability in music generation.

The background presented here sets the stage for the novel contributions of

this thesis, which directly address some of the most pressing challenges in the

field of AI-driven music creation and manipulation. Our work builds upon and

extends the concepts discussed in this chapter in several key ways.

1. MusicMagus: Inference-Time Optimisation Model for Music Edit-

ing. This contribution leverages the understanding of backbone models

and control mechanisms to develop a novel approach that allows for precise

editing of generated music at inference time. This work aims to provide a

more flexible and responsive tool for the music editing task.

2. Instruct-MusicGen: Instruct tuning for music editing. Building

on the Parameter-Efficient Finetuning (PEFT) techniques discussed, such

as LoRA and Llama-Adapter, our instruct tuning approach demonstrates

how pretrained models can be efficiently adapted for specific music editing

tasks. This work showcases the practical application of the theoretical

concepts of model adaptation and specialised editing models outlined in

this chapter.

3. Loop Copilot: Agent-based music editing model. This work com-

bines the power of large language models with multiple music generation

models. It builds upon the agent-based methods for compositional music
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generation and editing discussed in this chapter, extending these concepts

to create a more interactive and intuitive music editing experience.

These contributions collectively advance the state-of-the-art in controllable

and editable music generation, which are two key challenges identified in our

overview of current models and techniques. By grounding our work in the funda-

mental concepts and recent advancements outlined in this chapter, we position

our research at the forefront of AI-driven music creation and manipulation.

The following chapters will delve deeper into the methodologies, implemen-

tations, and results of these novel approaches, demonstrating how they push the

boundaries of what is possible in AI-assisted music composition and editing.
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Chapter 3

Loop Copilot: Conducting

AI Ensembles for Music

Generation and Iterative

Editing

This chapter represents the initial exploration into the challenge of text-based

music editing within the context of AI-assisted music creation. The work pre-

sented here builds on two contributions: COSMIC, an early-stage proof of

concept, and Loop Copilot, an extended system that addresses some of the

limitations observed in COSMIC. COSMIC proposed the innovative idea of us-

ing a combination of multiple specialised music models, coordinated by a state

machine, to facilitate music composition through a simple text-based interface.

However, the system’s reliance on a manually designed state machine and its

limited interaction capabilities highlighted the need for a more adaptable and

user-friendly approach. Loop Copilot extends this concept by integrating a

large language model (LLM) as an AI agent, thereby improving the system’s

usability and making the interaction more natural for users. This chapter also

includes a user study to evaluate the effectiveness and limitations of Loop Copi-

lot in real-world scenarios.

The core contribution of this chapter lies in the introduction and detailed

examination of Loop Copilot. The system is designed to enable users to generate

and iteratively refine music through a multi-round dialogue interface, powered

by an LLM that interprets user intentions and selects appropriate AI models

for specific tasks. These models, each specialised in different aspects of music
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creation, work together to achieve the user’s goals, with their outputs being ag-

gregated to maintain coherence in the musical piece. A key innovation in Loop

Copilot is the Global Attribute Table (GAT), a dynamic data structure that

records and preserves essential musical attributes throughout the iterative pro-

cess. This ensures that the integrity of the music is maintained as modifications

are made. The chapter concludes with a user study, conducted through semi-

structured interviews and questionnaires, which provides valuable insights into

the system’s practical utility, as well as its strengths and areas for improvement.

Positioned as the foundational work in this thesis, this chapter sets the

stage for the subsequent exploration of more advanced text-guided music editing

techniques. While Loop Copilot demonstrates the feasibility and potential of a

multi-model approach to music creation, it also exposes limitations, particularly

in its ability to perform precise and detailed edits. These limitations serve as

a catalyst for the development of the more sophisticated methods discussed in

the following chapters, particularly MusicMagus and Instruct-MusicGen, which

aim to address these challenges and further advance the state of the art in

AI-assisted music production.1

3.1 Introduction

Music creation is an art that has traditionally been the domain of expert human

musicians. Recently, with the advent of artificial intelligence (AI) music mod-

els [Ji et al., 2020], the music creation process is becoming more democratised.

However, in the real world, there are two major challenges in the human music

creation process: first, music creation involves multiple phased tasks, from har-

mony and melody crafting, to arrangement and mixing; second, music creation

is an inherently iterative process that cannot be achieved in one step. It usually

undergoes multiple refinements before reaching its final form. Most current AI

models, including interactive music interfaces and dedicated generative models,

fall short in at least one of these two challenges.

Interactive music interfaces excel in melody inpainting [Louie et al., 2020,

Rau et al., 2022] but often lack adaptability for diverse music creation. Cur-

rent popular interactive music interfaces, such as Magenta Studio [Roberts

et al., 2019] and Flow Machines 2, are powerful and user-friendly, but they

predominantly focus on a singular type of musical modification: melody in-

painting—filling in gaps based on an existing melody. These models, with their

intuitive human-in-the-loop interactions, have undoubtedly lowered the entry

barrier for users. However, these AI-based interfaces for music creation, al-

1Code available at https://github.com/ldzhangyx/loop-copilot.
2https://www.flow-machines.com/
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Can you give me a smooth rock music loop with
a guitar and snare drums?

I want to add a saxophone track to this music.

Sure. 

Added a saxophone solo. 

Figure 3.1: A conceptual illustration of interaction with Loop Copilot. The
diagram depicts a two-round conversation: initially, a user requests music gen-
eration and the AI provides a loop. In the subsequent round, the user seeks
modifications, and the AI offers a refined loop, emphasising Loop Copilot’s it-
erative feedback-driven music creation process.

though recognising the importance of iterative generation and refinement, often

rely on a single task throughout the process. This reliance not only hampers

their flexibility but also restricts their adaptability to diverse music creation

needs.

On the other hand, dedicated music models offer broad capabilities but tend

to have a narrow focus, limiting their application. Existing dedicated music

generative models have demonstrated significant capabilities across a myriad

of tasks in music creation, such as controlled music generation using chord

progressions [Min et al., 2023, Wei et al., 2022], text prompts [Copet et al.,

2024, Agostinelli et al., 2023], images [Zhang et al., 2022a], and emotion [Tan and

Herremans, 2020]. They also span a spectrum of music style transfer tasks at the

score [Wang et al., 2020b, Zhao and Xia, 2021], performance [Wu et al., 2021],

and timbre [Hung et al., 2019] levels. However, a prevalent issue with these

models is their ‘one-off’ design approach. They often treat music generation as

a singular process, either focusing strictly on music generation or specific editing

tasks, like style transfer. As a result, users looking to engage in a comprehensive

music creation process find themselves scouting for various models to cater to

different aspects of their musical needs.

This chapter introduces Loop Copilot, a system designed to address these

challenges. It allows users to generate a music loop and iteratively refine it

through a multi-round dialogue with the system. By leveraging a large language

model [Zhao et al., 2023], Loop Copilot seamlessly integrates various specialised

models catering to different phases of music creation. It harnesses the power
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of individual models to provide a rich set of generation and editing tools. The

intuitive and unified interaction is facilitated through a conversational interface,

reminiscent of the benefits of the first type of above models, while applying the

strengths of the second type.

Loop Copilot is built on three key components: a large language model

(LLM) controller, which interprets user intentions, selects suitable AI models

for task execution, and gathers the outputs of these models; a set of back-

end AI models, which carry out specific tasks; and a Global Attribute Table

(GAT), which records necessary music attribute information to ensure continu-

ity throughout the creation process. Intuitively, users can utilise the LLM to

‘conduct’ the AI ensemble, guiding the music creation process through conver-

sation.

In summary, the main contributions are:

1. This chapter introduces Loop Copilot, a novel system that integrates

LLMs with specialised AI music models. This enables a conversational

interface for collaborative human-AI creation of music loops.

2. This chapter develops the Global Attribute Table that serves as a dynamic

state recorder for the music loop under construction, thereby ensuring that

the musical attributes remain consistent in the iterative editing process.

3. This chapter conducts an interview-based comprehensive evaluation, which

not only measures the performance of our system but also sheds light on

the advantages and limitations of using an LLM-driven iterative editing

interface in music co-creation.

3.2 Preliminary Work: COSMIC

The COSMIC system serves as the foundation for Loop Copilot, sharing the

underlying concept of using a form-filling approach to maintain consistency in

music creation.

In COSMIC, the design focuses on two main aspects: building a dialogue

system and enabling controlled music generation. The dialogue system is adapt-

able to the needs of music composition through the use of a dialogue tracker,

which creates a form instance for each music creation task. This form records

the status of the music creation and translates the user’s inputs into form-filling

actions. Once the form is completed, COSMIC passes the information to the

backend models responsible for music and lyric generation. In the current ver-

sion, COSMIC employs the BUTTER model [Zhang et al., 2020] for controlled
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music generation, which utilises natural language as a condition, along with a

GPT-2 based model for controlled lyric generation.

Figure 3.2 shows the working mechanism of COSMIC during a single-round

dialogue with an example. The user says to COSMIC, ”I want to create a slow

and sad piece of music”.

Figure 3.2: A diagram of COSMIC’s handling of a single round of dialogue.

1. This sentence is first transferred from COSMIC’s front-end to the NLP

interface in RESTful format and received by the Natural Language Un-

derstanding (NLU) module, as shown in step 1.

2. The NLU module parses the user’s requirements and keywords from text

input and transfers them to the Dialogue State Tracker (DST) module in

Dialogue Manager in json format, as shown in step 2.

3. After receiving the data, the DST module fills in the creation form and

determines the current dialogue status. After determining the status,

the DST transmits the creation form and the current status to the POL

module as shown in step 3.

4. The Dialogue Policy (POL) module is responsible for converting the cre-

ation table into a condition and sending conditional generation commands

to the model layer as shown in step 4.

5. After POL gets the generated music data from the model layer, it sends

a response command to the NLG module as shown in step 5.

6. The Natural Language Generation (NLG) module translates the command

into natural language that humans can understand and sends it back to

the COSMIC front-end along with the music data as shown in step 6;

7. Finally, COSMIC logs this session to the database as shown in step 7.
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Loop Copilot extends this concept by integrating a large language model

(LLM) as an AI agent, thereby improving the system’s usability and making

the interaction more natural for users.

3.3 System Design of Loop Copilot

Model Formulation

I begin with an example of a typical interaction process, shown in Figure 3.1.

It comprises two key steps: the user initially:

1. drafts a music loop (“Can you give me a smooth rock music loop with

a guitar and snare drums?”);

2. iteratively refines it through multiple rounds of dialogue (“I want to

add a saxophone track to this music.”).

After completing the 2-round dialogue, the current status can be represented

by a sequence [(Q1, A1), (Q2, A2)], where Q means the user’s question and A

means the answer of Loop Copilot.

To formally define the interaction process, let us consider a sequence HT =

[(Q1, A1), ..., (QT , AT )], where each (Qt, At) pair denotes a user query and the

corresponding system response in the t-th round dialogue. At each step t, the

system generates a response At using the Loop Copilot function:

At = LoopCopilot(Qt, Ht−1).

Figure 3.3 shows the workflow of our proposed system. Loop Copilot com-

prises 5 key components: (1) The large language model (M) for understand-

ing and reasoning; (2) The system principles (P) that provide basic rules to

guide the large language model; (3) A list of backend models (F) responsible
for executing specific tasks; (4) A global attribute table (T ) that maintains

crucial information to ensure continuity throughout the creative process; and (5)

A framework handler (D) that orchestrates the interactions between these

components.

The workflow of Loop Copilot involves several steps.

1. Input preprocessing. the system processes the input by unifying the

modality of the input. The framework handler D utilises a music caption-

ing model to describe the input music, while textual inputs are kept as

they are.
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Large Language Model Controller

User

Chat History

System Principles

Backend Models

Global Attribute
Table

LLM

MusicGen

Demucs

LP-MusCaps

VampNet

1. Input preprocessing 2. Task analysis

3. Task execution

4. Response generation

5. Update history

Figure 3.3: Loop Copilot’s workflow. Once the user inputs the request, firstly,
Loop Copilot preprocesses the input and converts it to textual modality;
secondly, the LLM, based on the input, the system principles, and the chat
history, performs the task analysis and calls the corresponding models; after
that, the backend models execute the task and output the result; finally, the
LLM does the final processing of the output and returns it.

2. Task analysis. the framework handler performs task analysis if the text

input contains an explicit demand. It calls the large language model M
to analyse the task, resulting in a sequence of steps, which may involve

a call to a single model or multiple chained calls to models, as the large

language model may need to handle the task step by step. Section 3.3

demonstrates the details.

3. Task execution. After task analysis, the framework handler records all

the steps and proceeds to execute the tasks. It calls the backend mod-

els in the specified order, providing them with the necessary parameters

obtained from the large language model. If it requires a chained call of

multiple models, the intermediate results generated by the previous model

will be used in the next model.

4. Response generation. Once the task execution is complete, the han-

dler D collects the final result and sends it to the large language model

for the final output.

Throughout this process, all operations are tracked and recorded in the

global attribute table T , ensuring consistency and continuity in the generation

process. Algorithm 2 illustrates the process during a T-round dialogue.

Supported Tasks

The interaction process within Loop Copilot is essentially a multi-stage work-

flow, as illustrated in Figures 3.1 and 3.3. The first stage involves the user

drafting a music loop, while the second stage is dedicated to iterative refine-

ment through dialogue. Each stage necessitates different tasks. In the initial
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Algorithm 2 The workflow of Loop Copilot

Input: user queries Q = {Q1, ..., QT }
Output: responses A = {A1, ..., AT }
Initialise components: M,P,F , T ,D
Initialise chat history H0

Define A0 as initial music state or silence
At timestep T :
Q′

t ← D(Qt) ▷ Input preprocessing
F1:N ←M(Q′

t, Ht−1) ▷ Task analysis
A′

t,0 ← At−1 ▷ initialise the chain
for n in [1, N ] do

A′
t,n ← Fn(A

′
t,n−1) ▷ Task execution

end for
At ←M(A′

t,N ) ▷ Response generation
Ht ← Append(Ht−1, (Qt, At)) ▷ Update chat history
Update T with key attributes from At

stage, the focus is on creating music from an ambiguous demand, essentially with

a global description. The later stages shift the focus to music editing, where

fine-grained localised revisions are made. These revisions can include regenerat-

ing specific areas, adding or removing particular instruments, and incorporating

sound effects. A comprehensive list of all supported tasks is presented in Table

3.1.

Each task in Table 3.1 corresponds to one or more specific backend models,

which are sequentially called as needed. For instance, consider the task “Style

Imitation”. Here, a user can reference the title of a real-world music track.

Loop Copilot first invokes ChatGPT to generate a description based on the

given music title, which is then forwarded to MusicGen to generate the music

audio. This ability to chain multiple models opens up a wealth of opportunities

to accomplish new tasks that have scarcely been explored before, although the

results may not be as good as for models trained for specific tasks.

Specifically, I explore new methods for the tasks below:

1. Imitate rhythmic pattern. I utilise MusicGen’s continuation feature to use

the input drum pattern as a prefix while guiding the model with a target

text description for generation.

2. Style Imitation. For the ‘imitation’ descriptions that are not musical fea-

tures but a reference to existing recordings, such as bands and titles, I first

use ChatGPT to convert them into descriptions of musical features, and

then call MusicGen to generate music audio. During the generation pro-

cess, Loop Copilot does not directly copy music pieces from the original

recording to avoid direct plagiarism of copyright works.
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3. Add a track. There are still no publicly available models supporting this

feature. I instead utilise MusicGen’s continuation feature to take the origi-

nal audio as a prefix and use the new track text description to guide model

generation. To ensure stability, I use the CLAP model to verify that the

similarity between the generated result and the new text description is

above a threshold.

Note that Loop Copilot can comprehend complex demands that necessitate

the combination of existing tasks. For instance, if a user wishes to “generate

jazz music and add medium level background noise, like in a pub”, the large

language model will dissect this demand into a series of tasks: “text-to-music”

and “add sound effects”. Within each task, if necessary, backend models are

chained accordingly. Thus, the sequential invocation can occur at both the

task and model levels. However, the final output presented to the user is the

seamlessly integrated “jazz music with background noise”.

3.3.1 Global Attribute Table

The Global Attribute Table (GAT) is an integral component of the Loop Copi-

lot system, designed to encapsulate and manage the dynamic state of music

being generated and refined during the interaction process. Its role is to offer a

centralised repository for the various attributes that define the musical piece at

any given moment. This centralisation is pivotal for Loop Copilot’s ability to

provide continuity, facilitate task execution, and maintain musical coherence.

The design philosophy behind the GAT draws inspiration from “blackboard”

architectures [Nii, 1986]. In this paradigm, the GAT can be likened to a

blackboard—a shared workspace where different components of the system can

access and contribute information.

Table 3.2 provides an example, showing the GAT state in the scenario of

Figure 3.1.

GAT’s significance can be further expounded upon through its multifaceted

functionalities:

1. State Continuity: The GAT ensures that users experience a seamless

dialogue with the Loop Copilot by persistently tracking musical attributes

and evolving based on both user input and system output.

2. Task Execution: During the task execution phase, backend models often

require contextual information. The GAT provides this context, thereby

enhancing the models’ performance.

3. Musical Coherence: For any music creation tool, maintaining musical

coherence is paramount. By storing key attributes like musical key and
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bpm 90 key E♭ major

genre rock mood smooth

instruments saxophone, guitar, snare drum

description
smooth rock music loop with sax-
ophone, a guitar arrangement and
snare drum

tracks
mix c540d5a6.wav

stems N/A

Table 3.2: An example of the Global Attribute Table in the scenario of Figure
3.1.

tempo, the GAT ensures the harmonious and consistent evolution of music

throughout the creative process.

In practice, the GAT information is attached to the system prompt, served

as an additional document to be retrieved. Since GAT is represented as a table,

and LLMs do not support table-based inputs, the GAT is converted into a plain

text format before being provided to the model. It is important to clarify that

the implementation of GAT imposes no vocabulary constraints; it is populated

with relevant keywords in natural language form.

3.4 Experiments

To evaluate the efficacy and usability of Loop Copilot, a mixed-methods ex-

perimental design was adopted. This design aligns with the triangular research

framework [Creswell et al., 2003]. A screenshot of the demo system is shown in

Figure 3.4. 4

3.4.1 Participants

I recruited 8 volunteers (N=8) who were interested in AI-based music produc-

tion, and work in the field of music and audio technology or production, though

not necessarily professional-level musicians. Participants provided informed con-

sent, and data anonymisation protocols were strictly followed to maintain ethical

standards 5. The distribution of the participants was as follows:

1. Experience in Music Production: 3 starters (0-2 years), 3 intermediate

(2-5 years), 2 experts (>5 years).

4Demo available at https://sites.google.com/view/loop-copilot.
5The experiment was approved by Yamaha ethics committee.
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Figure 3.4: Caption

2. Experience in Music Performance: 2 starters (0-2 years), 2 intermediate

(2-5 years), 4 experts (>5 years).

3. Age: 4 (18-35 years), 2 (35-45 years), 2 (>45 years).

3.4.2 Measures

I measure the following constructs:

1. Usability. Usability serves as a critical metric for assessing the ease with

which users can interact with Loop Copilot. It measures not only the

system’s efficiency but also gauges the intuitive nature of the user interface.

I adopted the System Usability Scale (SUS) [Brooke, 1996] (5-point Likert

scale, see Appendix A) as a validated tool for this aspect of the evaluation.

After linear projection, SUS scores have a range from 0 to 100, where a

value over 68 is considered acceptable.

2. Acceptance. Understanding user acceptance is crucial for assessing whether

Loop Copilot would be willingly incorporated into existing workflows.

This encompasses factors like the perceived ease of use and the perceived

usefulness of the system. The Technology Acceptance Model (TAM) [Davis,

1989] served as the theoretical framework for evaluating these dimensions.

Our TAM questionnaire (5-point Likert scale, see Appendix B) consists
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of 11 questions categorised into perceived ease of use (Q1-4), perceived

usefulness (Q5-8), and overall impressions (Q9-11).

3. User experience. Beyond usability and acceptance, the qualitative aspect

of user experience provides a more nuanced understanding of the system’s

impact. This involves exploring the emotional and cognitive perceptions

that users have when using Loop Copilot, such as the joys and frustrations

they experience. Open-ended questions were designed to capture these

subjective aspects in detail.

3.4.3 Procedure

Experiments were conducted in a quiet, controlled environment to ensure consis-

tency and minimize distractions. The experimental session for each participant

consisted of three phases:

1. Orientation Phase (10 minutes): During this phase, participants were

acquainted with the functionalities and features of Loop Copilot. This

briefing aimed to standardize the initial level of understanding across par-

ticipants. Specifically, the system was shown to the subjects with a brief

explanation of how to use the interface. Furthermore, the participants

were presented with the example inputs in Table 3.1 as examples of pos-

sible prompts supported by the system.

2. Interactive Usage Phase (20 minutes): Participants were allowed to freely

interact with Loop Copilot for music composition. Observational notes

were made in real-time to capture immediate insights and identify areas

for potential system improvement.

3. Feedback and Evaluation Phase (15 minutes): Upon completion of the in-

teraction, participants were asked to fill out the SUS and TAM question-

naires. Additionally, a semi-structured interview based on the responses

from the questionnaires was conducted to obtain qualitative feedback on

their experience.

Both quantitative (SUS, TAM scores) and qualitative (interview notes) data

were collected. Data during the interview section were collected primarily

through observational notes. These notes were aimed at capturing immedi-

ate insights, identifying potential areas for system improvement, and gathering

qualitative feedback on the user experience.

In addition to recording the questionnaire results, we took textual notes to

capture the key points from the interviews. The decision to use note-taking

instead of audio recording was made to respect participants’ preferences, as
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some individuals did not want their voices to be recorded. This approach was

chosen to protect participant privacy. The notes are further analysed in Section

3.4.5.

3.4.4 Quantitive Results

System Usability Scale (SUS)

The SUS was used to measure the overall usability of Loop Copilot. The mean

SUS score was 75.31 with a standard deviation of 15.32. According to the

conventional SUS scale, a score above 68 is considered above average, suggesting

that the participants found the system to be generally usable. A visualisation

is shown in Figure 3.5, and Table 3.3 shows the detailed results.

Figure 3.5: The box plot depicting SUS score results with an average of
75.31±15.32. The dotted line marks the threshold for effectiveness.

The SUS scores revealed a generally favourable perception of the system’s

usability 6. Users indicated a willingness to use the system frequently (Q1,

4.13±0.83), highlighting its perceived ease of use (Q3, 4.13±0.83) and quick

learnability (Q7, 3.88±1.36).
However, some concerns were raised about the need for technical support

(Q4, 2.63±1.41), suggesting that while the system is user-friendly, it may involve

layers of complexity that require expert guidance or better onboarding processes.

Although the system’s features were generally regarded as well-integrated (Q5,

3.88±0.99), the moderate scores for system consistency (Q6, 2.00±0.93) indicate

potential areas for improvement in unifying the system’s functionalities. This

inconsistency may be linked to the varying responsiveness of different AI models,

which could explain why some dialogues experience significantly longer response

times than others.
6For SUS scores, higher scores are better for odd-numbered problems and lower scores

are better for even-numbered problems. To transform the results: for the odd-numbered
questions, subtract 1 from the given score; for the even-numbered questions, subtract the
score from 5. After adjusting the values for all questions, sum the resulting scores. Finally,
multiply the total by 2.5 to obtain the final score out of 100 points.
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Technology Acceptance Model (TAM)

1. Perceived Usefulness (PU). The average score for Perceived Usefulness was

3.58 with a standard deviation of 1.13. This indicates a moderate level of

agreement among the participants that the system is useful.

2. Perceived Ease of Use (PEOU). The average score for Perceived Ease

of Use was 3.89 with a standard deviation of 0.80. This suggests that

participants generally found the system easy to use.

3. Overall TAM Scores. The overall average TAM score was 4.09 with a

standard deviation of 1.09, which suggests a favourable perception towards

both the ease of use and usefulness of the system.

Table 3.4 and Figure 3.6 show the results of TAM scores.

The positive impact of the system on music creation is evident in both its

perceived usefulness and ease of use. The questions related to usefulness (Q1-

Q4) received favourable responses (Q1: “I find Loop Copilot useful in music

creation” – 4.25±0.89, Q2: “Using Loop Copilot improves my experience in

music creation” – 3.25±1.67, Q3: “Loop Copilot enables me to accomplish

tasks more quickly” – 4.13±0.64, Q4: “I find that Loop Copilot increases my

productivity in music creation” – 4.00±0.93). The user-friendly nature of the

interface was similarly rated positively (Q5-Q8) with most responses reflecting

ease of use (Q5: “I find Loop Copilot easy to use” – 4.13±0.83, Q6: “Learning

to operate Loop Copilot is easy for me” – 4.63±0.52, Q7: “I find it easy to get

Loop Copilot to do what I want it to do” – 2.88±1.13, Q8: “I find the interface

of Loop Copilot to be clear and understandable” – 4.63±0.74).

It is notable that Q7, which is related to control over the system, shows a

lower score, suggesting potential areas for improvement in making the system

more responsive to user intent. Finally, there was a strong indication that users

are inclined to incorporate the system into their future workflows (Q9-Q11),

with particularly high responses for Q9: “Given the chance, I intend to use

Loop Copilot” (4.88±0.35), Q10: “I predict that I would use Loop Copilot in

the future” (4.75±0.46), and Q11: “I plan to use Loop Copilot frequently”

(4.00±0.76). These findings underscore the perceived value of the system and

the ease of integration into creative processes of users.

3.4.5 Individual Feedback

We collected and analysed individual feedback from the user study. Given the

small sample size (N=8), we conducted a manual analysis based on the interview

notes. For each participant, we carefully reviewed the feedback provided and
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Figure 3.6: Box plot of the TAM score results. Perceived Usefulness (PU) with
an average of 3.58±1.13; Perceived Ease of Use (PEOU) averaging 3.89±0.80;
Overall TAM score of 4.09±1.09. These scores reflect participants’ favourable
perceptions of the system’s utility and usability.

identified recurring themes mentioned by at least two individuals. This process

allowed us to categorise the feedback into four main areas, as outlined below.

The analysis aimed to capture key patterns in user experience, which were then

triangulated with the quantitative findings to provide a more comprehensive

understanding of the system’s performance and user reception.

Overall Impressions

Participants generally found value in Loop Copilot as a tool for music generation.

Users widely considered it a promising starting point for creative inspiration.

1. Some participants found text-to-music conversion not fully meeting their

specific musical visions, indicating a gap between user expectations and

system output.

2. Participants thought that Loop Copilot was useful for getting creative

inspiration.

Positive Feedback

1. Ease of Use. Most participants, especially beginners and intermediates,

appreciated the intuitive nature of the interface. Most users found the

system to be straightforward and easy to understand.

2. Design and Interaction Users lauded the design potential and interactive

methods, suggesting that they represent a fertile ground for future devel-

opment.
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Areas of Concern

1. Limited Control and Precision. Participants commonly mentioned the

limited control they had over the musical attributes. Some cited specific

instances where text prompts like “Add a rhythmic guitar” or “Remove

reverb” were not adequately reflected in the output.

2. Integration with Existing Workflows. Some users thought the system’s

current specifications were limited as a stand-alone music production sys-

tem, and wanted it instead as a part of existing music creation systems,

like a digital audio workstation.

Future Expectations

1. Feature Extensions. Many users called for additional features like volume

control, the ability to upload their own melody lines, and options for chord

conditioning. Users also highlighted the need for multiple output options

to choose from, rather than a single output.

2. Improved Responsiveness. Given that some participants found the system

occasionally unresponsive to specific prompts, they hoped future versions

could offer improved interpretation and execution of user commands.

3.5 Conclusion

This chapter presented Loop Copilot, a system designed to integrate Large Lan-

guage Models (LLMs) with specialised AI music models to support human-AI

collaborative creation of music loops. The system utilises a conversational in-

terface that allows users to engage in an interactive and iterative music creation

process. A key innovation of Loop Copilot is the introduction of the Global

Attribute Table, which tracks the evolving state of the music to ensure that

modifications are coherent and consistent throughout the editing process. Ad-

ditionally, the system employs a chaining mechanism that enables training-free

music editing by leveraging existing AI music models. Our evaluation, sup-

ported by interview-based insights, demonstrates the potential of conversational

interfaces for facilitating iterative music production.

While the current system demonstrates the feasibility of controlling non-

text-to-music generation models, such as VampNet, there are limitations in the

precision and scope of music editing tasks that can be achieved. The input

and output remain constrained by the capabilities of the individual models.

Although chaining multiple models offers some degree of control, it is not suf-

ficient for more complex tasks. For instance, there is currently no model that
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can precisely add a new track to existing music audio based on a natural lan-

guage description of the track—a limitation that has inspired the development of

Instruct-MusicGen (Chapter 5). Similarly, there are other potential text-based

controls that require deeper exploration into text-to-music foundation models,

motivating the research behind MusicMagus (Chapter 4).

In summary, while Loop Copilot provides a usable interface for AI-assisted

music creation, its limitations of the performance of specific components high-

light the need for more advanced models and techniques. These insights have

directly informed the subsequent research presented in this thesis, where I seek

to overcome these challenges and further advance the capabilities of text-based

music production.
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Chapter 4

MusicMagus: Zero-Shot

Text-to-Music Editing via

Diffusion Models

This chapter introduces MusicMagus, a system developed to explore the chal-

lenges associated with text-guided music editing. Building on insights gained

from Loop Copilot, MusicMagus presents a novel approach that leverages pre-

trained diffusion models to enable zero-shot music editing. The system is de-

signed to modify specific musical attributes, such as genre, mood, and instru-

mentation, while preserving the overall structural integrity of the original piece.

This capability is particularly significant given the iterative nature of music

production, where nuanced and flexible edits are often required to achieve the

desired artistic outcome.

MusicMagus operates by manipulating the latent space of diffusion models,

transforming the text-based editing process into a task of latent space explo-

ration. This method incorporates an additional constraint that enforces consis-

tency, ensuring that the edits do not disrupt non-targeted musical elements. By

adopting this approach, MusicMagus demonstrates that stylistically coherent

edits can be achieved without additional training, positioning it as a versatile

tool for real-world music editing scenarios.

However, MusicMagus has its limitations. The system primarily focuses

on intra-stem editing, i.e. making changes within individual musical stems,

but encountering challenges with more complex operations, such as adding or

removing instruments. Additionally, the diffusion-based approach is inherently

constrained by the length of the generated audio, which is typically shorter than

what can be produced by music language models. These limitations highlight
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opportunities for further advancements in text-guided music editing, motivating

the development of the more sophisticated system, Instruct-MusicGen, discussed

in the following chapter.

4.1 Introduction

Recent advances in text-to-music generation have opened up new possibilities

in musical creativity [Zhang et al., 2020, Zhao and Xia, 2021, Lu et al., 2023,

Min et al., 2023, Agostinelli et al., 2023, Schneider et al., 2023, Copet et al.,

2024, Chen et al., 2024]. However, a significant challenge persists in how to edit

the generated results as music production usually involves iterative refinements.

Building on this momentum, I regard ‘text-to-music editing’ as the process of

using text queries to edit music, and I see two major types of operations: inter-

stem editing, such as adding or removing instruments (e.g., “add a saxophone”

or “remove the drums”), and intra-stem editing, which involves modifications

within the same stem, such as adding effects or changing instruments (e.g., “add

reverb to this stem” or “transfer the timbre of the specified notes”). In this

context, a “stem” refers to an individual track or component within a music

piece, such as a specific instrument or vocal part. The primary focus of this

paper is on the latter, intra-stem editing.

One of the fundamental challenges of text-to-music editing is the difficulty

of accommodating flexible text operations in both dataset construction and

model training. This is not only a matter of data pair scarcity, but also of the

complexity inherent in the vast array of possible text-based edits that can be

applied to music. Existing research [Wang et al., 2023, Han et al., 2023, Hussain

et al., 2023] has primarily focused on manually constructing datasets. However,

these models are constrained to a few predefined operations, which undermines

their effectiveness in text-to-music editing, which requires flexibility and variety.

This highlights the need for a new approach that moves away from traditional

supervised learning reliant on specific data pairs and toward a more adaptable,

unsupervised, or zero-shot approach.

In this work, I introduce MusicMagus, which focuses on text-based intra-

stem music editing. Leveraging the inherent capabilities of pre-trained diffusion

models, MusicMagus is able to perform zero-shot editing without requiring ad-

ditional training pairs. As illustrated in Figure 4.1, I utilise word swapping to

direct the editing process. This operation is implemented as a manipulation

within the diffusion model’s semantic space. Recognising the sensitivity of the

diffusion process, where minor alterations can propagate significant changes, I

employ an additional constraint to ensure that the resultant music maintains

the structural integrity and stylistic coherence of the original music.
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Relaxing classical music featuring piano .Text:

acoustic guitar

Music:

Figure 4.1: Text-to-music editing with MusicMagus. The edit from “piano” to
“acoustic guitar” in the text prompt directly alters the corresponding musical
attribute, while leaving others unchanged.

Although I mainly focus on the editing of music clips generated from diffusion

models, I also discuss how to edit real-world music audio using the Denoising

Diffusion Implicit Model (DDIM) inversion technique [Song et al., 2021].

In summary, the main contributions are as follows:

1. I propose a flexible and user-friendly text-to-music editing method using

word swapping.

2. I contribute MusicMagus, a system capable of zero-shot music editing on

diverse tasks without any dependence on paired training data.

3. Comparative experiments validate that MusicMagus outperforms existing

zero-shot methods and some supervised approaches in tasks such as style

and timbre transformation.

4.2 Method

To illustrate the idea, I refer to the example in Figure 4.1. Initially, a music

clip, denoted as x, is generated from the text prompt “Relaxing classical music

featuring piano”, which I refer to as y. The next step involves altering this

text prompt by substituting “piano” with “acoustic guitar”, thereby creating a

new prompt y′. The aim is to produce a revised music piece x′, where only the

specified attribute is changed, while maintaining all other aspects.

The explanation of the idea is two-fold. In Section 4.2.1, I detail the method

for altering the text prompt in the semantic domain. Subsequently, in Sec-

tion 4.2.2, I discuss the approach to enforce suitable constraints over the cross-

attention map during diffusion to preserve the integrity of the remaining ele-

ments of the music.
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4.2.1 Finding Editing Direction

In this section, I introduce a strategy to calculate a difference (∆) vector in

the latent space to guide the editing direction. This method is chosen over

direct word swapping as it better preserves semantic coherence and contextual

relevance, especially in cases of varying phrase lengths and complex content

alterations. I will further explain it in Section 4.2.2; besides, previous research

finds that similar operations can facilitate a more robust edit, especially when

the keywords subject to modification are sparsely represented in the training

dataset [Parmar et al., 2023].

I first introduce the text embedding method in AudioLDM 2. AudioLDM 2

uses a two-branch text encoder to embed the text prompt y to two embeddings:

E = {ET5, EGPT}, where ET5 encodes the sentence-level representation, and

EGPT captures the more fine-grained semantic information inside y.

First, the FLAN-T5 [Chung et al., 2024] encoder, utilising a T5 model [Raffel

et al., 2020], encodes y into a feature vector ET5 ∈ RL×1024, where L represents

the prompt length. In parallel, the CLAP [Wu et al., 2023a] text encoder

leverages a RoBERTa [Liu et al., 2019] model to transform y into a flattened

vector ECLAP ∈ R1×512: {
ET5 = T5(y),

ECLAP = CLAP(y).
(4.1)

Then, ET5 and ECLAP are linearly projected to P ∈ R768. A GPT-2 model,

pre-trained on an AudioMAE [Huang et al., 2022a], is then employed to auto-

regressively generate 8 new tokens EGPT ∈ R8×768:

EGPT = GPT-2(Proj(ET5, ECLAP)). (4.2)

The LDM takes both ET5 and EGPT as input in the diffusion process:

ϵθ = ϵθ(zt, E, t), (4.3)

zt−1 = Denoise(zt, ϵθ, E, t). (4.4)

Similarly, the new prompt y′ can be encoded to E′ = {E′
T5, E

′
GPT}. The

goal is to find Eedit = {Eedit
T5 , Eedit

GPT}.
I use the following method to find the editing vector ∆, as shown in Fig-

ure 4.2:

1. I first generate a multitude of music-related captions using a pretrained

InstructGPT model [Ouyang et al., 2022]. These captions are designed to
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Piano

Guitar

InstructGPT

Melodic, expressive piano music with
virtuosic technique and romantic harmonies.

Melodic keys transport listeners through
timeless classical piano pieces.

Soulful strumming, rock-inspired riffs, and
intricate fingerpicking define guitar music.

Energetic, melodic guitar music with
passionate solos and rhythmic strumming.

...

...

InstructGPT

FLAN-T5

Mean
difference

FLAN-T5

Δ

Figure 4.2: The pipeline of finding the editing direction ∆. I first use In-
structGPT to generate a large number of captions and then calculate the mean
difference between the two embedding sets.

contain the original and new keywords.

2. Subsequently, I input these two sets of captions into the FLAN-T5 encoder

and compute the mean embeddings for each set of encoded vectors.

3. The final step is calculating the difference between these two mean em-

beddings, which is then employed as the vector for the editing direction

∆.

I employ different strategies to edit ET5 and EGPT. For ET5, the edited

embedding is:

Eedit
T5 = ET5 +∆. (4.5)

The aforementioned editing method faces challenges when applying ∆ to

EGPT. The core issue is that EGPT is obtained through the GPT-2 model, where

the addition of a ∆ to the embedding may not constitute a semantically valid

operation. Consequently, in practical applications, I resort to using Eedit
GPT =

E′
GPT, which is derived directly from the encoding of the new prompt.

Finally, I have the edited embeddings:

Eedit = {ET5 +∆, E′
GPT}. (4.6)

4.2.2 Adding Constraints over Cross-Attention

Diffusion models exhibit randomness in their generation output. By setting a

fixed random seed and using the same text prompts, the model can generate

the same musical output. However, even minor variations in the text prompt
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T-UNet

T-UNet

T-UNet

T-UNet

T-UNet

T-UNet...

...
Cross-attention condition

①

Cross-attention condition

original music

edited music

②

Figure 4.3: The workflow of the MusicMagus model. To constrain the diffusion
model at timestep t, I need to: (1) calculate the L2 loss Lt between the cross-

attention map M edit
t and Morigin

t ; (2) compute the gradient of Lt with respect to
zt, and then perform a single-step optimisation to update ϵeditθ of the diffusion
model.

can result in significantly different music clips. Previous studies have demon-

strated that imposing external constraints on the cross-attention map between

the text condition and the diffusion latent space enhances the consistency of

the music generation, particularly for the remaining attributes that need to

remain unchanged [Hertz et al., 2022, Parmar et al., 2023, Tumanyan et al.,

2023]. Building on this concept, I introduce a method designed to constrain the

text-to-music diffusion model specifically for editing purposes.

To begin, I examine the acquisition of the cross-attention map. During the

denoising process at the time step t, the model computes the cross-attention

score between the encoded text {ET5, EGPT} and the intermediate features of

LDM ϵθ:

Attention(Q,K, V ) = M · V,

where M = Softmax

(
QKT

√
d

)
.

(4.7)

In this context, Q = WQϕ(zt), K = WkE, V = WvE are defined, where

W = {WQ,WK ,WV } represents projection layers, and E = {ET5, EGPT} rep-
resents the text embeddings. AudioLDM 2 proposes the T-UNet architecture,

which is distinct from the UNet architecture, to extract intermediate spatial

features ϕ(xt). T-UNet incorporates a transformer block after each encoder

and decoder block’s convolution operation, and the cross-attention occurs in

the transformer block’s final layer. The term d denotes the dimension of the

projected keys and queries.

As illustrated in Figure 4.3, to apply the editing, I first reconstruct the music
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x with the original text embeddings E. I record cross-attention maps for each

timestep t ∈ [1, T ]:

Morigin = {Morigin
1 , ...,Morigin

T }. (4.8)

Then I use the edited text embeddings Eedit to generate an edited music clip.

Similarly, at timestep t, I have a cross-attention map M edit
t .

At each time step t, I apply the constraint by calculating the L2 loss between

Morigin
t and M edit

t :

Lt = |M edit
t −Morigin

t |2. (4.9)

I then compute the gradient ∇ztLt and perform a single-step optimisation with

the step length α:

ϵeditθ = ϵθ(zt − α∇ztLt, E
edit, t). (4.10)

Subsequently, I execute the t-step denoising process using the updated ϵedit:

zt−1 = Denoise(zt, ϵ
edit
θ , Eedit, t). (4.11)

This optimisation is applied at every step until the denoising process is com-

pleted to enhance structural consistency during denoising.

To effectively utilise the constraint of cross-attention, it is essential to employ

∆ for editing. This method is crucial, especially when dealing with cases that

involve substituting text of varying lengths, exemplified by replacing a shorter

expression with a longer one (such as “piano” → “acoustic guitar”). Utilising

∆ maintains the uniformity of embedding lengths during the editing process. In

contrast, techniques such as word swapping can alter these lengths, leading to

discrepancies between M edit and Morigin, and consequently errors in calculat-

ing Lt. Furthermore, ∆ facilitates the insertion of words at different sentence

positions without disrupting the position-related cross-attention maps, ensuring

that the attention mechanism remains focused on the correct semantic context.

4.3 Experiments

In the domain of text-to-music editing, comprehensive model evaluation is in-

herently challenging due to the countless number of possible editing schemes.

To address this, I focus on two key aspects: timbre transfer and style trans-

fer, and compare the model’s performance against established baselines in these

areas. This comparison is conducted through objective and subjective testing

methodologies.
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4.3.1 Baselines

I benchmark the model against three distinct models in the field: AudioLDM

2 [Liu et al., 2024a], Transplayer [Wu et al., 2023b], and MusicGen [Copet et al.,

2024]. Although the approach uses AudioLDM 2 as its backbone, AudioLDM 2

independently offers methods for both timbre and style transfer tasks, making

it a relevant baseline.

AudioLDM 2. AudioLDM 2 is a diffusion-based model supporting unified

speech, audio, and music generation at 16kHz. AudioLDM 2 is able to perform

audio style transfer through the interpolation of audio latents and subsequent

denoising with a new prompt.

Transplayer. This state-of-the-art, diffusion-based model is trained on the

POP909 [Wang et al., 2020a] and the MAESTRO [Hawthorne et al., 2019]

datasets, specialising in timbre transfer at 16kHz. Unlike typical timbre transfer

models that require training for each instrument pair, Transplayer is trained on

multiple pairs, enabling versatile many-to-many timbre transfers.

MusicGen. A leading text-to-music generation model, MusicGen is a super-

vised model trained on a dataset of over 20,000 high-quality music pieces, gen-

erating 32kHz music. It uniquely allows for the inclusion of an extra melody

condition, facilitating the style transfer task within the text-to-music generation

process by generating music with new text prompt conditioning on the original

music audio.

4.3.2 Metrics

I employ different metrics for subjective and objective experiments. For subjec-

tive evaluation, I incorporate the following metrics, where OVL and REL are as

follows [Kreuk et al., 2023]:

Overall Quality (OVL). This metric is used to assess the overall music

quality, encompassing aspects like sound clarity and musicality. It primarily

evaluates whether the editing process enhances or diminishes the quality of the

original music audio. The scoring for this metric ranges from 0 to 100.

Relevance (REL). REL measures the perceived semantic closeness be-

tween the edited music and the new text prompt. It is a subjective score, also

ranging from 0 to 100.

Structural Consistency (CON). I define a new metric CON to evaluate

the consistency of the pitch contour and structural aspects in the subjective

test. Similar to the others, its scoring range is from 0 to 100.

The objective experiments utilise the following metrics:

CLAP Similarity (CLAP).[Wu et al., 2023a] This metric measures the se-

mantic relevance between edited music and a new text prompt by leveraging the
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CLAP model, which is pretrained on multimodal data to capture cross-domain

relationships between audio and text. The metric is particularly suitable for

assessing semantic similarity in text-to-music generation tasks, as it is designed

to understand both musical content and linguistic descriptions. CLAP is also

flexible and can be applied to style and timbre transfer tasks. For instance, by

editing the text prompt through word swapping, we can expect the model to

generate audio that aligns with the edited text prompt. In this case, the result-

ing audio will have a higher CLAP similarity score with the new text prompt,

while the original audio will retain a higher similarity score with the original text

prompt, reflecting the semantic alignment. A higher CLAP score indicates a

stronger alignment between the music and the text prompt, with values ranging

from 0 (no similarity) to 1 (perfect similarity). This metric is implemented with

the MuLaB library[Manco et al., 2023], which provides an efficient interface for

computing CLAP Similarity.

Chromagram Similarity (Chroma). I use this new metric to gauge the

preservation of pitch contours and rhythm patterns in the music. It involves

computing the cosine similarity between the chromagrams of the original and

edited music. A higher score suggests better retention of the structure and pitch

contour, with values ranging from 0 to 1. This metric is implemented with the

librosa library [McFee et al., 2015].

4.3.3 Data Preparation

Objective Experiments

To evaluate our model’s performance on the timbre transfer task, I began by

generating a set of music audio samples using AudioLDM 2. I crafted text

prompts based on the template: ”A mood genre music with timbre perfor-

mance,” where mood is randomly selected from the set {“upbeat”, “relaxing”,
“peaceful”}. This approach ensured a diverse range of initial audio samples in

terms of mood, genre, and timbre.

I focused on three specific timbre swapping pairs supported by the Transplayer

model: (piano → organ), (viola → piano), and (piano → acoustic guitar). Note

that MusicMagus can perform arbitrary word swapping, whereas Transplayer

has been trained on a fixed set of pairs. To ensure a fair comparison, we re-

stricted the swapping to specific pairs.

For each pair, I generated audio samples and implemented a quality-based

filtering process. Samples that fell below a predefined quality threshold—such

as those with significant artifacts or misalignment with the text prompt—were

excluded. I continued this process until I accumulated 60 suitable samples,

aiming to represent the typical outputs of AudioLDM 2.
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For the music style transfer task, I applied a similar methodology. Using

the same text prompt template and random mood selection, I generated audio

samples for various style conversions, including (jazz → classical), (country →
metal), (jazz → metal), and (jazz → rock). After applying the quality-based

filtering criteria, I curated a dataset comprising 50 samples.

It is important to acknowledge that our proposed model relies on audio

generated by AudioLDM 2. This dependency introduces a potential bias when

comparing editing results between models that also utilize AudioLDM 2 and

those that do not. Models sharing the same underlying generation process

might exhibit compatibility advantages, potentially influencing the evaluation

outcomes. I recognize this inherent bias and have taken it into consideration

during our analysis.

Subjective Experiments

For the subjective test, I randomly selected a subset of data points from the

objective test dataset. Specifically, 8 data points were chosen for the timbre

transfer task and 5 data points for the style transfer task. Each data point

included results from both the baseline models and the ablation studies. The

results are shown in Tables 4.1 and 4.2.

4.3.4 Experimental Setup

I choose the AudioLDM2-base model 1 as our backbone model. During inference,

I configure the DDIM steps to 100, and generate 5-second audio clips at a

sampling rate of 16kHz. A uniform gradient step length (α = 0.04) is applied

for both timbre transfer and style transfer tasks. All inference is performed on

a single NVIDIA A100 GPU.

For the Transplayer model, I use the official pre-trained checkpoint 2 without

any modifications to its weights or code. For MusicGen, I opt for the MusicGen-

melody checkpoint 3, which has 1.5B parameters. To maintain consistency, all

generated samples from these models are subsequently downsampled to 16kHz

resolution.

4.3.5 Results

Subjective Experiments

I conducted a subjective listening test for both the timbre transfer and style

transfer tasks. This test involved disseminating an online survey within the

1https://huggingface.co/cvssp/audioldm2
2https://github.com/Irislucent/TransPlayer
3https://huggingface.co/facebook/musicgen-melody
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Model name Type REL OVL CON Avg.

AudioLDM 2 Zero-shot 15.7 49.9 80.6 48.7
Transplayer Supervised 28.3 28.9 34.6 30.6

MusicMagus w/o L2 & ∆ Zero-shot 78.0 61.6 50.4 63.3
MusicMagus w/o L2 Zero-shot 78.8 62.4 51.3 64.2

MusicMagus (final) Zero-shot 76.2 62.1 66.6 68.3

Table 4.1: The subjective evaluation results on the timbre transfer task.

Music Information Retrieval (MIR) community and our broader research net-

work, which resulted in the collection of 26 complete responses. The gender

distribution of the participants was 19 males (73%), 6 females (23%) and 1

others (4%). Regarding musical experience, 5 participants (19%) had less than

1 year of experience, 5 (19%) had between 1 and 5 years, and the majority,

16 participants (62%), had more than 5 years of experience. This subjective

test was approved by the ethics committee of both Sony AI and Queen Mary

University of London (QMERC20.565.DSEECS23.129).

The data presented in Table 4.1 reveals that the proposed model exhibits

superior performance in the timbre transfer task when compared to two base-

line models. Specifically, AudioLDM 2 demonstrates a notable limitation in

transferring to novel semantics, resulting in edited samples that closely resem-

ble the original ones. This is evident from its low Relevance (REL) score and

high Consistency (CON) score. Contrary to expectations, the performance of

Transplayer is consistently inferior, suggesting that its generalisation capability

may be inadequate for complex tasks such as many-to-many instrument tim-

bre transfer in practical applications. The model is the best on the average of

altering semantic content and maintaining structural integrity.

Insights gleaned from the ablation study further elucidate these findings.

The inclusion of the additional constraint significantly enhances performance in

terms of Structure Consistency (CON), highlighting its role in bolstering struc-

tural coherence. However, subjective experiments do not indicate marked differ-

ences in Relevance (REL) scores between methods. This observation aligns with

expectations, since the primary objective of ∆ usage is to ensure the consistency

of the cross-attention maps, particularly during complex editing operations or in

scenarios involving underrepresented words stated in Section 4.2.1, which may

not be fully reflected by the current subjective test settings.

I also evaluated the model performance in the style transfer task, as detailed

in Table 4.2. Similar to the previous findings, the model demonstrates superior

performance over the baseline models in this task as Ill.

AudioLDM 2 exhibits notable limitations in style transfer, with its perfor-
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Model name Type REL OVL CON Avg.

AudioLDM 2 Zero-shot 19.8 53.2 84.2 52.4
MusicGen Supervised 63.3 66.0 48.2 59.1

MusicMagus w/o L2 & ∆ Zero-shot 69.2 56.9 58.9 61.7
MusicMagus w/o L2 Zero-shot 71.3 53.8 55.0 60.0

MusicMagus (final) Zero-shot 65.7 57.8 65.6 63.1

Table 4.2: The subjective evaluation results on the style transfer task.

Model name Type CLAP Chroma Avg.

AudioLDM 2 Zero-shot 0.16 0.72 0.44
Transplayer Supervised 0.18 0.56 0.37

MusicMagus w/o L2 & ∆ Zero-shot 0.33 0.68 0.51
MusicMagus w/o L2 Zero-shot 0.34 0.69 0.52

MusicMagus (final) Zero-shot 0.33 0.76 0.55

Table 4.3: The objective evaluation results on the timbre transfer task.

mance generally unstable; MusicGen, despite its downsampled audio quality

from 32KHz to 16kHz, retains a high level of audio quality, as indicated by

its high Overall Quality (OVL) score. However, MusicGen struggles with pre-

cisely preserving the original melody in the style transfer process, particularly

in maintaining polyphonic melodies, which introduces some instability in its

output.

In contrast, the method not only changes the semantics but also maintains

the overall quality, resulting in the best average score; it also maintains the struc-

tural integrity and pitch consistency, which are critical in music style transfer.

Objective Experiments

I compare the performance of the model and the zero-shot and supervised base-

lines. The results for the timbre transfer and style transfer tasks are shown in

Tables 4.3 and 4.4.

In the timbre transfer task (Table 4.3), the model demonstrated better per-

formance in semantic transfer. The incorporation of a constraint on the cross-

attention mechanism greatly improved pitch and rhythm accuracy, reinforcing

the insights obtained from subjective experiments. These results substantiate

the efficacy of the model in maintaining semantic integrity while facilitating

timbre transfer results.

Table 4.4 presents the findings for the style transfer task. Here, the model

outperformed the baselines in terms of structural and pitch consistency. How-

ever, in terms of semantic transfer, the differences between the model and the
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Model name Type CLAP Chroma Avg.

AudioLDM 2 Zero-shot 0.18 0.80 0.49
MusicGen Supervised 0.24 0.66 0.45

MusicMagus w/o L2 & ∆ Zero-shot 0.22 0.65 0.44
MusicMagus w/o L2 Zero-shot 0.22 0.67 0.45

MusicMagus (final) Zero-shot 0.21 0.77 0.49

Table 4.4: The objective evaluation results on the style transfer task.

baselines were less pronounced. This suggests that while the model excels in

maintaining the structural and pitch elements during style transfer, the semantic

changes are comparable to those achieved by the baseline models.

4.4 Discussion

4.4.1 Real Music Audio Editing

InstructGPTMU-LLaMA

Original music

(1) Generate caption; (3) Denoise & Optimize;(2) DDIM Inversion;

Edited music

(4) Decode.

Figure 4.4: The diagram of the real music audio editing pipeline using Music-
Magus with DDIM inversion and diffusion model editing.

MusicMagus offers capabilities for editing real-world music audio, although

it is noted that the performance may not match the editing of synthesised music

audio generated from diffusion models. I begin with the DDIM inversion [Song

et al., 2021] to estimate the latent representation ẑT of a given real music audio

x. This step is crucial to facilitate editing with the diffusion model, as depicted

in Figure 4.4.

Inversion requires a corresponding text prompt ŷ, which is initially generated

by a pre-trained music captioning model, MU-LLaMA [Liu et al., 2024b]. Due to

the discrepancy between the text prompt distributions of AudioLDM 2 and MU-

LLaMA, the InstructGPT model is employed to refine the generated captions,

aligning them more closely with AudioLDM 2’s distribution. This refinement
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includes condensing the caption into a single concise sentence and emphasising

essential characteristics such as the key instruments, mood, and genre.

DDIM inversion, while effective, is not a perfect reconstruction method. It

faces a trade-off between the editability of the estimated latent ẑT and its re-

construction fidelity [Hertz et al., 2022]. A balance is sought by selecting an in-

termediate value for classifier-free guidance, set to 1. Additionally, the diffusion

latent is typically modeled as Gaussian noise. To mitigate the autocorrelation

that may arise during inversion, I adopt a strategy from Parmar et al. [Parmar

et al., 2023], introducing autocorrelation regularisation to diminish its impact,

thus enhancing the estimation of ẑT .

Subsequent to obtaining the estimated latent ẑT , the caption ŷ is edited,

and the MusicMagus editing algorithm is applied within the diffusion model

framework to produce the edited music audio 4.

4.4.2 Limitations

The current implementation of MusicMagus, while effective, is based on the

AudioLDM 2 model, which is not without its constraints. One significant limi-

tation is the model’s challenge in generating multi-instrument music when such

complexity is specified. This inherently restricts the scope of creative expres-

sion and diversity that the model can offer. The performance of AudioLDM 2

was not enhanced in the approach, which is an aspect I aim to address moving

forward.

Moreover, the zero-shot method exhibits instability, as evidenced by a no-

table number of failure cases. These failures are often due to unsuccessful ap-

plication of the delta and word-swapping techniques, highlighting an area ripe

for improvement. Currently, the scope of alterations I can apply to the mu-

sic is somewhat modest; the system struggles to introduce substantial changes,

such as adding or removing an instrument, adding sound effects, etc., without

compromising the overall structure and quality of the audio.

Another factor that confines the system is the inherent limitations of the

base model itself. For instance, the diffusion process struggles to generate very

long sequences, which in turn limits the practical applications of the model.

Addressing this limitation could potentially open up new domains where longer

sequence generation is essential.

Lastly, the quality of generated audio, is another significant limitation, often

resulting in artifacts that can detract from the listener’s experience. Enhancing

the fidelity of the audio is an important step that will bring us closer to a model

that can produce professional-grade audio, which is crucial for both consumer

4I provide listening samples at https://bit.ly/musicmagus-demo.
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applications and artistic endeavors. The pursuit of higher audio quality and the

reduction of artifacts are critical goals for the future work.

4.5 Ethical Statement

Subjective tests are approved by the ethics committees of both Sony AI and

Queen Mary University of London (QMERC20.565.DSEECS23.129).

4.6 Conclusion

In this chapter, I explored MusicMagus, a system developed to investigate the

challenges and possibilities of text-guided music editing through latent space

manipulation within pre-trained diffusion models. MusicMagus represents a

significant step in AI-assisted music creation, offering a method to modify spe-

cific musical attributes while preserving the structural integrity of the original

music. This approach, which does not require additional training, demonstrates

the potential for stylistically coherent edits in real-world music production sce-

narios.

However, MusicMagus also has its limitations. The system’s focus on latent

space manipulation constrains its ability to perform more complex editing tasks,

such as adding or removing entire musical elements. Additionally, the diffusion

models used are limited by the length of the generated audio, making them

less suitable for longer music sequences compared to music language models.

These limitations suggest areas for further research and innovation in text-

guided music editing, leading to the development of Instruct-MusicGen. By

examining these challenges, Instruct-MusicGen aims to expand the scope of

music editing operations, offering greater flexibility and precision in handling

more complex and dynamic music production scenarios.

In general, MusicMagus contributes to the evolving landscape of AI-assisted

music creation, highlighting both the potential and the challenges of zero-shot

text-to-music editing. It sets the stage for future explorations that aim to push

the boundaries of what is possible in this emerging field.
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Chapter 5

Instruct-MusicGen:

Unlocking Text-to-Music

Editing for Music Language

Models via Instruction

Tuning

This chapter introduces Instruct-MusicGen, a system designed to address the

limitations of existing text-to-music editing models by enhancing both the pre-

cision and flexibility of music generation. Building on the foundational work of

Coco-mulla and the advancements realised in MusicMagus, Instruct-MusicGen

offers a novel approach that integrates instruction tuning with a dual-modality

fusion process. This integration allows the model to interpret complex text-

based editing instructions and apply them directly to musical content, thereby

enabling more nuanced and dynamic modifications.

Instruct-MusicGen operates by concurrently processing textual instructions

and audio inputs, a capability made possible through the introduction of text

and audio fusion modules. These modules allow for precise control over the edit-

ing process, whether it involves adding, removing, or altering specific musical

stems. This system is particularly significant in the context of music produc-

tion, where the ability to make detailed, text-guided edits, improves AI models’

usability for achieving specific artistic goals.

While Instruct-MusicGen builds on the strengths of earlier systems like Mu-

sicMagus by broadening the scope of text-to-music editing, it also addresses

120



some of the limitations observed in previous approaches. Specifically, it over-

comes challenges related to intra-stem editing and the constraints of diffusion

models by leveraging the capabilities of music language models. However,

Instruct-MusicGen is not without its own challenges, such as issues related to

signal-level precision and the reliance on paired data for fine-tuning. These as-

pects highlight the areas where further research is needed to fully realise the

potential of text-to-music editing.

By carefully examining both its capabilities and limitations, this chapter

aims to position Instruct-MusicGen within the broader context of this the-

sis, contributing to the ongoing exploration of text-guided music generation.

Through this analysis, I will explore how Instruct-MusicGen advances the field

while also acknowledging the opportunities for future work that remain. 1

5.1 Introduction

As discussed in Chapter 2, there is a growing interest in the development of

models that offer greater controllability [Lin et al., 2023, Wu et al., 2024, Mele-

chovsky et al., 2024a, Lin et al., 2024] and editability [Han et al., 2023, Zhang

et al., 2024b, Hussain et al., 2023] over the music generation process. In mu-

sic production, a stem, a mixed group of tracks often related by instrument

type (like drums or lead vocals), is essential for mixing and mastering because

it allows producers to isolate, adjust, and manipulate individual elements of a

song. Following the definition in Chapter 4, “text-to-music editing” involves

using textual queries to modify various aspects of a music recording, which can

be categorised into two main types: intra-stem editing, which focuses on modi-

fying a single stem (e.g., changing the instrument, timbre, or performance style)

and inter-stem editing, which involves altering the relationships among stems

(e.g., adding, removing, or separating stems). The work mainly focuses on the

problem of inter-stem editing.

Previous attempts to develop text-based music editing models have encoun-

tered several challenges. Some approaches [Wang et al., 2023, Han et al., 2023]

have focused on the training of specialised editing models from scratch, which

is resource-intensive and may not yield results comparable to state-of-the-art

music generation models. Other work [Zhang et al., 2023b, Hussain et al., 2023,

Yang et al., 2023] has sought to leverage existing language models (LLMs) and

MusicGen [Copet et al., 2024], allowing the LLM to interpret editing instruc-

tions without further training the music model. Although this approach offers

flexibility, it often lacks the ability to precisely reconstruct the conditional au-

1Code, model weights and demo are available at: https://bit.ly/instruct-musicgen.
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MusicGen

T5 encoder

Music output

Text description input
"Generate music piece of sad jazz"

instruct-MusicGen

T5 encoder

Edited music output

Text instruction
"Instruction: add drums."

Source music

Figure 5.1: Comparison between MusicGen and Instruct-MusicGen. Instruct-
MusicGen accepts both audio input and editing instruction text as conditions.

dio, leading to unreliable results. To address these limitations, an ideal solu-

tion should harness the knowledge embedded in pretrained models to ensure

high-quality audio output while adapting the architecture to accommodate the

specific requirements of music editing tasks.

As shown in Figure 5.1, Instruct-MusicGen is a novel approach that applies

an instruction-following tuning strategy to the pretrained MusicGen model, en-

hancing its ability to follow editing instructions effectively without finetuning

all its parameters. By incorporating an audio fusion module based on LLaMA-

adapter [Zhang et al., 2023a, Lin et al., 2023] and a text fusion module based on

LoRA [Hu et al., 2021] into the original MusicGen architecture, I allow the model

to process both precise audio conditions and text-based instructions simultane-

ously, while the original MusicGen does not. This enables Instruct-MusicGen to

perform a wide range of editing tasks, such as adding, separating, and removing

stems. To train Instruct-MusicGen, I synthesise an instructional dataset using

the Slakh2100 dataset [Manilow et al., 2019], introducing only 8% additional

parameters compared to the original model, and finetune the model for only 5K

steps, which is less than 1% of training a music editing model from scratch.

I evaluate Instruct-MusicGen on two datasets: the Slakh test set and the

out-of-domain MoisesDB dataset [Pereira et al., 2023]. The model outperforms

existing baselines and achieves performance comparable to models specifically

trained for individual tasks. This demonstrates the effectiveness of the approach

in leveraging pretrained models for text-to-music editing while maintaining high-

quality results. The main contributions of this work are threefold:

• I propose Instruct-MusicGen, a novel approach that finetunes pre-

trained large music language models to follow editing instructions effec-
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tively. This method addresses the limitations of previous approaches by

leveraging pretrained models to ensure high-quality audio output and pre-

cise reconstruction, combining both music and text multi-modal control.

• I enhance the capabilities of a pretrained text-to-music model

to perform multiple tasks, including adding, separating, and extracting

stems from music audio, all within a single training process. This approach

significantly reduces the computing resources cost compared to training

specialised editing models from scratch.

• I extend the benchmarking for text-to-music editing tasks, pro-

viding a comprehensive comparison across various models. The model

outperforms existing baselines and achieves performance comparable to

models specifically trained for individual tasks, demonstrating the effec-

tiveness and versatility of the approach.

5.2 Background: Coco-mulla

Before introducing Instruct-MusicGen, it is important to first understand its

precursor, Coco-mulla. I contributed to this work as a co-author, and through

expanding its concepts within the field of music editing, we developed Instruct-

MusicGen. However, Coco-mulla is not presented as a primary contribution in

my thesis.

Coco-mulla is a framework developed to explore the integration of content-

based controls within music generation, specifically addressing the limitations of

models that rely solely on text-based descriptions. Previous text-based controls,

while functional, often fall short in capturing intricate musical elements such as

chord progressions, rhythm patterns, and melodic structures. Coco-mulla seeks

to address these challenges by introducing a joint embedding approach that

combines both symbolic (e.g., chord and MIDI representations) and acoustic

(e.g., drum patterns) features within a unified generative model.

5.2.1 Implementation of Coco-mulla

Coco-mulla is implemented using a parameter-efficient fine-tuning (PEFT) frame-

work designed to enhance pre-trained music language models, such as MusicGen,

without necessitating extensive retraining. The model introduces two primary

components: a joint symbolic and acoustic embedding encoder and a condition

adaptor.

123



Joint Symbolic and Acoustic Embedding

The joint embedding encoder in Coco-mulla is designed to integrate symbolic

music data and acoustic signals into a coherent representation. Symbolic music

data is encoded using MIDI and chord structures. For instance, a chord is

represented as a combination of its root pitch and bass pitches, as well as chroma,

forming a multi-hot vector ci for each frame i:

ci =

[e(root); e(bass);m; 0], if chord exists in frame i

[0; 0; 0; 1], otherwise

where e(root) and e(bass) are basis vectors representing the root and bass

pitches, and m is the chroma vector. Acoustic features, particularly drum

tracks, are encoded using pre-trained embeddings derived from EnCodec to-

kens. These embeddings are then mapped to a lower-dimensional space via a

trainable matrix, facilitating the model’s ability to manage continuous repre-

sentations effectively.

Condition Adaptor

The condition adaptor is critical for integrating the joint embeddings into the

generative process. This module modifies the self-attention layers of the pre-

trained MusicGen model by introducing a condition prefix that captures the

temporal evolution of symbolic and acoustic conditions. The condition prefix is

inserted into the final layers of the MusicGen decoder, where it interacts with

the hidden states derived from the original text-based prompts. The condition

information is processed through a series of self-attention and cross-attention

mechanisms, ensuring that the generated music adheres to both the symbolic

and acoustic conditions provided.

This foundation, while robust in its approach, highlighted several areas

where further advancements could be made, particularly in enhancing the flexi-

bility and precision of music editing tasks. These insights directly informed the

development of Instruct-MusicGen, which aimed to build upon and extend the

capabilities introduced by Coco-mulla.

5.2.2 Evolution into Instruct-MusicGen

Building upon the framework established by Coco-mulla, Instruct-MusicGen

was developed to address some of the limitations and expand the potential of

content-based controls in music generation. By incorporating a more sophisti-

cated instruction-following mechanism, Instruct-MusicGen enables dynamic and
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precise text-based editing of music, thus offering greater flexibility and control

over the generated output.

While Coco-mulla utilises a joint embedding strategy to merge symbolic

and acoustic controls, Instruct-MusicGen introduces an additional text fusion

module. This module enables the model to interpret and execute complex editing

instructions alongside processing audio inputs. The architecture of Instruct-

MusicGen integrates the LLaMA-adapter framework into the condition adaptor,

enhancing its capacity to manage both symbolic and text-based controls.

Moreover, Instruct-MusicGen employs a dual-modality fusion process, where

the audio fusion module combines the original music input with the desired

edits specified by text instructions. This process allows Instruct-MusicGen to

perform tasks such as adding or removing specific instruments, changing musical

styles, or separating stems with a higher degree of precision, which Coco-mulla’s

original implementation was not designed to achieve to the same extent.

The primary distinction between Coco-mulla and Instruct-MusicGen is the

latter’s ability to handle complex editing tasks using text instructions without

compromising on the quality or fidelity of the generated music. While Coco-

mulla provides a framework for generating music based on combined symbolic

and acoustic conditions, it does not offer the same level of flexibility required

for detailed music editing—an area where Instruct-MusicGen shows marked

improvements.

Instruct-MusicGen also benefits from an optimised training process. Despite

introducing only ∼8% additional parameters compared to the original MusicGen

model, it achieves enhanced performance across a range of editing tasks as

seen in Table 5.2. The use of instruction tuning, combined with the advanced

fusion modules, allows Instruct-MusicGen to adapt and edit existing music more

effectively than its predecessor.

The following sections detail the architecture, training strategy, and infer-

ence methods implemented in Instruct-MusicGen, highlighting how these inno-

vations build upon the groundwork laid by Coco-mulla.

5.3 Method

5.3.1 Instruct-MusicGen

Instruct-MusicGen takes a music audio input Xcond and a text instruction

X instruct (e.g., “Add guitar”) as inputs. The model then edits the music audio

Xcond according to the instruction X instruct and generates the desired edited

music Xmusic. As illustrated in Figure 5.2, Instruct-MusicGen incorporates two

additional modules into the vanilla MusicGen: an audio fusion module and a
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text fusion module.

Note that we no longer use the symbolic conditioning in Coco-mulla, which

is because audio conditioning has already contained all information of the input

stems.

Audio Fusion Module

The audio fusion module enables Instruct-MusicGen to accept external audio

inputs, which is inspired by Zhang et al. [2023a] and Lin et al. [2023]. Figure 5.2

presents the diagram of the audio fusion module. Initially, I convert Xcond into

EnCodec tokens, followed by re-encoding these tokens into the embedding zcond

through the pre-trained embedding layers of MusicGen. Similarly, I transform

Xmusic into the pretrained embedding zmusic.

The module begins by duplicating self-attention modules of the pretrained

MusicGen model to extract latent representations of zcond. Given that Music-

Gen consists of M layers, I denote

Zcond = {zcond0 , zcond1 , . . . , zcondM }, (5.1)

Zmusic = {zmusic
0 , zmusic

1 , . . . , zmusic
M }, (5.2)

which represent the hidden states of Xcond and Xmusic respectively. Note

that I use a learnable input embedding as zcond0 and initialise zmusic
0 with zmusic.

I compute the vanilla self attention for Xmusic as follows:

Qmusic
l ,Kmusic

l , V music
l = QKV-projector(zmusic

l ), (5.3)

omusic
l = SelfAttn(Qmusic

l ,Kmusic
l , V music

l ). (5.4)

I project zcond to a high-dimension representation h via a linear layer fl and

learnable positional encoding el,

h = fl(z
cond) + el. (5.5)

Then, I compute the (l + 1)-th layer hidden states of Xcond as follows:

Qcond
l ,Kcond

l , V cond
l = QKV-projector(zcondl + h), (5.6)

zcondl+1 = SelfAttn(Qcond
l ,Kcond

l , V cond
l ). (5.7)

To fuse information of Xcond into Xmusic, I compute the cross attention
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Figure 5.2: The fusion mechanism inside the Transformer module of Instruct-
MusicGen. The audio fusion module transforms the conditional music audio into
embeddings using a duplicated encoder and integrates these embeddings into the
MusicGen decoder. The text fusion module modifies the cross-attention mecha-
nism to handle text instructions by finetuning specific layers (marked by Flame)
while keeping the text encoder parameters frozen (marked by Snowflake).
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between them,

smusic
l = CrossAttn(Qmusic

l +Qcond
l ,Kcond

l , V cond
l ). (5.8)

Finally, the attention output of Xmusic is updated as follows,

s′l = omusic
l + gl · smusic

l , (5.9)

zmusic
l+1 = TextFusion(s′l, X

instruct), (5.10)

where g is a zero-initialised learnable gating factor.

Thus, the total trainable parameters in Instruct-MusicGen include the input

embedding zcond0 , linear layers fl, learnable position embeddings el, learnable

gating factors g, and learnable parameters in the text fusion module.

Text Fusion Module

To replace the text description input with instruction input, I modify the be-

havior of the current text encoder. I achieve this by finetuning only the cross-

attention module between the text embedding and the music representations

while keeping the text encoder’s parameters frozen.

The instruction is embedded and encoded by the T5 text encoder as zinstruct =

T5(X instruct). For efficient finetuning of the cross-attention module, I apply

LoRA to the query and value projection layers. Thus, I expand Equation 5.10

as follows,

Ql,K
instruct
l , V instruct

l = QKV-Lora(s′l, z
instruct), (5.11)

zmusic
l+1 = CrossAttn(Ql,K

instruct
l , V instruct

l ). (5.12)

During fine-tuning, only query and value projection layers are trainable in the

text fusion module.

5.4 Experiments

I conduct both subjective experiments and objective experiments for evaluation,

and also provide audio samples in Figure 5.4 and a demo page 2.

2https://bit.ly/instruct-musicgen
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5.4.1 Objective Experiments

Dataset

For the objective evaluations, I utilise two distinct datasets, each serving a

specific purpose in assessing both in-domain and out-of-domain performance

capabilities of various models.

1. Slakh2100 dataset [Manilow et al., 2019]. The Synthesised Lakh (Slakh)

Dataset, originally derived from the Lakh MIDI Dataset v0.1, comprises

audio tracks synthesised using sample-based virtual instruments. Known

as Slakh2100, this dataset features 2100 tracks complete with correspond-

ing MIDI files. These tracks are methodically divided into subsets des-

ignated for training (1500 tracks), validation (375 tracks), and testing

(225 tracks), collectively amounting to approximately 145 hours of audio

mixtures. This dataset primarily supports audio source separation tasks

within a controlled, synthesised environment.

2. MoisesDB dataset [Pereira et al., 2023]. In contrast to Slakh2100, the

MoisesDB dataset caters to source separation with a broader scope. It

includes 240 real audio tracks sourced from 45 diverse artists spanning

twelve musical genres. Uniquely, MoisesDB organises its tracks into a

detailed two-level hierarchical taxonomy of stems, offering a varied number

of stems per audio track, each annotated with textual descriptions.

The rationale for selecting two datasets lies in their diverse configurations

and common applications. While the Slakh dataset is typically utilised for train-

ing models tailored to a four-stem arrangement [e.g., Postolache et al., 2024],

the model, Instruct-MusicGen, although initially trained on this dataset, is de-

signed to generalise to various stem configurations. Conversely, models such as

InstructME and AUDIT are trained on private or larger, more diverse datasets.

By employing both Slakh2100 and MoisesDB, I ensure a comprehensive evalua-

tion, allowing us to fairly compare the adaptability and performance of different

models under varying conditions of data familiarity and complexity.

Data Preprocessing

I utilised the Slakh2100 dataset to construct an instruction-based dataset for

training and testing, employing the following pipeline:

• A data point was randomly selected from the Slakh training dataset.

• An instruction was randomly selected from a predefined set add, remove,

extract, along with a target stem. The target stem represents the difference
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between the input and output, where the input consists of n stems, and

the output consists of 1, n − 1 or n + 1 stems 3. For example, if the

chosen instruction is“add guitar”, the target stem would be the distinction

between the input and output, with the input containing n stems and the

output containing n+1 stems. Then, n other stems were randomly chosen

from the remaining stems to complete the dataset.

• An offset was randomly determined to cut a 5-second audio clip. If the

target stem contained more than 50% silence, a different offset was se-

lected.

• The stems were mixed according to the specified instructions to create a

triplet consisting of {instruction text, condition audio input, audio ground

truth}.

Experimental Setup

For the finetuning of MusicGen, I jointly trained the audio fusion module and the

text fusion module. The optimisation process utilised the AdamW optimiser,

with a learning rate set at 5e−3. I use L2 loss over latent token embeddings as

the training objective. Training incorporated a Cosine Annealing scheduler with

an initial warmup of 100 steps. The training regimen extended over 5,000 steps

with an accumulated batch size of 32, achieved through setting the batch size

to 8 and using gradient accumulation over 4 iterations. The finetuning process

was executed on a single NVIDIA A100 GPU and was completed within a span

of two days.

Baselines

In this section, I explore two baseline models, each distinguished by their unique

methodologies for handling audio data.

1. AUDIT [Wang et al., 2023] (Chapter 2.4.3): AUDIT is an instruction-

guided audio editing model, consisting of a variational autoencoder (VAE)

for converting input audio into a latent space representation, a T5 text

encoder for processing edit instructions, and a diffusion network that per-

forms the actual audio editing in the latent space. The system accepts

mel-spectrograms of input audio and edit instructions, and generates the

edited audio as output.

2. M2UGen [Hussain et al., 2023] (Chapter 2.4.4): The M2UGen frame-

work leverages large language models to comprehend and generate music

3The number of both input stems and output stems should range from [1, N ], where N is
the total number of audio stems
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across various modalities, integrating abilities from external models such

as MusicGen [Copet et al., 2024] and AudioLDM 2 [Liu et al., 2024a].

InstructME (Chapter 2.4.3) is a novel framework for instruction-guided mu-

sic editing and remixing that leverages latent diffusion models. However, In-

structME’s model weights and evaluation protocol have note been publicly re-

leased, so it is only possible to record the evaluation results which were reported

in the original paper.

Table 5.1 shows a comparison among the models.

Model Param count Dataset Hours (h) Steps

AUDIT 942M (1.5B) Multiple ∼6500 0.5M
InstructME 967M (1.7B) Multiple 417 2M
M2UGen 637M (∼9B) MUEdit 60.22 -

Instruct-MusicGen 264M (3.5B) Slakh 145 5K

Table 5.1: Comparison of different models, where the param count numbers
are the number of trainable parameters and total parameters respectively. The
proposed model has the lowest parameter size, and only requires 5K training
steps.

Metrics

Having been introduced in Chapter 2, the metrics to evaluate model performance

are listed below.

1. Fréchet Audio Distance (FAD) [Kilgour et al., 2018]4 measures the

similarity between two sets of audio files by comparing multivariate Gaus-

sian distributions fitted to feature embeddings from the audio data. I use

the FAD score to evaluate the overall audio quality of the predicted music.

2. CLAP score (CLAP) [Wu et al., 2023a]5 evaluates the alignment and

relevance of audio content with corresponding textual descriptions, using

models pretrained on both audio and language tasks to assess semantic

coherence between audio and text. A high CLAP score indicates the

predicted music aligns with the text description well.

3. Kullback-Leibler Divergence (KL)6 assesses the difference between

the probability distributions of audio features from two sources, indicating

information loss when approximating one distribution with another. A

low KL score indicates the predicted music shares similar features with

the ground truth.

4https://github.com/gudgud96/frechet-audio-distance.
5https://github.com/LAION-AI/CLAP.
6https://github.com/haoheliu/audioldm_eval.
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4. Structural Similarity (SSIM) [Wang et al., 2004] is an image quality

metric that I adapt to evaluate structural similarity between predicted

music and ground truth.

5. Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [Roux et al.,

2019] quantifies audio quality, especially in source separation tasks. It is

scale-invariant, useful for varying audio volumes, and measures distortion

relative to a reference signal. I use SI-SDR score to evaluate the signal

loss of the predicted audio.

6. Scale-Invariant Signal-to-Distortion Ratio improvement (SI-SDRi)

[Isik et al., 2016] extends SI-SDR, measuring the improvement in signal-

to-distortion ratio after processing. It is commonly used in audio enhance-

ment and separation contexts.

To further investigate if the model can successfully add, remove or extract

the instrument, I propose the P-Demucs score to evaluate model performance.

This metric specifically focuses on detecting the presence of a newly added in-

strument in the generated audio. It leverages the Demucs model, a source sepa-

ration model, to isolate the target instrument from the audio. After separation,

the root-mean-square energy (RMSE) of the isolated track is used for judging 7.

For example, if the instruction is to “add guitar,” the success of the model is

indicated by the presence of a non-silent guitar track. P-Demucs (Precision over

Demucs) measures the precision of this detection, focusing exclusively on the

new instrument’s presence without considering changes to existing instruments.

Results

The evaluation of Instruct-MusicGen demonstrates its superior performance

across various tasks compared to existing text-to-music editing baselines (AU-

DIT, InstructME, M2UGen). On the Slakh dataset (Table 5.2), Instruct-MusicGen

performs well in adding, removing, and extracting stems, achieving the lowest

Fréchet Audio Distance (FAD) and the highest CLAP and SSIM scores in the

addition task. It also significantly improved the signal-to-noise ratio (SI-SDR) in

the removal task, showing balanced performance across all metrics and proving

its robustness in various editing scenarios.

Similarly, in the MoisesDB dataset evaluations (Table 5.3), Instruct-MusicGen

continued to demonstrate strong performance. It achieved competitive FAD

scores and showed improvements in CLAP and SSIM metrics for both addi-

tion and removal tasks. Our model consistently outperformed baseline models,

highlighting its efficiency and effectiveness in text-to-music editing applications.

7https://librosa.org/doc/main/generated/librosa.feature.rms.html
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I find that all models exhibit negative SI-SDR and SI-SDRi scores, which

is a common occurrence when evaluating generative models on a signal level.

These metrics are typically designed for source separation tasks and are not

entirely fair to generative models, as they penalise even minor discrepancies

between the generated and original signals. Generative models, like Instruct-

MusicGen, often focus on producing perceptually plausible audio rather than

perfectly matching the original signal at a technical level, causing the inherent

gap between the model and the tasks.8

5.4.2 Subjective Experiments

Experimental Setup

I conducted a subjective listening test to evaluate the model’s performance.

This test involved disseminating an online survey within the Music Information

Retrieval (MIR) community and the broader research network, which resulted

in the collection of 30 complete responses. The gender distribution of the partic-

ipants was 23 males (76.7%) and 7 females (23.3%). Regarding the experience of

musical training and experience, 4 participants (13. 3%) had less than 1 year of

experience, 13 (43.3%) had between 1 and 5 years, and 13 participants (43.3%)

had more than 5 years of experience.

For the data preparation, I randomly selected a subset of data points from

the objective test dataset. Specifically, 6 audio samples were chosen consisting

of 2 audio samples for each subtask (add, remove, extract). Each data point

included results from the baseline models, the proposed models, and the ground

truth from the dataset. The experiment has been approved by the ethics com-

mittee at Sony AI.

Metrics

1. Instruction Adherence (IA) assesses how accurately the generated mu-

sic follows the given editing instruction. In this experiment, participants

rate the generated music on a scale from 1 to 5, where 1 indicates that the

instruction was not followed at all, and 5 indicates that the instruction was

followed perfectly. For example, if the instruction is “Remove Drums,” a

rating of 1 would mean that the drums were not removed at all, while a

rating of 5 would mean that the drums were completely removed.

2. Audio Quality (AQ) evaluates the overall audio quality of the generated

music in comparison to the original music. Participants rate the audio

quality on a scale from 1 to 5, where 1 represents very poor quality with

8Demos are available at: https://bit.ly/instruct-musicgen.
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significant degradation compared to the original music, and 5 represents

excellent quality, as good as or better than the original music. This metric

helps in understanding how the editing process affects the overall sound

quality of the music.

Results

Model Instruction Adherence↑ Audio Quality↑

AUDIT 1.54 2.56
M2UGen 1.70 1.92

Instruct-MusicGen 3.85 3.55

Ground truth 4.36 4.21

Table 5.4: The subjective experiment results. The model shows significant
improvements on both the Instruction Adherence (IA) score and the Audio
Quality (AQ) score over the baselines models.

The results of the subjective experiments are summarised in Table 5.4. I

conducted two paired t-tests with Bonferroni correction, setting the significance

level at α = 0.05. The results show that the proposed model demonstrates a

significant improvement in both Instruction Adherence (IA) and Audio Quality

(AQ) compared to the baseline models, AUDIT and M2UGen.

Specifically, the model achieves an IA score of 3.85 and an AQ score of 3.55,

significantly outperforming AUDIT (IA: 1.54, AQ: 2.56) and M2UGen (IA: 1.70,

AQ: 1.92). These results suggest that the model not only better adheres to

the given instructions but also maintains higher audio quality in the generated

music.

5.4.3 Ablations

Hyperparameter Selection

The total trainable parameters include the input embedding layer, linear layers

for joint embedding learning, and gate scalars, and the linear layers make up

over 80% of the total parameters. In this ablation, I want to investigate whether

the parameters can be reduced by revising the architecture of the linear layers.

The original linear layers have the shape of (48, 2048, 2048), where 48 is the

number of layers of the of MusicGen model, and (2048, 2048) is a linear trans-

formation from embedding to layer-wise representation. I replace a single layer

with an auto-encoder architecture, consisting of two linear layers: (2048,M)

and (M, 2048), where M ≪ 2048.
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I record and compare the loss on the validation set between the variant

and the original Instruct-MusicGen model, shown in Figure 5.3. The variation

has M = 12, which reduces the parameter size from 201M to 23M. From the

experimental results, I find that although the paramater size is reduced, the

instruction tuning still works for MusicGen, but the small parameter size limits

the model’s representation ability, making the model perform worse than the

original version.

Figure 5.3: The comparison of L2 loss curve between the original Instruct-
MusicGen and its variant with less parameters.

Comparison with Original Text Encoder

I use an audio fusion module to enable MusicGen to accept additional audio

input, allowing the model to process instruction text input without adding a

new adapter. By finetuning the cross-attention module between the text encoder

and the MusicGen transformer, I can fuse instructional knowledge into text

information. In this ablation study, I examine the necessity of finetuning the

text encoder. Since the text encoder is already capable of accepting text input,

can it directly understand the semantic meaning of editing instructions?

To investigate this, I revised the architecture of Instruct-MusicGen’s text

fusion module, configuring the music decoder to only accept cross-attention

information from the original text encoder.

From Table 5.5, I observe that removing the text fusion module and relying

on the original text encoder to interpret the instructions significantly decreases

the model’s performance. Qualitative results from the predicted samples in-

dicate that the original text encoder, which is designed for text description,
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struggles with the format of instructional commands. It fails to fully under-

stand the semantics of keywords such as “extract,” “remove,” “no,” and “only,”

which are not typically used to describe music but rather to indicate editing

operations. Therefore, the presence of the text fusion module is crucial for

MusicGen to correctly interpret the semantic meaning of instructions.

Experiments Slakh Dataset (all stems)

The results for the Slakh dataset with all stems are shown in Table 5.6, where the

results from InstructME are reported. From the results, InstructME performs

better than AUDIT and M2UGen, and being superior to the proposed model

in the “remove” task. However, InstructME still has some worse scores in

the “add” and “extract” task. Additionally, in previous experiments, Instruct-

MusicGen consistently achieved the highest or tied scores on the CLAP metric,

but in this experiment, it performs slightly worse than M2UGen.

5.4.4 Audio Samples

I show some audio samples in Figure 5.4. The generation results from Instruct-

MusicGen show that the model effectively performs music editing tasks while

largely preserving the original audio input. The spectrograms indicate that

the model successfully adds, removes, or extracts instruments with minimal

alteration to the rest of the audio, though some minor changes suggest potential

detail loss, possibly due to codec compression.

The P-Demucs score further reflects the model’s capability, with a success

rate of around 80% in correctly adding the specified instrument. In cases where

the model did not fully succeed, it still maintained the overall structure of

the audio, indicating reliable performance with some room for improvement in

refining the added elements.

5.5 Limitation and discussion

Instruct-MusicGen still has several limitations. Firstly, the generative editing

tasks do not guarantee signal-level precision, as the process of predicting En-

Codec tokens inherently involves some inaccuracy. Second, the finetuning pro-

cess still relies on paired data, limiting the model’s applicability to more com-

plex editing tasks where such data is not readily available. These constraints

highlight the need for further research to improve signal accuracy and expand

the model’s capabilities to handle a broader range of editing scenarios without

heavily relying on paired datasets. Nonetheless, the ability to edit music with

fewer computational resources opens up new avenues for creative expression and
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(a) Input music. (b) Edited music output. (c) Ground truth.

(d) Input music. (e) Edited music output. (f) Ground truth.

(g) Input music. (h) Edited music output. (i) Ground truth.

Figure 5.4: Audio samples. Fig (a-c): Extracting a stem. Instruction: “Ex-
tract drum.”; Fig (d-f): Adding a stem. Instruction: “Add piano.”; Fig (g-i):
Removing a stem. Instruction: “Remove bass”;

automation in music composition. Instruct-MusicGen represents a significant

contribution to the field of text-to-music research, offering a robust and efficient

tool for both musicians and researchers.

5.6 Conclusion

In this chapter, I have examined the development and contributions of Instruct-

MusicGen, a model designed to enable the editability for a pretrained text-to-

music model. The foundation for Instruct-MusicGen was laid by Coco-mulla, a

framework that introduced content-based controls through joint symbolic and

acoustic embeddings. While Coco-mulla effectively addressed certain limitations

inherent in text-only control models, Instruct-MusicGen has further advanced

these capabilities by integrating sophisticated instruction-following mechanisms

and dual-modality fusion processes.

The architectural enhancements in Instruct-MusicGen, including the intro-

duction of text and audio fusion modules, allow for more precise and flexible

music editing. This may enable a wider range of applications in AI-assisted mu-

sic creation, particularly in scenarios requiring detailed manipulation of musical

elements based on user instructions. However, the flexibility of the editing oper-

ations remains limited to a set of predefined tasks, such as adding, removing, or

extracting specific musical stems. The evolution from Coco-mulla to Instruct-

MusicGen reflects the ongoing efforts to refine and expand the capabilities of
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music language models, paving the way for future research in this domain.

In the context of this thesis, Instruct-MusicGen represents the culmination

of a series of advancements aimed at improving the controllability and editabil-

ity of AI systems in music production. The progression from Loop Copilot,

which focused on iterative refinement and orchestration through a conversa-

tional interface, to MusicMagus, which introduced zero-shot text-to-music edit-

ing capabilities, has laid a solid foundation for the innovations presented in

Instruct-MusicGen. Each system addressed specific challenges in AI-assisted

music creation, progressively enhancing the precision and flexibility of music

editing.

Instruct-MusicGen builds upon these prior contributions by integrating in-

struction tuning into the MusicGen model, enabling a higher degree of precision

in editing tasks such as adding, removing, or modifying specific musical stems.

This system not only achieves greater accuracy in edits but also broadens the

applicability of music language models to more complex and dynamic produc-

tion environments, offering a scalable and efficient solution. The incorporation

of dual-modality fusion processes allows Instruct-MusicGen to effectively pro-

cess both textual instructions and audio inputs, making it a robust tool for

creative expression and automation in music composition.

However, Instruct-MusicGen still encounters limitations, particularly in signal-

level precision and reliance on paired data during finetuning. Additionally, the

experiments are confined to rigidly defined scenarios, limiting the full utilisation

of the model’s text processing abilities. The vocabulary and language of editing

instructions are relatively simple, constrained by the dataset and template-based

construction of the instruction editing dataset. These constraints highlight the

need for further research to improve signal accuracy and expand the flexibil-

ity of editing operations. Future work should aim to reduce the dependence on

paired datasets and explore more fundamental approaches to enhance the diver-

sity of editing instructions, thereby fully leveraging the model’s text processing

potential.
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Chapter 6

Conclusions and Future

Work

In this thesis, I have explored the landscape of AI-assisted music creation, focus-

ing on enhancing the controllability and editability of text-to-music generation

models. Throughout this journey, I introduced three systems—Loop Copilot,

MusicMagus, and Instruct-MusicGen—each addressing the limitations of its pre-

decessors. This chapter will provide a detailed review of the contributions made,

discuss the limitations encountered, and propose future work to further advance

this field.

6.1 Summary of Contributions

The overarching aim of this thesis was to enable iterative and dynamic control

over music generation, addressing gaps in precision and flexibility. To achieve

this, three key systems were developed:

6.1.1 Loop Copilot: Conducting AI Ensembles for Music

Generation and Iterative Editing

Loop Copilot - built upon its preliminary work, COSMIC - is the first system

developed in this thesis, aimed at addressing the need for iterative refinement

during the music creation process. By leveraging a large language model (LLM),

Loop Copilot was designed to orchestrate a set of specialised AI music models,

enabling the user to guide the music generation through a conversational in-

terface. This conversational framework allows users to iteratively refine their

music in multiple rounds of dialogue, which reflects the natural workflow during

collaborations among human composers and music producers.
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A significant contribution of Loop Copilot is the Global Attribute Table

(GAT), which records and maintains key musical attributes such as tempo,

key, and mood. GAT ensures that iterative edits do not break the musical

consistency, allowing for a coherent development of the music. The system

architecture involved an LLM that interpreted user instructions, followed by

task allocation to appropriate music models, each handling different aspects of

the composition. This multi-model coordination is what makes Loop Copilot

distinct from single-model music systems.

Loop Copilot was tested through an in-depth user study involving experi-

enced and novice musicians. The study employed semi-structured interviews,

usability testing, and a questionnaire focusing on metrics like user satisfaction,

system coherence, and efficiency of the music creation process. One key obser-

vation was that users appreciated the interactive dialogue and the ease of mod-

ifying different attributes without technical intervention. However, the system

struggled when users sought highly specific or unconventional edits, reflecting

the LLM’s limitations in interpreting more technical music jargon.

The key limitation of Loop Copilot lies in the precision of edits. While

the LLM can effectively communicate broad instructions to specialised models,

there was a notable gap in understanding detailed instructions such as fine

adjustments to harmonic progressions or specific instrumentation. Moreover,

the reliance on fixed models limited the flexibility when more complex edits

were needed. This gap drove the development of more sophisticated solutions

in the subsequent systems.

6.1.2 MusicMagus: Zero-Shot Text-to-Music Editing via

Diffusion Models

MusicMagus was introduced as a response to the limitations in the precision

of edits observed in Loop Copilot. Where Loop Copilot relied on orchestrating

multiple models, MusicMagus shifted focus to zero-shot text-to-music editing via

pretrained diffusion models. This system explored the concept of latent space

manipulation to allow the modification of specific musical attributes, such as

instrumentation, genre, or mood, without the need for re-training the underlying

models. MusicMagus offers significant flexibility, allowing the system to operate

on pre-existing music clips by transforming specific aspects while preserving the

remaining aspects of the music.

The use of diffusion models enabled MusicMagus to implement intra-stem

editing, where users could alter characteristics within individual musical stems,

such as changing the instrumentation from a piano to a guitar. The latent space

exploration method allowed for these edits to be made in a zero-shot manner,
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where new data is not required for training, thus enhancing the scalability of

the system for different music styles and contexts.

The evaluation of MusicMagus involved both subjective user testing and ob-

jective comparisons with baseline models, and it was found that MusicMagus

provided a high level of stylistic coherence when modifying musical attributes.

Users especially valued its ability to maintain non-targeted elements, ensuring

that the overall feel of the music was preserved even after edits. Additionally,

quantitative evaluations showed that MusicMagus outperformed existing mod-

els in tasks such as genre and timbre transfer, specifically by maintaining the

integrity of the original musical content.

However, limitations emerged in the form of handling more complex, multi-

layered edits. For example, while MusicMagus works well on modifying single

attributes (like switching an instrument or altering mood), it struggles with

inter-stem editing tasks, such as adding a completely new instrument or mod-

ifying multiple aspects of a piece simultaneously. Another challenge was the

diffusion model’s constraint on the length of the generated audio, which is typi-

cally shorter compared to music language models. This means that for long-form

compositions, MusicMagus is less applicable, limiting its utility in real-world

music production environments.

6.1.3 Instruct-MusicGen: Unlocking Text-to-Music Edit-

ing for Music Language Models via Instruction Tun-

ing

Building on the limitations identified in MusicMagus, Instruct-MusicGen was

developed to provide a more flexible and precise framework for text-to-music

editing. This system introduces instruction tuning to the MusicGen model, en-

abling it to handle both audio inputs and text-based instructions simultaneously.

By incorporating a text fusion module and an audio fusion module, Instruct-

MusicGen enhances the precision of music edits, allowing for more complex tasks

such as adding, removing, or modifying musical stems.

Unlike the zero-shot approach of MusicMagus, Instruct-MusicGen is fine-

tuned using a triplet dataset for editing. This pairing allows for a high level

of accuracy in following instructions, a key improvement over earlier models.

Moreover, the system’s ability to process audio inputs directly enables it to

function effectively in real-world production environments, where users often

need to modify pre-existing tracks rather than generate new music from scratch.

Instruct-MusicGen introduced multi-modal control, where users could input

a specific musical stem (e.g., vocals or drums) and provide textual instructions

to modify it (e.g., “add reverb to the vocals” or “remove the drums after 20 sec-
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onds”). The dual-modality fusion allows for a seamless integration of text-based

and audio-based instructions, thus providing precise control over the modifica-

tions. A notable feature is its multi-task editing capability, enabling users to

combine multiple edits (such as adding an instrument and adjusting the tempo)

within a single interaction.

The performance of Instruct-MusicGen was evaluated using both the Slakh2100

synthetic dataset and the MoisesDB out-of-domain dataset. In comparative

evaluations, Instruct-MusicGen demonstrated superior performance over base-

line models in terms of both instruction adherence and audio quality.

However, limitations still exist. One challenge is the signal-level precision

during certain edits. For example, when users attempt to modify a specific in-

strument or section of the music, the model may sometimes over-generalise,

affecting nearby sections that were not meant to be altered. Additionally,

the reliance on paired data for fine-tuning remains a bottleneck for scalabil-

ity. Creating large, diverse datasets that cover all possible musical instructions

is resource-intensive, limiting the system’s applicability to broader, more diverse

musical genres.

6.2 Limitations

While the systems developed in this thesis represent significant progress in AI-

assisted music creation, several limitations emerged that highlight areas for

future improvement. These limitations, observed across Loop Copilot, Music-

Magus, and Instruct-MusicGen, point to technical, data-related, and conceptual

challenges that must be addressed to push the field further.

6.2.1 Precision in Music Editing

Despite advances in controllability and flexibility, achieving fine-grained pre-

cision in music editing remains one of the most critical challenges for these

systems. Each system progressively improved on the previous one, yet none

fully addressed the need for micro-level editing accuracy.

Loop Copilot demonstrated that using a large language model (LLM) to co-

ordinate multiple music models is effective for high-level, iterative edits. How-

ever, the system struggled to interpret complex or highly technical musical in-

structions, especially when users needed detailed modifications within specific

sections of the music. For example, instructions such as “slightly increase the

volume of the high-hats in the second chorus” or “make the strings sound more

legato in the bridge” often resulted in oversimplified edits, where the system

could not accurately parse and translate these fine distinctions into actionable
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changes.

MusicMagus, with its zero-shot text-to-music editing via diffusion models,

offered an improvement in the precision of intra-stem edits, allowing users to

modify specific musical attributes like instrumentation or mood. However, it

struggled with multi-stem edits—tasks that involve adding, removing, or mod-

ifying multiple layers of a composition in tandem. The underlying diffusion

process is not well-suited for highly localised edits in the time-axis, such as

tweaking the timbre of just a few notes within a complex arrangement with-

out affecting the surrounding elements. Moreover, MusicMagus exhibited some

instability in maintaining musical coherence during fine-tuned edits, particu-

larly when users attempted to make nuanced changes that affected harmonic or

rhythmic structures.

Even Instruct-MusicGen, which introduces a multi-modal fusion approach to

process both audio and text, showed limitations in signal-level precision. While

it outperformed previous systems in handling more complex instructions, it

still faced difficulties when users required granular, localised edits. The system

struggled with tasks that demanded high fidelity, such as precisely modifying

the dynamics or texture of an instrument within a busy mix, or making subtle

adjustments to the timing and articulation of individual notes. These issues

are particularly relevant in professional music production, where small changes

can significantly impact the final output. The limitations in precision often

resulted in edits that were either too broad or inadvertently affected neighbor-

ing elements of the composition, reducing the system’s overall effectiveness in

intricate workflows.

These precision challenges highlight the gap between broad-stroke control

over generated music and the detailed, fine-tuned manipulations that human

composers and producers typically require. Addressing this gap is critical for

future advances in AI-assisted music tools, particularly in sound design, mixing,

and mastering workflows, where detailed control is essential.

6.2.2 Dependence on Paired Data

One of the most significant limitations of Instruct-MusicGen and, to some ex-

tent, other systems is the reliance on paired datasets for fine-tuning. The de-

velopment of high-quality paired data—where musical samples are precisely

matched with corresponding text instructions—poses a significant challenge,

both in terms of the cost and time required to curate such datasets. This limi-

tation hampers the system’s ability to scale and generalise across more diverse

musical styles, genres, and editing tasks.

Paired data for music editing is relatively scarce compared to other AI do-
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mains like image or text generation. The specialised nature of music—where

complex instructions must be linked to corresponding changes in musical at-

tributes—means that even large datasets may not cover the full breadth of

musical editing needs. For example, instructions like “make the piano sound

more melancholic” or “add more swing to the drums” require subjective inter-

pretations that are difficult to standardise in datasets.

The cost of creating these datasets further exacerbates the problem. Each

instruction must be meticulously crafted and paired with an accurate edit in the

corresponding audio sample. Given the variability in how different musicians

might interpret similar instructions, the datasets must cover a wide range of

possible musical edits. This results in a time-consuming and labor-intensive

process that does not scale well.

Additionally, genre diversity is another concern. The systems in this thesis

primarily focused on certain types of music (e.g., pop, classical, or jazz), but

expanding to more niche or diverse genres (e.g., experimental, ambient, or world

music) would require substantially more paired data to account for the unique

attributes of each style. For instance, genres like jazz or electronic music might

require more nuanced handling of improvisation, polyrhythms, or synthesised

textures, which current datasets may not adequately represent.

The heavy reliance on paired data, especially for Instruct-MusicGen, thus

limits the system’s flexibility and scalability, restricting its utility to a subset

of genres and tasks that have been explicitly trained. To make these systems

more broadly applicable, new approaches—such as unsupervised learning, self-

supervised learning, or few-shot learning—are needed to reduce this dependence,

allowing the models to generalise better across diverse musical contexts.

6.2.3 Handling Long-Form Music

Another limitation lies in the systems’ capacity to handle long-form composi-

tions, a critical need in real-world music production. The systems developed in

this thesis were primarily designed for generating and editing relatively short

music clips (typically within 30 seconds), which limits their applicability in pro-

fessional environments where full-length tracks or extended compositions are

common.

Loop Copilot and Instruct-MusicGen demonstrated the ability to make it-

erative edits to short loops, but their effectiveness diminishes when applied to

longer pieces. This is particularly problematic when editing dynamic transi-

tions between different sections of a song, such as the verse, chorus, and bridge,

or when making structural changes to large compositions. Long-form music

typically requires the system to handle temporal dependencies over extended
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periods, ensuring that edits made to one section maintain the musical coher-

ence across the entire piece.

Temporal coherence is a major challenge. Long-form compositions often

involve complex relationships between different musical sections, and making an

edit to one part of the track (e.g., the introduction) might require corresponding

adjustments in later sections (e.g., the outro). The current models are not

equipped to manage these dependencies effectively, leading to disjointed edits

where certain elements might become disconnected from the overall structure.

Another limitation in handling long-form music is related to memory con-

straints and the ability to retain contextual information over extended time

spans. As these models process audio in shorter segments, they struggle to

maintain an overarching understanding of the piece. This results in an inability

to preserve the narrative arc or thematic development of a song, which is often

key to musical storytelling.

6.3 Future Work

The advances made in Loop Copilot, MusicMagus, and Instruct-MusicGen mark

significant progress in the field of AI-assisted music creation. However, several

open questions remain that future research must address. Below, I outline four

key areas for improvement, drawing from the challenges and insights encoun-

tered during this thesis.

Improving Signal-Level Precision

One of the persistent limitations across the systems presented in this thesis,

particularly Instruct-MusicGen, is the difficulty in achieving signal-level preci-

sion. As demonstrated in the discussion, while Instruct-MusicGen can perform

edits at the macro level, such as adding or removing entire musical stems, more

refined control over micro-level attributes (such as detailed changes in timbre,

dynamics, or specific sections of a track) remains a challenge. This is due in part

to the limitations in how the system interprets text instructions and translates

them into modifications at a granular audio level.

Future work could focus on incorporating techniques from neural audio cod-

ing and high-resolution audio models to enhance the system’s ability to make

finer, more precise edits. For example, utilising neural audio synthesis for Music-

Magus and Instruct-MusicGen could allow the system to manipulate individual

audio features (e.g., the vibrato of a specific instrument) without affecting the

rest of the composition. This would provide users with much greater control

over their creative process, especially in professional contexts where even small
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changes can dramatically impact the final product.

Another avenue to explore is audio-based diffusion models that work at a

higher resolution, allowing for more intricate adjustments. Current models,

while effective for broad edits, often simplify or generalise finer details. High-

resolution models could enable edits at the level of harmonic overtones, reverb

tails, or subtle rhythmic variations, allowing for a new level of precision in music

editing with generative models.

This approach could also benefit tasks like instrument isolation or track

separation, where signal-level precision is critical for maintaining the quality of

the original music while allowing detailed modifications. By improving signal

accuracy, these models could be adapted for complex workflows in sound design,

mastering, and post-production where every detail matters.

Leveraging Unsupervised Learning

A major bottleneck in the scalability of Instruct-MusicGen is the reliance on

paired datasets for fine-tuning. Creating datasets where each music sample

is paired with a detailed, natural language instruction is labour-intensive and

costly, limiting the system’s performance. As discussed earlier, this problem

could be addressed by exploring unsupervised or weakly supervised learning

techniques.

Unsupervised learning methods, such as contrastive learning, could allow

the system to learn the relationships between textual instructions and musical

changes without needing exact pairs. For instance, by training on larger, uncu-

rated music editing datasets of music and associated metadata (genre, artist, or

mood), models could learn how different attributes are represented in the latent

space and apply this knowledge for text-guided editing tasks.

Incorporating few-shot learning could further enhance the model’s flexibility,

enabling it to learn new editing tasks with minimal labelled examples. For

example, if the system encounters a new genre or style, it could adapt based

on just a handful of examples rather than requiring extensive re-training. This

would be particularly beneficial for tasks like style transfer, where there may be

little or no existing data for specific combinations of genres or attributes. By

leveraging the wealth of unlabelled music data available online, the system could

reduce its dependence on specialised paired datasets, significantly broadening

its applicability.

Moreover, self-supervised techniques could be employed to improve the model’s

ability to understand more abstract or creative instructions, such as “make this

track more aggressive” or “add a cinematic feel.” These types of instructions are

difficult to capture in a traditional paired dataset but could be learned through
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unsupervised methods that focus on capturing broader musical transformations.

Scaling to Long-Form Compositions

One of the key limitations noted across all the systems, particularly MusicMa-

gus, is the handling of long-form compositions. While these models are capable

of generating and editing short music clips (usually around 10-20 seconds), they

struggle with larger, more complex musical structures that require edits over a

longer timescale. This limitation is especially critical in real-world music pro-

duction, where full-length tracks and compositions are the norm.

To address this, future research should explore hierarchical models that op-

erate at multiple levels of abstraction. Such models would allow for edits at both

the micro-level (e.g., tweaking a single note or instrument) and the macro-level

(e.g., changing the structure of an entire piece or modifying transitions between

sections). By structuring the model to handle both short-term dependencies

(e.g., melodic changes) and long-term dependencies (e.g., large-scale form), it

could manage longer, more complex compositions without losing coherence.

Additionally, techniques like memory-augmented networks [Yuan et al., 2024c,

Jonason et al., 2023] could be introduced to ensure that the system maintains

a sense of musical continuity over time. These networks could store and recall

information about earlier sections of the piece, enabling edits that are contex-

tually consistent even in longer compositions. This would be invaluable for film

scoring, album production, or any creative work that involves intricate, evolving

musical themes.

Another promising approach is to integrate models that specialise in tempo-

ral structures of music, such as models that capture rhythmic patterns, harmonic

progressions, and dynamic shifts over time. This would enable not only better

handling of long-form compositions but also more sophisticated edits that align

with the larger musical narrative.

Bridging the Interpretation Gap Between LLMs and Music Models

The discussion highlighted the interpretation gap between LLMs and music

models, which poses a challenge for systems like Loop Copilot and Instruct-

MusicGen. While LLMs are highly effective at processing natural language

instructions, they often struggle to accurately interpret and translate complex

musical requests into actionable edits. For example, instructions like “soften the

transition between these two sections” or “add a more jazzy feel to the bassline”

may be ambiguous to the LLM and lead to incorrect or overly generalised ed-

its [Zang and Zhang, 2024].

To address this, future research could focus on developing joint embeddings
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for text and music, which would allow the LLM and the music model to share a

common understanding of musical instructions. By embedding both the textual

instructions and the musical content into a shared latent space, the system

could more accurately match the user’s intent with the corresponding musical

transformation.

Another avenue for research is the use of multi-modal training techniques,

where the LLM and music models are trained together to understand the nu-

ances of music-related language. This could involve training on large datasets

where musical edits are paired with corresponding natural language descrip-

tions, allowing the system to learn the context-specific meaning of terms like

“groove,” “texture,” or “swing.” Bridging this gap would lead to more intuitive

and accurate interactions, making the system more accessible for musicians and

producers who may not have technical expertise but want to control their cre-

ative output in detailed ways.

Additionally, feedback mechanisms could be integrated into the system, al-

lowing users to refine their instructions iteratively. For instance, if the initial

edit is not satisfactory, the user could provide feedback (e.g., “make the guitar

even softer”) and the system would adjust accordingly. This type of itera-

tive refinement process would mimic a human creative workflow, improving the

alignment between the user’s intent and the system’s output.

6.4 Broader implications

The systems developed in this thesis have the potential to reshape the landscape

of AI-assisted music creation. By combining large language models (LLMs) with

specialised music generation models, this work opens up new possibilities for

human-AI collaboration in creative domains, offering tools that allow users to

interact with music in dynamic, iterative, and flexible ways.

6.4.1 Expanding Creative Possibilities in Music

The advances made in text-guided music editing through systems like Loop

Copilot and Instruct-MusicGen demonstrate that AI can go beyond simply gen-

erating music—it can act as a collaborative partner in the creative process. This

shift from generation to collaboration has profound implications for the music

production industry, enabling artists and producers to engage with music in new

and innovative ways.

For example, music producers could explore using these systems to refine

tracks in real time, experimenting with different arrangements or instrumenta-

tion without requiring deep technical expertise in music theory or production
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software. Similarly, songwriters could experiment with these tools to quickly

prototype ideas, testing different lyrical or melodic concepts through simple

text instructions. However, as these systems are still in their early stages, it is

crucial to recognise that scaling and engineering them for real-world use remains

a significant challenge. These tools, along with similar future developments, may

eventually lower the barrier to entry for music editing, but much work is needed

to realise their full potential for professional-level music production.

6.4.2 Implications for Other Creative Fields

The methods developed here for text-to-music editing could inspire similar in-

novations in other creative fields. For instance, in film scoring, a director or

composer could interactively shape the score by providing textual feedback, ad-

justing the emotional tone or timing of musical cues to match the narrative.

Similarly, in game audio design, dynamic music systems could be fine-tuned

through simple text commands to adapt the soundtrack in real time based on

player actions or in-game events.

Live performance enhancement is another area with strong potential. AI-

driven music models could be used to dynamically alter or generate music during

live performances, allowing musicians to improvise together with the system.

By interacting with the model through natural language or other inputs (e.g.,

gestures), performers could seamlessly adapt their performance to the audience

or the mood of the event.

6.4.3 Ethical Considerations and AI in Creative Fields

The deployment of AI in music and other creative fields raises three major

concerns: data copyright issues, questions about authorship, and the potential

disruption of creative industries.

First, data copyright issues are important to the ethical concerns surrounding

AI in creative fields. Many AI systems rely on vast datasets, often containing

copyrighted works, for training purposes. The use of these works without proper

compensation or recognition raises significant concerns. In the music industry,

for instance, many artists oppose the inclusion of their work in these datasets,

as it infringes on their intellectual property rights and typically occurs without

any form of reward 1. Although some companies have started paying for data

to mitigate legal risks, this practice does not fully address the broader ethical

concerns. A comprehensive framework is needed to ensure that the rights of

original creators are respected in the context of AI training.

1AI chief quits over ’exploitative’ copyright row. https://www.bbc.co.uk/news/

technology-67446000
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Second, the issue of authorship becomes more complicated when AI systems

contribute to the creation or editing of works. If an AI system plays a role in

generating a musical piece, how should the contributions of both the human

creator and the AI be recognised? The increasing autonomy of AI systems

challenges traditional notions of creativity and ownership. Clear guidelines must

be established to delineate human and AI contributions and to protect the rights

of original creators, ensuring that both are fairly acknowledged in collaborative

works involving AI.

Finally, the potential disruption of creative industries by AI must also be

carefully managed. While AI systems can democratise access to professional-

level tools, they also pose risks by automating tasks traditionally performed by

human professionals. This disruption is evident in the music industry, where

AI systems are already being used to generate music, raising concerns about

job displacement. Moreover, the reliance on copyrighted material in training

models has already led to legal challenges, such as lawsuits from major record

labels 2. The creative sector must find ways to integrate AI that complement

rather than replace human creativity, ensuring that the contributions of human

creators remain valued and protected.

6.4.4 The Future of Human-AI Collaboration

Looking ahead, the advances made in text-guided music editing set the stage for

more seamless human-AI collaboration in creative processes. As models become

more capable of understanding and executing complex instructions, their role

in the creative process will evolve from simple assistants to co-creators. In

this future, AI systems could serve as dynamic, adaptive partners, working

alongside human artists to explore new creative directions, experiment with

unconventional techniques, or streamline the iterative refinement process.

In the context of music, this could mean that composers and producers

no longer need to rely solely on traditional digital audio workstations (DAWs)

for editing tasks but can engage in an interactive dialogue with AI systems to

achieve their artistic vision. Similarly, across other domains, such as fashion,

architecture, or cinema, AI systems could provide new ways of exploring creative

possibilities by interpreting high-level goals and iteratively refining designs based

on human feedback.

Ultimately, systems such as the ones developed in this thesis represent a step

forward in the ongoing development of AI-assisted creativity. By enhancing the

controllability and editability of music generation models, these systems offer

2Sony, Universal, Warner sue over AI music copyright violations. https://www.bbc.co.

uk/news/articles/ckrrr8yelzvo
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a glimpse into the future of creative workflows, where human and AI creativ-

ity come together to unlock new era of artistic expression. As AI continues

to evolve, it may play an increasingly integral role in the creative industries,

shaping the way we think about and engage with art, music, and design in the

years to come.
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Appendix A

Appendix A: Loop Copilot

A.1 SUS questionnaire

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to

use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very

quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

A.2 TAM questionnaire

1. I find Loop Copilot useful in music creation.

2. Using Loop Copilot improves my experience in music creation.

3. Loop Copilot enables me to accomplish tasks more quickly.

4. I find that Loop Copilot increases my productivity in music creation.
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5. I find Loop Copilot easy to use.

6. Learning to operate Loop Copilot is easy for me.

7. I find it easy to get Loop Copilot to do what I want it to do.

8. I find the interface of Loop Copilot to be clear and understandable.

9. Given the chance, I intend to use Loop Copilot.

10. I predict that I would use Loop Copilot in the future.

11. I plan to use Loop Copilot frequently.

A.3 ChatGPT Prompts

157



Tool Prompt

System prefix Loop Copilot is designed to be able to assist with a wide

range of text and music related tasks, from answering sim-

ple questions to providing in-depth explanations and dis-

cussions on a wide range of topics. Loop Copilot is able

to generate human-like text based on the input it receives,

allowing it to engage in natural-sounding conversations and

provide responses that are coherent and relevant to the topic

at hand.

Loop Copilot is able to process and understand large

amounts of text and music. As a language model, Loop

Copilot can not directly read music, but it has a list of tools

to finish different music tasks. Each music will have a file

name formed as “music/xxx.wav”, and Loop Copilot can

invoke different tools to indirectly understand music. When

talking about music, Loop Copilot is very strict to the file

name and will never fabricate nonexistent files.

Loop Copilot is able to use tools in a sequence, and is loyal

to the tool observation outputs rather than faking the music

content and music file name. It will remember to provide

the file name from the last tool observation, if a new music

is generated.

Human may provide new music to Loop Copilot with a de-

scription. The description helps Loop Copilot to understand

this music, but Loop Copilot should use tools to finish fol-

lowing tasks, rather than directly imagine from the descrip-

tion.

Overall, Loop Copilot is a powerful music dialogue assistant

tool that can help with a wide range of tasks and provide

valuable insights and information on a wide range of topics.

TOOLS: ——

Loop Copilot has access to the following tools:
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Tool Prompt

System format To use a tool, you MUST use the following format:

Thought: Do I need to use a tool? Yes

Action: the action to take, should be one of

[{tool names}]
Action Input: the input to the action

Observation: the result of the action

When you have a response to say to the Human, or if you

do not need to use a tool, you MUST use the format:

Thought: Do I need to use a tool? No

{ai prefix}[your response here]

System suffix You are very strict to the filename correctness and will never

fake a file name if it does not exist. You will remember to

provide the music file name loyally if it is provided in the

last tool observation.

Begin!

Previous conversation history: {chat history}
Since Loop Copilot is a text language model, Loop Copilot

must use tools to observe music rather than imagination.

The thoughts and observations are only visible for Loop

Copilot.

New input: {input}
Thought: Do I need to use a tool?

{agent scratchpad}
You MUST strictly follow the format.

Text to music Name: Generate music from user input text.

Description: useful if you want to generate music from a

user input text and save it to a file. like: generate music of

love pop song, or generate music with piano and violin.

The input to this tool should be a string, representing the

text used to generate music.
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Tool Prompt

Drum pattern to

music

Name: Generate music from user input text based on the

drum audio file provided.

Description: useful if you want to generate music from a

user input text and a previous given drum audio file. like:

generate a pop song based on the provided drum pattern

above.

The input to this tool should be a comma separated string of

two, representing the music filename and the text descrip-

tion.

Music Imitation Name: Generate music from user input when the input is

a title of music.

Description: useful if you want to generate music which is

silimar and save it to a file. like: generate music of love pop

song, or generate music with piano and violin.

The input to this tool should be a comma separated string

of two, representing the text description and the title.

Stylistic rearrange-

ment

Name: Generate a new music arrangement with text indi-

cating new style and previous music.

Description: useful if you want to style transfer or rear-

range music with a user input text describing the target

style and the previous music.

Please use Text2MusicWithDrum instead if the condition is

a single drum track. You shall not use it when no previous

music file in the history. like: remix the given melody with

text description, or doing style transfer as text described

from previous music.

The input to this tool should be a comma separated string of

two, representing the music filename and the text descrip-

tion.

Music variation

generation

Name: Generate a variation of given music.

Description: useful if you want to generate a variation

of music, or re-generate the entire music track. like: re-

generate this music, or, generate a variant.

The input to this tool should be a single string, representing

the music filename.
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Tool Prompt

Add a track Name: Add a new track to the given music loop.

Description: useful if you want to add a new track (usually

add a new instrument) to the given music. like: add a

saxophone to the given music, or add piano arrangement to

the given music.

The input to this tool should be a comma separated string of

two, representing the music filename and the text descrip-

tion.

Remove a track Name: Separate one track from a music file to extract (re-

turn the single track) or remove (return the mixture of the

rest tracks) it.

Description: useful if you want to separate a track (must

be one of ’vocals’, ‘drums’, ‘bass’, ‘guitar’, ‘piano’ or ‘other’)

from a music file. Like: separate vocals from a music file,

or remove the drum track from a music file.

The input to this tool should be a comma separated string of

three params, representing the music filename, the specific

track name, and the mode (must be ‘extract’ or ‘remove’).

Re-

generation/inpainting

Name: Inpaint a specific time region of the given music.

Description: useful if you want to inpaint or regenerate a

specific region (must with explicit time start and ending) of

music. like: re-generate the 3s-5s part of this music.

The input to this tool should be a comma separated string

of three, representing the music filename, the start time (in

second), and the end time (in second).

Add sound effects Name: Add a single sound effect to the given music.

Description: useful if you want to add a single sound effect,

like reverb, high pass filter or chorus to the given music. like:

add a reverb of recording studio to this music.

The input to this tool should be a comma separated string

of two, representing the music filename and the original user

message.
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Tool Prompt

Pitch Shifting Name: Shift the pitch of the given music.

Description: useful if you want to shift the pitch of a mu-

sic. Like: shift the pitch of this music by 3 semitones.

The input to this tool should be a comma separated string

of two, representing the music filename and the pitch shift

value.

Speed Changing Name: Stretch the time of the given music.

Description: useful if you want to stretch the time of a

music. Like: stretch the time of this music by 1.5.

The input to this tool should be a comma separated string

of two, representing the music filename and the time stretch

value.

Music captioning Name: Describe the current music.

Description: useful if you want to describe a music. Like:

describe the current music, or what is the current music

sounds like.

The input to this tool should be the music filename.

Table A.1: List of system principles and task prompts. Each task

features a unique name, description, and input parameter format

for guiding the LLM.
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