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Abstract

While previous studies have explored pitch contours in singing, a systematic compu-
tational analysis of their characteristics across diverse singing styles has yet to be
conducted. This research develops a computational framework for the automated char-
acterisation and segmentation of pitch contours, with the goal of describing and com-
paring vocal styles, and evaluates the framework in three case studies.

The first study introduces a novel methodology for automatically delineating three
distinct pitch contour elements: steady, modulating, and transitory. Initial pitch tracks
were extracted using the PYIN algorithm, and a ‘pitch contour unit’ was proposed to
tokenise pitch contours. This unit formed the basis for a hidden Markov model (HMM)
that detected sequences of pitch contour elements. The proposed method outperformed
established benchmarks in segmenting Jingju (Peking opera) pitch contours. Addition-
ally, it demonstrated adaptability in identifying sustained notes in Georgian vocal music
and detecting portamento and vibrato in Jingju.

The second study analysed pitch contours at the note level in selected Alpine yodel
and Russian folk music songs. Results indicated consistency in note annotations made
by different cultural experts. This analysis revealed distinct approaches employed by
singers in each style to shape pitch contours for connecting and holding notes.

The third study examined pitch contours in Chinese Chaozhou folk music, where
vocal style analysis often utilises syllable-level segments corresponding to Chinese char-
acters. The study used the discrete cosine transform (DCT) to characterise pitch
contours at the syllable level, examining the effects of lexical tone in speech on singing
pitch contours. The analysis employed statistical models to identify the effect of lexical

tones and other factors, such as training background, frequency of singing in the dialect



and melodic interval, on sung pitch contours in Chaozhou vocal folk music data.



O time, thou must untangle this, not
I. It is too hard a knot for me to

untie!

Twelfth Night

SHAKESPEARE
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Chapter 1

Introduction

This thesis focuses on characterising vocal style through fundamental frequency (f0)
contour analysis. In this chapter, the motivations and aims of this research are outlined
in Sections Ell and @ Then, the overall structure of the thesis is presented in Section
@, along with the key contributions of this work. Finally, Section Q concludes the

chapter with a list of publications of the author related to the thesis.

1.1 Overview

Singing is a common component of music, with vocal music exhibiting diverse charac-
teristics across various styles and cultures. The systematic characterisation of vocal
music styles is essential for gaining deeper insights into the music. Pitch, a fundamen-
tal element in vocal music, significantly contributes to the conveyance of vocal style.
Previous studies have employed fO to characterise vocal styles within specific cultural
contexts, as demonstrated by Ganguli et al, (2017), Yang, Tian, Chew et al| (2015q),
and Devaney (2011). However, a systematic method for characterising vocal styles
across different cultures remains lacking.

It is important to note the distinction between fO, which is an objective physical
measurement of vocal fold vibration, and pitch, which is the subjective perception of
frequency by listeners. While this thesis aims to analyse f0 estimated from audio to

characterise vocal styles, the terms “f0” and “pitch” are used interchangeably through-
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out, following common practice in music information retrieval research. This approach
is supported by Ma et al) (2022), which argued that despite the differences between
fO0 and pitch, fO can be considered a valid proxy for pitch due to its close correlation
with perceived pitch. Furthermore, fO is one of the most accessible and cost-effective
measures for studying pitch variations. Since this research focuses on analysing pitch
contour shapes rather than intonation, any minor discrepancies between f0 measure-
ments and perceived pitch do not impact the validity of the analysis.

The f0 of singing voice is continuous, with rich variations in fO0 contour that can
be categorised into various expression types. While certain expression types, such as
vibrato (Wen & Sandlern 2008) and portamento (Yang, Chew & Rajab 2015), have
been modelled and analysed, there are few computational systems that generally define
and model multiple expression types or f0 contour elements simultaneously. Mayor
et al) (2006) defined and modelled several types of expressions, such as normal, scoop
up/down, fall-down, portamento up/down, and other expressive labels, and Gong et al.
(2016) abstracted three basic f0 contour elements: steady, transitory, and vibrato. How-
ever, no objective evaluation of the automatic segmentation of their methods was re-
ported.

This motivates the exploration of fO contour segmentation methods and their eval-
uation in Chapter 3. Section @ reviews common f0 contour elements across different
cultures and styles by examining ornaments documented in Western art, Western pop,
Indian art, and Chinese traditional opera. Then Chapter 3 focuses on developing a
method to detect these basic f0 contour elements and evaluate the segmentation objec-
tively, for the purpose of detecting expression segments specific to musical cultures or
styles. For example, Jingju portamento and Georgian steady regions are detected by
fine-tuning the method.

Moreover, comparative analyses of vocal style in terms of f0, such as those conducted
by Sundberg et al| (2012) and Caro Repetto et al| (2015), primarily focus on specific
expressive features like vibrato. Building on this foundation, Chapter 4 extends the
analysis by performing a note-level investigation to explore how notes are sustained

and transitioned through fO contour shaping in vocal music across various cultures and
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styles.

Syllable-level fO contour analysis is also necessary for some genres of music such as
Chinese traditional music and Indian art music, in which f0 is shaped by the Chinese
character or Indian svara. Previous studies, such as Caro Repetto et al) (20174), have
used documented musical scores to analyse syllable-level f0 changes. This approach dis-
carded the f0 contour from real singing. While Zhang| (2024) made recordings of singing,
she lacked robust techniques to characterise f0 contours effectively. Thus, Chapter 5
aims to develop syllable-level fO contour analysis methods to enhance systematic singing
style characterisation, particularly in examining the effects of lexical tone of Chinese

characters.

1.2 Aim and Research Questions

The primary aim of this research is to develop a systematic approach for characterising

singing style through f0 contour analysis, viewed from three key perspectives:

¢ Defining and detecting basic pitch contour elements: This perspective
involves defining and detecting basic fO contour elements that can be grouped to
form complete f0 contours across various musical cultures and vocal styles. Pitch
contours refer to the temporal evolution of fundamental frequency in musical
phrases, as illustrated in Figure @ These contours can manifest as basic patterns
(ascending, descending, or fluctuating) or complex trajectories. Ornaments are
specialised melodic embellishments characterised by distinctive fO contour shapes,
such as portamento (continuous f0 slides between musical notes) and vibrato
(periodic oscillation of f0 around a central frequency), as well as short auxiliary

notes that precede or follow a main structural note.

¢ Note-level pitch contour analysis: This perspective focuses on detecting and
analysing the f0 contours that occur at transitions between notes and the held

regions within notes, based on a segmentation of the singing into notes.

e Syllable-level pitch contour analysis: This stage aims to characterise f0

contour shapes based on syllable segmentation, with particular emphasis on in-
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vestigating tone effects in singing. Tone effects refer to how the lexical tones of
Chinese characters are realized in the f0 contours during singing, making the f0
contour of a sung syllable tend to preserve characteristics of the original spoken
tone pattern. For example, a character with a rising tone may exhibit an overall
rising trajectory in its sung fO contour, even within the constraints of the musical

melody.
The research questions guiding this study are as follows:

e How can the singing pitch contour be segmented into a set of basic f0 contour

elements?

e Can a hidden Markov model be effectively employed to detect these defined basic

fO contour elements?

e Is the fO contour element detection method applicable to downstream tasks, such
as detecting steady regions and ornaments (e.g., vibrato, portamento, glissando,

mordent) across different musical cultures or styles?

e How can singing styles be compared at the note level when the dataset does not

contain the same song performed in different styles?

e« What is the relationship between phoneme and note boundaries? Can the ac-
curacy of automatic note segmentation be improved by incorporating phoneme

segments?

o Can syllable-level visualisation and characterisation of fO contour effectively demon-

strate the influence of tonal effects on singing f0?

1.3 Thesis Structure

Chapter 1: Introduction

This chapter outlines the motivations behind this research and establishes the research
aims and questions. It also includes a list of relevant publications of this author and

highlights the main contributions of the thesis.
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Chapter 2: Background and Previous Work

This chapter lays the groundwork for understanding vocal style in terms of f0 analysis
and contextualises related research. It begins by presenting an overview of the physical
mechanics behind vocal production, detailing the roles of the lungs, vocal folds, and
vocal tract. The chapter then lists previous work exploring how the auditory system
perceives and interprets these sound waves, transforming them into musical experi-
ences. It covers related work about various aspects of vocal music, including musical
form, content, and performance. A special focus is given to f0 and melodic ornaments in
performance, which are important to reflect vocal style. The chapter also provides de-
scriptions of vocal ornaments across Western art, Western pop, Indian art, and Chinese
traditional music, highlighting both universal and culture-specific practices. Further-
more, it outlines previous research approaches to detection methods and computational
modelling of melodic ornaments. The chapter ends with a critical review of existing
vocal style studies, underscoring the limitations of current computational techniques in

vocal style analysis.

Chapter 3: Pitch Contour Segmentation and Characterisation Meth-

ods

Chapter 3 introduces the concept of the ‘pitch contour unit’ (PCU), which is used to
segment and characterise pitch contours across musical cultures. The chapter begins
by defining PCUs as discrete segments of the fO signal delineated by consecutive local
peaks and troughs in 0. It then details the dataset used for training and evaluation
of the model, which includes annotated recordings from Jingju and Georgian music.
The methodology section outlines the training and inference processes for a Hidden
Markov Model (HMM) used to detect primary elements of pitch contours: steady,
modulating, and transitory. The evaluation of the detection of these pitch contour
elements is followed by specific evaluations of portamento, steady regions, and vibrato
detection. Each evaluation provides detailed results and comparisons with existing
methods, highlighting the effectiveness and revealing the weaknesses of the proposed

approach.
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Chapter 4: Note-Level Pitch Contour Analysis

This chapter presents a comparative analysis of pitch contours in examples of Alpine
and Russian singing at the note level. The dataset comprises singing recordings, fO
data, and two versions of note segments for each culture, transcribed by two cultural
experts from each tradition. These annotated note segments are utilised to evaluate the
proposed automatic note segmentation method and to highlight the limitations of the
automatic method. The comparative analysis of different transcription versions reveals
a consistency in note annotations, alongside distinct preferences, among experts from
the same cultural background. This chapter systematically examines various features
of both the held and transitional regions of musical notes, using visual and statistical
methods to highlight the differences and similarities between these two distinct vocal
traditions. The chapter contributes to establishing a computational framework for

note-level pitch contour analysis across diverse musical traditions.

Chapter 5: Syllable-Level Pitch Contour Analysis

This chapter investigates the correlation between lexical tones and syllable-level pitch
contours in Chaozhou folk singing. The dataset consists of recordings from 34 singers
performing the same song. The discrete cosine transform (DCT) is employed to quantify
the linear tendency and curvature of the pitch contour for each sung syllable. Linear
mixed models are applied to assess the significance of the effects of lexical tones and
other factors, such as training background, experience in singing in the Chaozhou
dialect, tone sandhi, vowel type, and melodic interval, on the sung pitch contours.
The results confirm that lexical tones have a significant effect on the linear tendency
of sung syllable pitch contours, while other factors also influence the pitch contour to

varying degrees.

Chapter 6: Conclusions and Future Perspectives

This chapter summarises the key achievements of this thesis and discusses future direc-

tions for further research and potential applications of this work.
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1.4 Associated Publications

This thesis encompasses research on vocal pitch contour and vocal style analysis con-
ducted by the author from October 2018 to August 2024 at Queen Mary University
of London, under the supervision of Simon Dixon. Portions of this work have been

presented at international peer-reviewed conferences.

Peer-Reviewed Conference Paper

(i) Li, Y., Demirel, E., Proutskova, P., and Dixon, S. (2021). Phoneme-informed
Note Segmentation of Monophonic Vocal Music. In Proceedings of the 2nd Work-
shop on NLP for Music and Spoken Audio (NLP4MusA), pages 17-21.

Other Publications

(ii) Proutskova, P., McBride, J., Ozaki, Y., Chiba, G., Li, Y., Yu, Z., Yue, W,
Crowdus, M., Zuckerberg, G., Velichkina, O., et al. (2023). The VocalNotes
Dataset. In Late-Breaking/Demo Session at the 24th International Society for

Music Information Retrieval Conference (ISMIR 2023), Milan.

(iii) Proutskova, P., Chiba, G., Crowdus, M., Nikolaenko, I., Ozaki, Y., Shuster, L.,
Velichkina, O., Yue, W., Zuckerberg, G. A., Li, Y., et al. VocalNotes: Investigat-
ing the Perception of Note Pitch and Boundaries through Varying Transcriptions
of Vocal Performances from Five Musical Cultures. In Analytical Approaches to

World Musics (AAWM).

(iv) Proutskova, P., Velichkina, O., McBride, J., Chiba, G., Crowdus, M., Nikolaenko,
Y., Ozaki, Y., Shuster, L., Yu, Z., Yue, W., Zuckerberg, G., Killick, A., Li, Y.,
Phillips, E., and Savage, P. E. (2024). VocalNotes Methodology: Framework,

Challenges and Lessons. (Under review)
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Conclusions

This chapter has established the motivation for characterising vocal style through pitch
contour analysis and articulated the primary aim of this research: to develop a sys-
tematic approach for analysing singing style across different cultures. The chapter has
also outlined the structure of the thesis, identifying the key contributions within each
chapter. Chapter 3 introduces the concept of pitch contour unit and details the meth-
ods for their detection. Chapter 4 presents a comparative analysis of pitch contours at
the note level across different musical cultures, while Chapter 5 extends the analysis to
the syllable level, focusing on the effects of lexical tones in Chaozhou folk singing. Fi-
nally, the chapter concludes by listing the author’s publications related to this research.
The upcoming literature review synthesises the necessary background and contextual
information, highlighting the limitations of previous studies to illustrate the motivation

behind this research.



Chapter 2

Background

The singing voice stands as a unique auditory phenomenon, distinct from both envi-
ronmental sounds and other forms of musical expression. Unlike environmental sounds,
the singing voice is a human creation, and unlike instrumental music, it emanates from
the most natural of instruments—the human vocal system. Furthermore, while sharing
similarities with speech, the singing voice transcends mere communication to become
an experience of musical artistry.

This chapter provides a foundational overview aimed at enhancing understanding
of various aspects of the singing voice, while acknowledging that not all complexities
can be covered in a single chapter. It begins by delving into the Physical Essentials
of the Singing Voice, exploring the mechanics behind vocal production. The journey
continues through the Auditory Journey: From Singing Voice to Subjective Musical
Ezxperience, examining how the voice is perceived and conceived. The chapter then
shifts its focus to Vocal Music and Vocal Style, followed by an exploration of the Musical
Context and Melodic Ornaments of Vocal Music in Different Musical Cultures. It
further narrows down to the focus of this thesis, Computational Modelling of Melodic
Ornaments for Vocal Style Understanding, laying the groundwork for computational
approaches to vocal style analysis, summarising key research while critically examining
their limitations. The chapter concludes with a Review of Vocal Style Analysis in Pitch
Contour Studies, which also serves to both summarise previous studies in the field and

discuss their shortcomings.
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Figure 2.1: A schematic representation of the human vocal organs and physical
properties of sound, cited from Sundberg (1995q).

2.1 The Physical Essential of the Singing Voice

The singing voice, not only encompasses elements such as perception and music theory,
but also rooted in the study of the human voice organs and the physical properties of

sound. This section will primarily focus on the latter aspects.

2.1.1 Production of the Singing Voice

To understand how singing is produced, we must delve into the anatomy and functioning

of voice organs. Modern physiology and studies like Sundberg (19954) have illuminated
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the complexity of this system, providing an illustration which is shown in Figure @
Here is a brief summary.

The vocal apparatus consists of three parts: the lungs, the vocal folds, and the
vocal tract. The lungs act as a power source, generating an airstream. The vocal
folds, located at the bottom of the larynx, are brought to vibration by the airstream,
thus creating pulsations of air - the sound waves or the voice source, with their tension,
closure, and length controlled by muscles within the larynx. The vocal tract, comprising
the larynx, pharynx, and nasal cavity, resonates and modulates the voice source, with
its shape determined by the positioning of the lips, jaw and tongue.

The process of singing involves a complex interplay of these elements. The closed
glottis causes excess pressure from the airstream, forcing the vocal folds apart, and a
subsequent Bernoulli force closes the glottis. The repeating cycles form the vibration
of the vocal folds, with the frequency depending on various factors such as tension,
thickness, length of vocal folds and air pressure. The amplitude of the vibration is
controlled by air pressure and the degree of closure of the vocal folds. The vocal tract
acts as an acoustic filter, selectively attenuating different frequency components of the
voice source (glottal waveform). The resulting resonances, known as formants, shape
the spectral characteristics of the final acoustic output. These resonance frequencies
shift by varying the shape of the vocal tract. During both speech and singing, the
vocal tract continuously alters its shape, resulting in varying resonance frequencies

throughout phonation.

2.1.2 Physical Properties of the Singing Voice

The physical properties of the singing voice are characterised by two key elements: the
voice source and the resonating effect of the vocal tract. The voice source consists of a
fundamental frequency (f0), the lowest partial of the voice source spectrum perceived
as pitch, and its higher harmonics. The amplitude of these harmonics, typically de-
creases as their frequency increases. Although the voice source spectrum remains fairly
consistent among different singers, it undergoes significant transformation when pass-

ing through the vocal tract. The vocal tract forms about four or five major resonances
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known as formants, which significantly reshape the sound spectrum. These formants
not only create the distinct sound of each singer’s voice, altering the spectrum substan-
tially to produce unique vocal qualities, but also play a pivotal role in determining the
specific vowel sounds.

Overall, the singing voice is a complex interplay of sound waves produced and
shaped by the human vocal organs. These sound waves possess distinct physical prop-
erties, manipulated by the movement and coordination of the lungs, vocal folds, and
vocal tract. As these waves travel through the air, they carry the unique characters of

the singer’s voice to the listeners.

2.2 The Auditory Journey: From Sound of Singing Voice

to Subjective Musical Experience

The process by which the singing voice is perceived and cognitively interpreted as
vocal music is a nuanced one that involves intricate aural perception and cognitive
interpretation. It is through this process that sound waves are appreciated as music,
encapsulating elements such as melody, lyrics and harmony.

The perception of the singing voice begins with the detection of sound waves by
our auditory system, encompassing two basic listening conditions. As listeners, our
outer ear captures external sound waves, and our inner ear converts them into electrical
signals that the brain interprets. When singers listen to their own voices, the perception
includes not only the outer and inner ear but also the transmission of sound through
bone and muscle conduction.

In the auditory perception process following sound reception, the physical proper-
ties of sound undergo a subjective transformation into auditory sensations. The f0 is
commonly associated with our sense of pitch, whereas the sound’s power spectrum
—produced by vocal fold vibration and filtered through the vocal tract ——shape
our perception of loudness. The timbre of a sound is crafted by the time-varying vocal
tract’s influence on the sound spectrum. These perceptual translations are governed

by a complex interplay between the physiology of the vocal mechanism, the acoustic
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properties of the sound waves, and the resultant auditory experiences. This interplay
is characterised by a detailed mapping among these elements, which is affected by both
linear and non-linear phenomena, as delineated in Table @

Recent research from Edmonds & Howard (2023) found that the listening condi-
tion influences pitch perception. The listening condition affects how we perceive pitch
because it involves two different transmission pathways: air conduction for external
sounds and bone conduction for our own voice. These pathways deliver different fre-
quency balances, adding a layer of complexity to vocal self-perception and creating a
perceptual difference between how we hear our own voice compared to external voices.

In addition, an important consideration in pitch perception of singing is the intrinsic
pitch of vowels. Research by Stoll (1984) demonstrated that even when the fO remains
constant, changes in vowel quality can result in perceived pitch differences. This phe-
nomenon occurs due to the interaction between the spectral envelope and the auditory
system’s pitch perception mechanisms. For example, the vowel /a/ has a spectral enve-
lope with prominent energy peaks at lower frequencies, causing a perceived downward
pitch shift, while /i/ has prominent energy peaks at higher frequencies, resulting in an
upward pitch shift. These pitch shifts can be significant, with differences up to 1.4% in
pitch perception between vowels such as /a/ and /y/ when the fundamental frequency
is 125 Hz. While these differences exceed the typical pitch discrimination threshold of
0.25-0.3%, their impact varies by application: they significantly affect measurements
of absolute pitch accuracy but have minimal influence on pitch contour analysis where
the relative shape of the melody is more important than absolute pitch values.

Upon perceiving a singing voice, humans engage in a cognitive process that trans-
forms this auditory input into vocal music. Unlike speech, this transformation incorpo-
rates both verbal and nonverbal sound elements, systematically organising them into
structured, meaningful sequences. The complexity of this process lies in converting
continuous auditory features into coherent units, crafting the rich and nuanced expe-
rience of music. This cognitive aspect is crucial in shaping these sounds into a form
that transcends mere auditory sensations, rendering them as structured and significant

musical expressions.
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The journey from a singing voice to vocal music is a sophisticated interplay of
perception and cognition, deeply rooted in individual experience and interpretation.
Initially, the human auditory system captures sound waves produced by the singer.
These sounds are then processed through subjective perceptual and cognitive faculties.
Key musical elements such as melody, harmony, rhythm, and dynamics are discerned
and recognised through this process. The inherent nature of auditory perception and
cognition, shaped by the structure of our auditory system, lays the foundation for this
interpretation. However, the way in which music is ultimately understood and appre-
ciated is greatly influenced by personal habits, experiences, and knowledge structures
(Heng & Wang 2022).

In essence, transforming singing into vocal music is not just a matter of hearing
sounds; it’s about constructing a meaningful and subjective musical experience. This
transformation is guided by the listener’s ability to decode and contextualise musical

elements, thereby converting auditory signals into an enriched musical narrative.

2.3 Vocal Music and Vocal Style

Vocal music is a rich and multifaceted art form that encompasses three fundamental
aspects: musical form, content, and vocal performance. Musical form provides the
structural framework, content offers the foundational material, and vocal performance

focuses on the skilful interpretation and expressive delivery of music.

2.3.1 Musical Form: Composition, Performance, and Understanding

Musical form, which refers to the structure of a musical composition or performance,
is shaped by the arrangement and organisation of various elements that contribute to
creating a cohesive and expressive work. Mode decides a specific type of scale with
a unique arrangement of whole and half steps. Straehley & Loebach (2014) provides
insights into the historical use of the term “mode” in discussions of musical structure
and affect, highlighting its significance over thousands of years. The concept of tonal-

ity in music theory revolves around the organisation of pitches and chords around a
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central note, known as ‘tonic’ Research by Dibben (1994) provides evidence for the
internal representation of tonal music in terms of a hierarchy of events. Metre sets
temporal organisation of beats, where certain beats are perceived as more salient than
others across various time scales (Grahn 2012). Additionally, compositional structures
like the sonata, fugue, and rondo, each with their distinct rules and patterns, play a
crucial role in guiding the development and organisation of musical ideas, significantly
influencing the build-up and resolution of musical tension. In the composition process,
these forms serve as a blueprint, guiding how the piece is constructed. During perfor-
mance, they inform interpretation and delivery, providing cues for phrasing, dynamics,
and expression. In understanding music, these forms act as a roadmap, shaping the
musical journey and enhancing listener engagement and comprehension by providing a

coherent framework.

2.3.2 Content in Vocal Music

Vocal music presents a unique fusion of musical elements such as melody, rhythm, and
texture, with the distinct addition of lyrics, thus creating two primary categories of
study: musical content and linguistic content. In the realm of musical content, sig-
nificant research has been conducted. Notable examples include Panteli et al. (2018),
which investigated into melodic contour and Mzhavanadze & Scherbaum (2020), which
analysed harmonic intervals in Georgian homophonic vocal music. These studies ex-
plore the intricacies of the musical aspects of vocal music. Parallel to musical analysis,
researchers have also examined verbal content, with studies such as Fell et al| (2023) and
Anisah (2023) conducting investigations into lyrical analysis. While acknowledging this
research direction, it falls beyond the scope of this thesis. Additionally, the interplay
between musical and linguistic content has been explored by several researchers, with
studies like Caro Repetto et al| (20174) and Zhang et al} (2017), Zhang & Cross (20214)
revealing complex interdependencies between these two facets. Specifically, these stud-
ies demonstrate how the lexical tones of Chinese characters influence both melodic

composition and the pitch contours of individual syllables within vocal performances.
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2.3.3 The Dual Aspects of Vocal Performance: Vocal Technique and

Vocal Expression

Building upon the musical form and content of vocal music as its foundational elements,
this thesis primarily concentrates on studies of vocal performance, viewing it through
the lens of two interrelated but distinct aspects: vocal technique and vocal expres-
sion. While vocal technique focuses on the mechanical aspects of singing, providing
the necessary tools for precise control over pitch, rhythm, timbre, and dynamics, vocal
expression is concerned with the artistic interpretation and conveyance of emotion in
music. This thesis investigates the realm of vocal expression, exploring the style of
vocal music. In this exploration, vocal technique is not the primary subject but rather
serves as a critical backdrop, offering insights into the mechanics that support and
enhance the understanding of vocal expression.

Vocal techniques refer to the physical and mechanical aspects of singing, including
breath control, phonation mode, resonance, articulation, and pitch accuracy and mod-
ulation. These physiological methods form the foundation for controlled and effective
sound production. Research has examined various vocal techniques and their musical ef-
fects, exploring how phonation mode (Sundberg 19954) and vocal tract shape (Mainka
et al| 2015) influence timbre. Phonation mode affects timbre through variations in
vocal fold vibration patterns. For example, breathy phonation produces a softer, airier
timbre while pressed phonation creates a harder, more strident sound. The vocal tract
shape modifies the acoustic resonances (formants), by adjusting the positions of the
throat, mouth, and tongue. These configurations alter the timbral quality of the voice
by selectively reshaping its frequency components.

Vocal expression represents the artistic and emotional dimension of singing. It
involves interpreting music and lyrics to convey emotions, feelings, and meaning to
the audience. This includes dynamics, phrasing, and subtle nuances that animate the
music. Studies have examined various facets of vocal expression, such as timing ([Yang,
Huang & Everett| 2017), timbre (Rossing & Sundberg| [1984), loudness (Yang, Huang &
Everett| 2017), pitch contours (Mayor et al] 2006), and pronunciation (Gong 2018).

The two aspects are inseparable in a complete vocal performance, with technique
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serving as the vessel for expression. A singer’s technical prowess allows for the freedom
and flexibility to explore various expressive possibilities, while the expressive choices,
in turn, may influence the application of technique. This dynamic interplay creates a

rich and complex vocal music experience.

2.3.4 Understanding Vocal Style: A Focus on Pitch and Melodic Or-

naments

In this thesis, vocal style is defined as a specific manner of vocal performance that
typically occurs within a particular musical context. The term “musical context” here
encompasses both the musical form and the content of vocal music.

Vocal style involves multiple elements like pitch, rhythm, timbre, and dynamics.
Among these, pitch is universally significant across musical traditions (Brown & Jor-
dania 2013) and is quantifiable. Vocal music presents a complex pitch evolution with
time, characterised by continuous variations and expressive gestures. Within the realm
of pitch, melodic ornaments and intonation serve as two distinct but critical aspects.
While intonation concerns how closely the singer’s pitch aligns with the intended
melody, melodic ornaments add layers of stylistic and emotional complexity. Given
their intricate nature, melodic ornaments offer deeper insights into vocal style, making
them the focal point of this thesis.

Vocal style is multifaceted, reflecting factors like musical schools, regional genres,
cultural traditions, and individual singers’ expression, background, and experience. It
can be characteristic of broad entities such as musical schools, regional genres, and
even entire musical cultures, which have their own special repertoire. These large
entities often employ specialised vocal techniques, which must align with the tradition
for a singer to be regarded as proficient. Besides, vocal style can be affected by the
individual singer’s expression, cultural background, and musical experience.

The organisation and interpretation of melodic ornaments are profoundly influenced
by cultural context. This leads to unique musical forms and hierarchical structures of
content within different traditions. Each culture has its own way of segmenting musical

content into various hierarchical levels, such as repertoire, song, section, and individual
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notes or syllables. This thesis will investigate the nuances of pitch contours of melodic
ornaments at the foundational level of notes or syllables, where melodic nuances are

prominently explored. Detailed analyses across Western, Indian, and Chinese musical

traditions will be provided in Section .

2.4 Musical Context and Melodic Ornaments of Vocal Mu-

sic in Different Musical Cultures

Melodic ornaments, realised through intricate variations in pitch, are a universal aspect
of musical expression across diverse cultures. These ornaments are not merely decora-
tive but are essential in defining the vocal style. For instance, in Chinese traditional
opera, preliminary observations suggest a distinctive stylistic feature where vibrato rate
appears to accelerate towards phrase endings, though this phenomenon awaits system-
atic investigation. This section investigates the intricate world of melodic ornaments
across Western, Indian, and Chinese musical traditions. It places a particular emphasis
on Western pop music, Western art music, Indian Art Music, and Chinese traditional
opera. The exploration aims to uncover both the shared elements and the distinct
characteristics that define the vocal pitch contours within each cultural context. The
section is divided into subsections focusing on the musical context of melodic ornaments
and types of melodic ornaments in different cultures and making comparisons across

cultures.

2.4.1 Musical Context in Different Musical Cultures

The musical context in which melodic ornaments are employed varies significantly across
different cultural traditions. Understanding this context is crucial for appreciating the

role and significance of melodic ornaments in each tradition.
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Musical Scale and Musical Notes in Western Pop Music and Western Art

Music

In Western pop music and Western art music, the basic unit is the musical note, which
represents a specific perceived pitch and duration (Brown 2017). A musical scale, a
fundamental concept in music theory, is a set of musical notes ordered by pitch. In
Western music, this typically consists of seven pitch classes. These ordered notes serve
as the foundational structure for musical composition, forming the basis for melodies
and harmonies. Additionally, melodic ornaments function at the note level (Thompson
et al] 2023), adding expressiveness by either transitioning between notes or sustaining

a note for an extended duration.

Raga and Swaras in Indian Art Music

In Indian classical music, the basic unit is the swara or svara, which is roughly equivalent
to musical notes in Western music. Swaras are used to construct the musical scale,
typically comprising seven swaras: Sa, Ri (Carnatic) or Re (Hindustani), Ga, Ma,
Pa, Dha, and Ni. Unlike Western notes, swaras are enriched and characterised by
specific melodic ornaments. The raga system in Indian classical music further defines
the melodic framework, with each raga having a unique combination of swaras and
associated ornaments. A distinctive feature of Indian vocal art music is that it is
normally sung using swara syllables without the need for meaningful lyrics (Rao et al.

2023).

ShengQiang and Characters in Chinese Traditional Opera

The basic unit in Chinese traditional opera is the Chinese character. Chinese is a tonal
language where the meaning of a word can change depending on the tone used. Chinese
characters are spoken with a single syllable and tone. The musical audio stream is
perceptually segmented according to linguistic syllabic boundaries rather than melodic
notes (Shen 1982).

Traditional Chinese defines four types of tones (“*F” (Ping), “ " (Shang), “A&”

(Qu), “A” (Ru)). In contrast, the modern system, introduced by Chag (1930), uses
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a five-level tone mark, representing different degrees of pitch. For example, Mandarin
tones include four types of tone, “55”, “35”, “214”, “51”. The numbers provided in the
context of Mandarin tones represent the relative pitch levels of each tone in the tonal
system. These numbers are based on a scale where 1 represents the lowest pitch level

and 5 represents the highest. For example:

“55” represents a high, steady tone (first tone in Mandarin).

“35” starts at a mid-level and rises to a high level (second tone).

“214” begins at a low level, dips to an even lower level, then rises to a high level

(third tone).

“51” starts high and sharply falls to a low level (fourth tone).

Chinese dialects exhibit rich variations in tone. For example, in the Chaozhou
dialect, there are eight types of tones (Zhang & Cross 20218), “33,” “55,” “53/21,”
“35,” “213,” “11,” “21,” and “b54.” In Chinese, the sequencing of characters in speech
can trigger tone sandhi, a phenomenon where tones undergo modification. If two ad-
jacent characters possess similar tones (e.g., both 55), tone sandhi may alter the first
character’s tone to create a smoother phonetic transition. Chaozhou dialect is particu-
larly rich in tone sandhi and the lexical tones are varied to “23,” “213,” “24/35,” “21,”
“42/53,” “12,” “33/54,” “21” (Zhang & Crosg 2021q).

ShengQiang, akin to Raga in Indian music, serves as the musical form and melodic
framework in Chinese traditional music. Each ShengQiang encapsulates a distinctive
linguistic dialect and its associated ornaments, following the principle encapsulated by
the phrase K F1TH#& (Pinyin: y1 71 xing qiang, literally translating to “singing ac-
cording to the syllables”) (Gong 2018). This implies that the melody’s pitch contour
should align with the tonal quality of each syllable, ensuring a harmonious integra-
tion of linguistic tone and musical expression. This application of melodic ornaments,
while conventionally established in different ShengQiangs and passed down through
oral transmission, is not rigid. It follows a common guideline but also grants singers
the flexibility to personalise ornaments subtly, allowing for individual expression and

interpretation (Guo 2021)).
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Comparison of Western, Indian, and Chinese Traditions

The structure and cultural context of melodic ornaments across Western, Indian, and
Chinese musical traditions reveal distinct characteristics and intriguing similarities. In
Western music, the basic unit is the musical note, representing specific perceived pitches
defined by a musical scale, emphasising the precise tonal quality without a higher-level
structure for melodic ornaments. Contrastingly, Indian classical music employs the
swara, a pitch defined by the raga system, characterised by associated melodic orna-
ments and sung using specific syllables without meaningful lyrics, removing a linguistic
dimension. Chinese traditional opera takes a unique approach with the basic unit being
the Chinese character; the pitch contour of the sung syllable aligns with the character’s
tone and is shaped by melodic ornaments, creating a profound connection between
language and music. These distinctions highlight the diverse ways in which different
cultures approach the fundamental building blocks of musical perception and analysis,
each reflecting unique cultural contexts, language functions and musical concepts.

Interestingly, Indian arts music and Chinese traditional opera share more similar-
ities with each other than with Western music. Both traditions perform swaras and
characters as sung syllables enriched with melodic ornaments, whereas in Western art
music and Western pop music, notes are tied to specific scaled pitches (Brown 2017).
Furthermore, in both Indian and Chinese music, melodic ornaments are defined by
Raga or ShengQiang. This contrasts with Western music, where no such higher-level
structure prescribes the use of melodic ornaments.

This comparison underscores the rich diversity and underlying commonalities in the
approach to melodic structure across different musical cultures. It highlights how the
integration of pitch, linguistic elements, and cultural context shapes the unique musical
identity of each tradition, while also revealing shared principles that transcend cultural

boundaries.

2.4.2 Types of Melodic Ornaments in Different Musical Cultures

Different musical cultures have developed unique sets of ornaments that reflect their

distinct musical traditions and aesthetics. The following sections explore the types of
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melodic ornaments found in Western pop music, Western art music, Indian Art Music,
and Chinese traditional opera, highlighting the similarities and differences in how these

cultures approach the art of ornamentation.

Melodic Ornaments in Western Music

It is well-recognised that vibrato is a common and important technique in Western clas-
sical singing, as reported by Seashorg (1931). Vibrato, an Italian term initially meaning
“vibration in pitch”, is a musical effect employed in both vocal and instrumental music.
However, this thesis will only discuss vocal vibrato as a vocal technique in Western
music.

Though a clear definition of vibrato doesn’t exist, as noted by Sundberg (1995a),
Seashore ([1931) described it as a “periodic oscillation in pitch” with a relatively stable
rate and extent. Lee et al| (2011) emphasised that the major characteristic of vibrato
tones is their periodic regularity, which can assume any arbitrary shape, not necessarily
sinusoidal. Hence, rate, extent, regularity, and waveform are the four most critical
characteristics of vibrato, elaborated in detail by Sundberg (1995a). The vibrato rate
refers to “the number of undulations per second”, while the extent, often indicated with
plus and minus signs, shows “how far the phonation frequency diverges upwards and
downwards from its average during a vibrato cycle”. Regularity measures the similarity
between each frequency fluctuation within its cycle. The vibrato waveform denotes the
pitch contour shape, usually (but not necessarily) resembling a sine wave.

The function of vibrato in singing, particularly in Western music, remains an in-
triguing and complex subject. Despite extensive research, a definitive understanding
of why singers use vibrato has been elusive, sparking debate for over a century. Var-
ious music psychology studies have investigated this issue, exploring vibrato’s artistic
and emotional significance. For instance, some research have examined vibrato as an
expressive device (Howes et al; 2004, Seashord 1937), while others have focused on its
physiological aspects (Fletcher et al| 2001, Seashord 1931, Sundberg 1995a). What is
certain, however, is the importance of vibrato in characterising vocal styles. It has been

identified as a key feature in the analysis of singing styles, in music style classification
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and vocal style analysis by several studies (Caro Repetto et al{ 2015, Panteli et al, 2017,
Sundberg et al| 2012).

Trill is similar to vibrato but refers to a rapid alternation between two adjacent
notes. Trills can be used to add an ornamental flourish to a piece of music. They require
precise control of the vocal folds and strong breath support. Trills are a technique often
found in opera and classical music.

Portamento is a significant and common melodic ornament in the singing voice,
especially in Western music. The term encompasses a range of similar concepts, and
understanding its precise definition requires careful consideration of various expert opin-
ions.

Yang (2017) provides a comprehensive overview, defining portamento as a continu-
ous slide through all intermediate pitches between two different notes. This definition
draws on the insights of two prominent figures in the Western classical music field. Gio-
vanni Battista Mancini, a professional soprano castrato and voice educator, described
portamento as “the blending of the voice from one tone to another, with perfect pro-
portion and union, in ascending as well as descending” (Potter 2006). Garcia, another
expert, defined it as “Slur (portamento) is to conduct the voice from one note to another
through all intermediate sounds” (Garcia [1856).

In this thesis, the term “portamento” is used specifically when referring to a slide
between two notes. In contrast, “pitch slide” or “pitch glide” are used when describing
modifications to a single note where the slide occurs between the note and silence. These
can be further categorised based on the specific position of a note and the direction
of the slide, such as “scoop”, which describes a pitch slide at the beginning of a note

9

from a lower pitch, and “release,” which refers to a pitch fall at the end of a note.

To distinguish from “portamento”, “glissando” refers to discrete, stepped glides across
brief notes.

Two types of fine fluctuations in pitch slide are “overshoot” and “preparation”, as
discussed by Saitou et al. (2005). “Overshoot” refers to a transitional fO that exceeds

the target note just before settling on it (de Krom & Bloothooft 1995, Mori et al) 2004).

This can be likened to an under-damped system, where the voice briefly overshoots the



2.4. Musical Context and Melodic Ornaments of Vocal Music in Different
Musical Cultures 46

target pitch. In contrast, “preparation” involves a pitch adjustment in the opposite
direction of the following pitch slide.

These sliding pitch ornaments play a crucial role in expressing emotions. For ex-
ample, Leech-Wilkinson (2006) emphasised the historical significance of portamento,
suggesting that it draws on obligatory emotional responses to human sound, bringing
a sense of comfort, sincerity, and profound emotion to the performance. Additionally,
these sliding pitch ornaments are key in characterising the vocal style, as other studies
have considered (Devaney 2011, Mayor et al, 2006, Yang 2017).

Grace notes are brief notes played right before a longer main note. They add
decoration to the melody and harmony, and can be included or left out without changing
the core structure of the music (Windsor et al; 2000). A mordent is a decorative
element that instructs the performer to quickly alternate the main note with the note
immediately above or below it during the note.

A more extended melodic ornament in duration is the “run”, which is a quick
sequence of notes that are sung in one breath, usually more elaborate than a simple
scale. They can be used as a form of ornamentation or to show off a singer’s vocal
agility. They’re often used in genres like pop, R&B, and gospel music. A well-executed
run can add excitement and emotional expressiveness to a performance.

In summary, Western art music and Western pop music employ a variety of melodic
ornaments like vibrato, trill, portamento, grace note and run to add expressiveness and

complexity to musical pieces.

Melodic Ornaments in Indian Art Music

In Hindustani Classical music, ornamental pitch variations are referred to as alankars,
encompassing ornaments such as meend (glide), andolan (oscillation), and kan (touch
note). The kan lasts less than 300ms and is used to introduce “a slight pause on one or
more intermediate notes or even a small stretch of low rate of pitch change” between two
meends Datta et al) (2017). These are integral to vocal performances, each contributing
unique stylistic nuances.

Meend, as described by Datta et al) (2017), is a continuous sliding pitch from one
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melodic note to another, with a duration greater than 300 ms. It can be categorised
into several types based on the shape of its pitch contour, ranging from straightfor-
ward to complex. The basic ones are smooth and unidirectional, either ascending or
descending. More complex types combine both directions, and the third type, known
as “the undulating meend”, exhibits an up-down or wave-like movement. Meends can
be further combined with kan, introducing touch notes between two meends. Datta
explained that this combination may be caused by “a slight pause on one or more
intermediate notes or even a small stretch of low rate of pitch change” (Datta et al.
2017).

Andolan, another significant alankar, is marked by a gentle, nuanced oscillation
around a specific note. This oscillation reaches the boundaries of an adjacent note and
touches the microtones or shrutis that lie between, creating a controlled and subtle
swing that explores the pitch intervals between the notes. Within the context of An-
dolan, the specific note undergoing this oscillation is referred to as an andolit swar. It
is essential to recognize that the application of these andolit swars is determined by
the particular raga being performed, and they are not be used indiscriminately across
different ragas (ITC Sangeet Research Academy 2008).

In summary, alankar serves as “a transitory segment which joins two steady seg-
ments smoothly,” as observed by Ganguli & Rao (2015). Guided by the specific raga
in which they are performed, alankars play a vital role in conveying not only style, but
also personal characteristics and emotions, thereby adding depth and individuality to
a performance.

Carnatic music, a prominent form of South Indian classical music, encompasses a
diverse array of ornamental techniques collectively known as gamaka. Musicologists
have identified two primary classification schemes for gamaka, consisting of either 10
or 15 types (Sambamoorthy 1958). The first scheme categorises gamakas based on the
organization of note groups, often employing Western terms such as grace notes. In
contrast, the second scheme emphasizes the pitch contour of the melodic ornamentation.
Given that the focus of this thesis aligns more closely with the description of gamaka

in the second scheme, it has been selected for further exploration. Among the 15
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types of gamaka identified in Carnatic music, a distinction can be made between those
related to loudness, instrumental execution and those performed through continuous
pitch variations in singing. While all 15 types contribute to the overall aesthetic appeal
of the music, it is specifically the gamakas involving continuous pitch variations that
play a crucial role in characterising the vocal style of a raga (Rao et al| 2023).

Here are definitions of three types of continuous melodic gamakas in singing: 1.
Kampita: A shake that delicately manipulates a note with such a restrained extent
and precision that there is not even the slightest suggestion or hint of the adjacent
notes. 2. Andolita: A sustained note that eventually glides to a higher note, executed
with a free-swinging approach. 3. Ullasita: A glide in either upward or downward
direction, transitioning smoothly between notes without emphasising the individuality
of intermediate notes, creating a seamless connection.

In summary, Indian classical music uses alankars and gamakas to add stylistic

nuances and emotional depth to performances.

Melodic Ornaments in Chinese Traditional Opera

In Chinese traditional opera, the categorisation of melodic ornaments is complex and
lacks a standardised system. This complexity arises from the vast number of genres
within Chinese traditional music, each with subtle differences in vocal expressions. In-
fluenced by Chinese culture and language, the definitions of melodic ornaments are
often subjective, with metaphorical names. It is not uncommon for a term to denote
different ornaments in various genres or for the same ornament to have different names
across genres or among different individuals.

In modern times, some musicologists have attempted to summarise and categorise
these ornaments. Some have adhered to traditional definitions, while others have de-
scribed the ornaments from a Western music perspective. However, no one has claimed
that the system they have built is authentic and complete.

In this thesis, we refer to some literature within our knowledge and synthesise them
to create a categorisation from the perspective of pitch contour. Below is a summary of

several categories, covering all the common melodic ornaments documented in Chinese
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traditional opera literature:
1. Pitch Fluctuations:

(a) “Chanyin” (“Bil &) involves oscillation around one note and the rate is slower
than vibrato in Western classical singing (Shu 2018). It is an decorative
approach of making a stable tone in the end of a phrase richer by variation

(Wang 2011)).

(b) “Souyin” (“#{&”) (Shu R018), is normally after a main note, which serves a
principal scale degree, and is generated by rapidly alternating once or twice
with the adjacent note and characterised by the shaking or oscillating pitch,
akin to a trill or mordent in Western music, but uniquely often transitioning

from slow to fast (Miao et al] 1985).

2. Pitch Slide:

(a) “Luoyin” (“¥ &), also known as “Dunyin” (“¥i& "), or “Huoyin” (“EB&"),

means pitch drop in Qunqu, involving singing at a higher pitch followed by
a subtle drop (Miao et al] 1985).

(b) “Huoyin” (“#4 &) in Qunqu, in contrast to “Luoyin”, involves singing at
a lower pitch followed by a rise. The rise part of the tone has an interval
typically with a major second or minor third (one pitch step in a pentatonic

scale) and form a very short note (Miao et al| 1985).

(c) “Huaqiang” (“V&HE”), meaning pitch slide, connects two notes in a descending
direction, similar to descending portamento in Western music (Shanghai Art
Research Institute & Shanghai Branch of the Chinese Dramatists Association

1981).
3. Pitch Short Break:

(a) “Duanyin” (“li&” or “duan ym”) in Qunqu, involves singing the first note
for an extremely short duration, introducing a very short rest, and then
turning to other notes. This short-burst singing method adds a unique

rhythm to the performance (Miao et al| 1985).
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Dong (2004) explained the function of melodic ornaments in Chinese traditional
opera. Primarily, melodic ornaments are realized to shape the pitch contour of the
sung Chinese character to meet the “/KF1THE" (“YiZiXingQiang”) principle (singing
according to the tone of syllables), see Section . For example, “Huoyin” (“E&”) is

g\ e

commonly applied to characters with Qu tone (falling), “Huoyin” (“4 %) is primarily
used in characters with Shang tone (rising), and “Duanyin” (“W &™) is primarily used
in characters with Ru tone (Miao et al) 1985). Besides, melodic ornaments reflect the
vocal style defined by the ShengQiang or school and the singer’s expression. Overall,
these ornaments contribute to the rich and intricate soundscape of Chinese traditional
opera, each adding its unique flavour to the performance.

In summary, Chinese traditional music employs a complex set of melodic ornaments,

influenced by linguistic and cultural factors, to create a rich and intricate soundscape.

Synthesis of Melodic Ornaments Across Cultures

The exploration of melodic ornaments in Western art, Western pop, Indian art, and
Chinese traditional opera reveals common underlying structures that can be categorised
into several pitch contour patterns. These patterns highlight the universality of musical

expression across diverse cultural contexts:

1. Pitch Oscillations Around One Note: These ornaments involve periodic

fluctuations in pitch around one note.

(a) Vibrato (Western): A periodic oscillation in pitch with a relatively stable

rate and extent (Sundberg [1995a).

(b) Andolan (Indian Hindustani): A gentle, nuanced oscillation around a
specific note, extending to the periphery of an adjacent note and engaging

the microtones or shrutis in between (ITC Sangeet Research Academy| 2008).

(¢) Kampita (Indian Carnatic): A delicate shake that manipulates a note

without hinting at adjacent notes (Rao et ali 2023).

(d) Chanyin (Chinese): Similar to vibrato but richer in variation, with various

ways the amplitude and rate can vary (Wang 2011).
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2. Rapid Alternation Between Notes: These ornaments involve a rapid back-

and-forth movement between two distinct pitches.

(a) Trill (Western): Rapid alternation between two adjacent notes.

(b) Souyin (Chinese): Shaking or oscillating pitch, characterised by the al-
ternation between two notes, akin to a trill in Western music, but uniquely

often transitioning from slow to fast (Miao et al. 1985).

3. Sliding Pitch Ornaments Involving a Single Note: These ornaments add

subtle inflections to individual notes, enhancing expressiveness.

(a) Scoop (Western): “Scoop” describes the pitch slide at the beginning of a

note from a lower pitch.
(b) Release (Western): “release” refers to the pitch fall at the end of a note.
(c) Huoyin (Chinese): “Huoyin” (“#4%") involves singing at a lower pitch
followed by a rise (Miao et al) 1985).
(d) Luoyin (Chinese): “Luoyin” (“¥% &) describes a pitch drop involving

singing at a higher pitch followed by a subtle drop (Miao et al, [1985).

4. Simple Sliding Pitch Ornaments Between Two Notes: These ornaments
involve a continuous movement between notes, creating a smooth and connected

sound, but each has its unique characteristics.

(a) Portamento (Western): A continuous slide through all intermediate pitches

between two distinct notes (Yang 2017).

(b) Ullasita (Indian Carnatic): Similar to portamento in definition, but ex-

hibiting a distinct pitch curve.

(¢) Huagiang (Chinese): A pitch slide connecting two notes in a descending
direction, analogous to descending portamento in Western music (Shang-
hai Art Research Institute & Shanghai Branch of the Chinese Dramatists

Association [1981).
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5. Complex Sliding Pitch Ornaments: These ornaments are characterised by

more intricate and nuanced movements, often involving variations in direction,

shape, or additional notes.

(a)
(b)

Glissando (Western): Refers to discrete, stepped glides across notes.

Overshoot and Preparation (Western): Encompasses bending of pitch
curve, consisting of one upward and one downward slide connected with each

other.

Run(Western): A quick sequence of notes sung in one breath, usually more
elaborate than a simple scale. Unlike oscillations or rapid alternations, a
run moves fluidly through a series of notes, creating a flowing and connected

sound.

Andolita (Indian Carnatic): A sustained note that eventually glides to
a higher note, executed with a free-swinging approach, allowing for more
expressive and personalised interpretation. The direction is customarily up-
ward with no specific restriction on the shape of pitch contour.

Meend (Indian Hindustani): Continuous sliding pitch from one melodic
note to another, with variations such as smooth and unidirectional glides,
attached touch notes, or complex undulating movements, covering all the

possible shapes of pitch slides as defined above (Datta et al, 2017).

6. Short Note in Melody

()

Grace note (Western): Grace notes are brief notes played right before
a longer main note. They add decoration to the melody and harmony, and
can be included or left out without changing the core structure of the music

(Windsor et al} 2000).

Kan (Indian Hindustani): Known as a touch note, this ornament lasts
less than 300ms and is used to introduce “a slight pause on one or more inter-
mediate notes or even a small stretch of low rate of pitch change” between
two meends, thereby emphasising a brief connection and adding a subtle

complexity to the melody (Datta et al) 2017).
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(c) Huoyin (Chinese): “Huoyin” (“#4#%") in Qunqu forms a very short note
after a pitch rise (Miao et al) [1985).

(d) Duanyin (Chinese): Duanyin (“lfi %), in Qunqu, contrasts with Kan by
involving an extremely short duration of the first note, followed by a very
short rest, and then a transition to other notes. While Kan focuses on con-

nection, Duanyin introduces a distinct rhythm through a brief interruption

(Miao et al| [1985).

Exploring musical context and melodic ornaments across Western art music, West-
ern pop music, Indian art music, and Chinese traditional opera reveals a fascinating
interplay of universality and diversity. While the basic units of melody vary (notes,
swaras, characters), the application of ornaments draws upon a shared vocabulary of
pitch contour patterns. This comparison highlights the expressive power of melodic
ornamentation and suggests a degree of universality in how music manipulates pitch to

create beauty and meaning.

2.5 Computational Modelling of Melodic Ornaments for

Vocal Style Understanding

As elaborated in Section @, the understanding of vocal styles through melodic orna-
ments is deeply rooted in the musical context, which comprises two main elements:
musical form and basic musical units. To computationally model these ornaments, this
thesis outlines a multi-step approach: 1) recognition of the musical form, 2) estima-
tion of the pitch trace, 3) note-level and syllable-level transcription, 4) detection of
pitch contour elements, 5) melodic ornament labelling, and 6) characterisation of pitch

contour segments through computational models.
2.5.1 Challenges and Opportunities in Human and Computational Ap-
proaches

Understanding vocal music is a multifaceted endeavour that involves transcription, rep-

resentation, and analysis. Both manual and computational approaches have their own
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sets of advantages and limitations. This section aims to dissect these methods in terms
of the three aforementioned aspects, with the goal of highlighting how a hybrid ap-
proach can offer a more comprehensive understanding of vocal styles.

Manual approaches to music transcription, representation or visualisation, and anal-
ysis are predominantly utilised by musicologists who prioritise traditional methods.
These approaches are deeply rooted in the expertise of vocal and instrumental styles
and rely significantly on musical notation for transcription. Although this traditional
method offers a comprehensive and nuanced understanding of musical compositions, it

is not without its limitations:

e Transcription: The manual transcription requires musical training and careful
work to achieve accurate results. It is inherently subjective, with potential biases
and inconsistencies due to the transcriber’s personal experience and interpretation

of music.

¢ Representation: While traditional musical notation provides a historic and
detailed method for representing music, it may not capture the full intricacies of
every performance, such as microtonal variations or the subtle dynamics within

live performances.

e Analysis: The qualitative nature of manual analysis offers deep insights but it
is subjective. It might also present challenges in scalability and objective compar-
ison, particularly in large-scale or cross-cultural studies, potentially limiting its

applicability in broader research contexts.

The advent of computational methods, supported by advances in Music Informa-
tion Retrieval (MIR) technologies, presents several advantages over traditional manual
approaches. These computational techniques are revolutionising the way music is tran-

scribed, visualised, and analysed:

e Transcription: Computational methods offer a swift and efficient process for
transcribing music. They can handle large volumes of data with a high degree
of objectivity and consistency, mitigating subjective biases inherent in manual

transcription.
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e Visualisation: With the use of sophisticated software, computational approaches
provide advanced representation interfaces. These can display a broader array of
musical elements in detail, offering insights beyond what is possible through tra-

ditional notation alone.

e Analysis: The quantitative analysis enabled by computational methods supports
more systematic and scalable research. It facilitates large-scale and cross-cultural
studies, promoting a broader and more inclusive understanding of music across

different regions and styles.

However, despite these advantages, it is crucial to recognise that computational
methods may not fully replicate the nuanced understanding and interpretive depth
provided by skilled human experts, particularly in areas where cultural context and
emotional expression are key. As such, musicological studies may benefit from a hybrid
approach, combining the strengths of both manual and computational methodologies
to achieve a more complete and multi-faceted understanding of music.

To amalgamate the strengths of both manual and computational methods, several

hybrid approaches have been developed:

e Transcription: Software like Tony allows for the manual correction of automated

transcriptions, combining speed with human nuance (Mauch et al, 2015).

» Visualisation and Representation: Efforts like Dunya (Porter et al; 2013) and
Global Notation System (Killick 2020) offer interfaces that merge computational

detail with musical symbols that are intuitive to musicologists.

e Analysis: Hybrid methods can incorporate human annotations or corrections

into computational models, offering a balanced approach for in-depth studies.

This thesis will explore transcription and representation in greater depth within the

subsequent segments of this section, and will examine analysis in detail in Section @
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2.5.2 Musical Form Recognition

While automatic methods for musical form recognition, such as raga recognition (Sharma
& Salgaonkar 2023) and scale detection (Kawase 2017), have been developed, they often
fall short of the reliability and authenticity offered by expert annotations. Consequently,
this thesis will primarily rely on expertly annotated musical forms. Nonetheless, the
utility of computational techniques, such as pitch histograms for indicating scales, is
acknowledged as a valuable resource for researchers who may not be well-versed in

specific musical traditions.

2.5.3 Pitch Estimation

The field of computational pitch estimation for monophonic sounds has seen significant
advancements over the past half-century, with a multitude of methods being developed
to improve accuracy. A comprehensive review of these techniques was provided by
Kim et al| (2018). Early approaches to pitch estimation commonly employed specific
mathematical functions to generate candidate pitch values. These were often accom-
panied by pre-processing and post-processing steps to refine the resulting pitch curve.
Among the functions used in these early methods are the cepstrum (Noll 1967), the
autocorrelation function (ACF) (Dubnowski et al. 1976), the average magnitude differ-
ence function (AMDF) (Ross et al|[1974), and the normalised cross-correlation function
(NCCF) as introduced in RAPT ([Talkin 1995) and PRAAT (Boersma 1993). Another
noteworthy method is the cumulative mean normalised difference function, which was
proposed for YIN (De Cheveigné & Kawahara 2002).

In more recent years, advanced techniques have emerged that leverage modern com-
putational capabilities. For instance, SWIPE (Camacho & Harris 200§) employs tem-
plate matching with the spectrum of a sawtooth waveform. Another example is PYIN
(Mauch & Dixon 2014), a variant of YIN that incorporates a Hidden Markov Model
(HMM) to decode the most probable sequence of pitch values. With the advent of deep
learning, CREPE, which utilises a deep convolutional neural network, has established
itself as the state-of-the-art open-source pitch extractor (Kim et al| 2018).

While physiological techniques like electroglottography (EGG) offer highly accu-
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rate f0 measurements through direct monitoring of vocal fold activity (Howard 1993),
their requirement for specialised hardware during recording makes them unsuitable for
analysing existing audio recordings. This thesis therefore focuses on computational

pitch estimation from audio signals alone.

2.5.4 Note-Level and Syllable-Level Transcription

This thesis concentrates on three fundamental units: notes, swaras, and Chinese charac-
ters, as detailed in subsection . Transcription in this context entails the delineation
of the temporal boundaries for each basic unit and the subsequent labelling of these
segments. This subsection is dedicated to discussing the advantages and drawbacks of
existing methods for transcribing both notes and syllables, which include swaras and

Chinese characters.

Note Transcription Methods

Automatic note transcription refers to converting an acoustic waveform into musical
notes. While monophonic instrument transcription is often considered to be a solved
problem in music information retrieval (Benetos et al| 2013), this is not the case for
singing, where pitch is rarely stable (Dai & Dixon 2019). Even when singers aim to
maintain a steady pitch, the f0 shows small fluctuations rather than remaining perfectly
constant. Numerous note segmentation methods have been proposed. Early singing
transcription systems (Clarisse et al. 2002, De Mulder et al) 2004, Haus & Pollastri
2001, McNab et al. 1995) implemented simple rule-based methods based on pitch or
amplitude variations and the presence of vocal activity. Taking advantage of hidden
Markov models (HMMs), more robust systems were then proposed (Mauch et al| 2015,
Ryynénen & Klapuri 2004, Viitaniemi et al 2003) that rely on similar musical features.
However, these methods perform poorly on soft onsets and offsets, pitch oscillations
within notes (such as vibrato and other expressive modulations) and glides between
temporally adjacent pitches.

“Soft” onsets and offsets occur when two adjacent notes are smoothly connected

without obvious loudness variations. In most cases, however, there is a phonetic change
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between notes. Various spectral features have been used to detect timbre changes, either
by selecting as boundaries peaks above a threshold in the measure of timbre change
(Gomez & Bonada 2013, Yang, Maezawa, Smith & Chew 2017), or by modelling vowels
and their transitions using an HMM (Heo & Lee 2017, Hsuan-Huei Shih et al) 2002).
In Chapter 4, a PYIN (Mauch & Dixon 2014) variant (Li et al] 2021), taking phonemes
extracted by a state-of-the-art automatic lyrics transcription system (Demirel et al.
2020) as an input, made a positive contribution on this task.

Additionally, pitch fluctuations within notes or pitch glides between notes, whether
intentional or not, cause some notes to be separated mistakenly into multiple notes.
To address the within-note fluctuation problem, Molina et al| (2015) used hysteresis
of pitch and dynamic averaging to avoid the effects of small or short pitch deviations.
Yang, Maezawa, Smith & Chew (2017) proposed a pitch dynamic model to address
problems with pitch variation.

In recent years, deep neural networks (DNNs) have significantly advanced the field
of vocal note transcription. These DNN-based methods often set new benchmarks,
eclipsing previous state-of-the-art performances. For instance, Nishikimi et al| (2019)
employed an attention-based encoder-decoder network with long short-term memory
(LSTM) modules. Fu & Su (2019) enhanced their models by incorporating onset- and
offset-related features. Wang et al| (2022) innovatively applied object detection tech-
niques, fine-tuning a pre-trained model with their sight-singing dataset (SSVD), to
markedly improve singing voice onset/offset detection. [Yong et al) (2023) designed a
neural network architecture that leverages a convolutional recurrent neural network
(CRNN) backbone and phonetic posteriorgram (PPG) to achieve state-of-the-art per-
formance on two datasets, ISMIR2014 (Molina, Barbancho, Tardén & Barbanchd 2014)
and SSVD version 2.0 (Wang et al| 2022).

However, these advancements are not without challenges. One major issue is the
limited scale of existing annotated datasets for training and testing, primarily due to
the labor-intensive nature of manual annotation. Wang & Jang (2021) attempted to
address this by creating the MIR-ST500 dataset, comprising over 160,000 notes from

500 pop songs. Yet, the dataset’s reliability is questionable as non-experts performed
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the annotations, and its genre is restricted mainly to Chinese pop songs. Gu et al.
(2023) proposed a self-supervised learning approach adapted from the speech domain,
which reduces the need for annotated data but suffers from poor note offset detection.

Moreover, the DNN-based methods often overlook the nuanced challenges intrinsic
to vocal note transcription. They tend to focus on outperforming previous methods
on well-known datasets, without addressing the subjectivity and context-dependency
of note transcription. Factors such as cultural background, perceptual sensitivity, and
transcription purposes can influence how different individuals transcribe the same piece
of music. Current DNN models lack the flexibility to adapt to these varying contexts,
as they are trained on annotations from a limited number of individuals and datasets.

In summary, despite the rapid advancements in automatic note transcription meth-
ods, they still fall short of human expertise, as reported by Ozaki et al| (2021). Further-
more, computational metrics used in Music Information Retrieval (MIR) only partially
align with human expert assessments (Holzapfel et al| 2022). Consequently, for most
musicologists, computer-aided manual note transcription remains the most reliable ap-
proach. Tony software (Mauch et al. 2015) is a popular tool for this task, offering
an interface that displays both the audio waveform and the pitch trace estimated by
PYIN (Mauch & Dixon 2014). Users can perform note transcription with the aid of
this visualisation and can validate their annotations by playing the audio, pitch track,

and notes both simultaneously and separately.

Syllable Transcription Methods

Swara and Chinese characters share a common property: they can both be consid-
ered as syllables in terms of pronunciation. While there are specialised transcription
methods for swara, as cited in Singh et al. (2023), this section will focus on general
syllable transcription methods. This is because the thesis primarily relies on manual
annotations by experts for both swara and Chinese character transcription.
Transcribing syllables in singing presents unique challenges, as sung syllables differ
from spoken syllables in both pitch and rhythm. Gong & Serra (2018) tackled this issue

by proposing a two-step, language-independent method that utilises a convolutional
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neural network (CNN) and a duration-informed hidden Markov model (HMM). Their
model was trained on a Jingju dataset, which they annotated themselves at both the
phoneme and syllable levels.

Recently, the broader task of lyrics transcription has gained attention. This in-
volves outputting phonetic labels at multiple levels, from phonemes to words, and can
also provide syllable segments. Demirel et al) (2021) developed a phoneme-level lyrics
transcription system for English-language singing. However, their model was trained
and evaluated exclusively on English singing datasets, making it less suitable for cross-
cultural music analysis. This limitation is particularly relevant to my research, which
focuses on analysing vocal music across different cultural and linguistic traditions. The
model’s dependence on English phoneme sets and language-specific features makes it
inadequate for analysing music from non-Indo-European languages, such as Chinese,
where different phonological systems and tonal features play crucial roles in vocal ex-
pression.

The most recent advancement comes from Zhuo et al) (2023), who integrated two
major Al breakthroughs: Whisper (Radford et al| 2023), a robust automatic speech
recognition (ASR) model, and GPT-4 (OpenAl 2023), a powerful text-based natural
language processing (NLP) model. Whisper serves as the “ear,” transcribing the singing
into text, while GPT-4 acts as the “brain,” selecting and correcting the output based
on context. This model’s flexibility and generality make it well-suited for transcribing
Indian swaras and Chinese characters in vocal music. However, the word error rates
reported in their study indicate that AI performance on this task is still far from
human-level accuracy.

For most musicologists, manual annotation remains the most reliable method for
syllable transcription. Praat (Boersma [1993), a well-known phonetic software, is com-
monly used for this purpose. The software interface allows users to observe the au-
dio’s spectral patterns and waveform, play the sound, and annotate each segment with

boundaries and phonetic labels.
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2.5.5 Detection of Pitch Contour Elements

As previously discussed in Section , melodic ornaments across different musical
cultures often share underlying pitch contour patterns. Automatic detection of these
patterns is foundational for identifying melodic ornaments. This task is challenging
due to the intricate shapes of pitch contours. However, this thesis simplifies these
patterns into three essential elements for easier machine detection: steady, modulating
and transitory. The following sections elaborate on these categories and review existing

methods for their detection.

Steady Elements

Steady elements, also referred to as “sustained” or “stable” regions, in pitch trajectories
are segments where pitch values remain within a small range around a mean value for
at least 50ms. These regions contribute to conveying the tonality and melody of a
musical piece. Various methods have been developed to automatically detect these
steady elements in vocal pitch.

Koduri et al] (2012) employed the local slope of the pitch trajectory to identify
steady regions. Datta et al] (2017) used a more nuanced approach, calculating the
deviation between the current frame’s pitch and the mean pitch of the preceding steady
element, setting a minimum duration of 60ms for a element to be considered steady.
Molina, Tardén, Barbancho & Barbanchg (2014) utilised pitch chroma contour and its
moving average for stable note change detection. Ganguli & Rag (2018) took a global
approach, used pitch histograms to identify scale intervals and approximate steady
regions (£35 cents, 250 ms). However, this method has limitations for vocals with
significant pitch drift. Mauch et al) (2015) used a Hidden Markov Model (HMM) and
PYIN (Mauch & Dixon 2014), a pitch extractor, to identify stable regions where pitch
values deviate minimally from a centre pitch. However, this method relies on twelve-
tone equal temperament, which limits its accuracy when analysing music using other
tuning systems. Rosenzweig et al| (2019) developed two methods for Georgian vocal
music, which do not adhere to the any tuning system, using morphological operations

and binary time-frequency masks.
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In summary, while these methods have been effective for specific datasets and re-
search goals, they often lack generality. Most are rule-based and rely on one or two
thresholds, making them less versatile. Additionally, many are constrained by musico-

logical assumptions like musical scale and octave equivalence.

Modulating Elements

In the realm of pitch analysis, the second category of interest is regions of modulation
or undulation. In these regions, the frequency of the pitch signal varies according to a
secondary signal, such as a sine-wave, to create a vibrato effect (Wen & Sandler 2008).
Previous studies listed below considered that modulating regions are synonymous with
vibrato regions and define vibrato as a pitch oscillation around a central pitch, with a
specific rate range (e.g., fmin = 4Hz, fmax = 9Hz for singing voice reported by Prame
(1994)) and a minimum duration threshold.

Vibrato extraction methods can be broadly categorised into two classes: spectrum-
based and f0-based methods. Spectrum-based methods (Driedger et al) 2016, Regnier
& Peeters 2009, Rossignol et al| 1999) directly analyse the audio spectrum and are
advantageous when dealing with polyphonic music, as they are less prone to errors
in fO estimation. On the other hand, f0-based methods excel in monophonic settings
where f0 can be accurately estimated (Driedger et al) 2016). Given that this research
focuses solely on monophonic audio, the subsequent discussion will centre on f0-based
methods.

These f0-based methods themselves are divided into note-wise and frame-wise ap-
proaches. Note-wise methods (Ozaslan & Arcos 2011, Pang & Yoor| 2005, Rossignol
et al] 1999, Weninger et al| 2012) start by segmenting the audio track into individ-
ual notes and then detect vibrato within each note. This approach is beneficial as it
avoids merge errors, where two distinct vibratos could be mistakenly identified as one.
However, the segmentation process can be either time-consuming if done manually or
inaccurate if automated. Assuming that an ideal vibrato closely resembles a sinusoidal
shape, frame-wise methods decompose the f0 into sinusoids by estimating the frequency

and amplitude of sinusoid components frame by frame. These methods either employ
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Short-Time Fourier Transform (STFT) (Herrera & Bonada 1998, Nakano et al| 2006,
Ventura et al| 2012, Von Coler & Roebel 2011)) or parametric fitting techniques (Pang
& Yoon 2005, [Yang, Rajab & Chew 2017). STFT-based methods face the limitation of
the Fourier Transform’s uncertainty principle, which imposes a trade-off between tem-
poral and frequency resolution. Parametric fitting methods, however, can achieve high
frequency resolution by decomposing the fO signal into a predefined set of sinusoids,
thus avoiding error-prone peak picking.

Among these, one of the most advanced methods was proposed by [Yang, Rajab
& Chew (2017), who used the Filter Diagonalisation Method (FDM) for frequency
and amplitude estimation and employed either a Decision Tree (DT) or Bayes’ Rule
(BR) for vibrato decisions. Despite its high frequency resolution, this method has
significant limitations. It lacks flexibility due to its reliance on pre-defined, empirically
set thresholds for vibrato detection. Moreover, by making frame-by-frame decisions, it
overlooks the inherent regularity of vibrato, which is a crucial characteristic as a time-
series pattern. To address these issues, there is a need for methods that can capture
the time-series nature of vibrato effectively. However, the development of such methods
appears to have stagnated in recent years, potentially due to the research community’s

emphasis on employing Deep Neural Networks (DNNs) for higher-level tasks.

Transitory Elements

Transitory elements in pitch contours differ fundamentally from steady and modulating
elements in that they lack clear regularity. In the scope of our research, transitory
elements are best defined as pitch contours that are neither modulating nor steady.
These regions often serve expressive functions in singing and are the subject of several
studies aimed at automatic detection and analysis within specific musical traditions.
The concept of a transitory pitch contour was first introduced by Indian musicolo-
gists. Ganguli & Rag (2015) and Datta et al. (2017) both approached the identification
of transitory regions by first removing all detected steady segments from the pitch
contour. While Ganguli focused on raga recognition, Datta specifically investigated

2

“meends,” categorizing them based on their shape and defining them as a subset of
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transitory regions.

Methods for identifying transitory regions in other musical traditions are more com-
plex, as they must also distinguish between modulating and transitory pitch contours.
In Western music, transitory regions can correspond to various melodic ornaments like
portamento, pitch slide, pitch release, and glissando. Yang et al) (2016) employed a
HMM-based method to detect these ornaments after removing vibratos using a method
described in [Yang (2017). Gong et al| (2016) explored transitory regions in Jingju mu-
sic, aiming to assess the similarity of pitch contours between teachers and students.
Unlike previous methods that detected different pitch contour types separately, Gong’s
approach employed the standard deviation of the cumulative differences of local ex-
trema (StdCdLe) as the criterion to segment the pitch contour and label the pitch
contour as steady, vibrato, and transitory regions using a K-Nearest Neighbor (kNN)
classifier.

The limitations of these methods are noteworthy. The first two methods, designed
specifically for Hindustani music, do not account for vibrato and are not easily adapt-
able to other musical traditions. [Yang et al) (2016) requires a pre-processing step
to remove vibratos, which is error-prone and could compromise the detection of por-
tamento. Moreover, it does not consider steady regions, limiting its applicability for
detecting complex transitory regions with touch notes. Although Gong et al, (2016) ad-
dresses some of these limitations, its segmentation performance is less than satisfactory,

with an accuracy rate below 40%.

2.5.6 Melodic Ornament Labelling

Based on three basic pitch contour elements: steady, modulating, and transitory, this
thesis provides a systematic categorisation of melodic ornaments as detailed in Table

Various systems have been developed to label ornaments based on specific char-
acteristics observed in the corresponding pitch segments. Although steady elements
are straightforward and offer limited scope for variation, Mayor et al. (2006) identi-

fied a specific expression within steady segments in Western pop singing performances.
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Pitch contour Ornaments

elements

Steady

Simple sustained notes longer than 100ms
“Fall-down”

Touch note within complex meend (Indian Hindustani)
or glissando (Western)

Modulating

Vibrato (Western)

Andolan (Indian Hindustani)
Kampita (Indian Carnatic)
Chanyin (Chinese)

Trill (Western)

Souyin (Chinese)

Transitory Simple transitory:

Scoop, Release (Western)
Huoyin, Luoyin (Chinese)
Portamento (Western)

Ullasita (Indian Carnatic)

Huagiang (Chinese)

Complex transitory:

Glissando (Western)
Overshoot and Preparation
Run (Western)

Andolita (Indian Carnatic)

Meend (Indian Hindustani)

Table 2.2: Basic pitch contour elements and their corresponding melodic ornaments
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Termed as “fall-down,” this ornament signifies a gradual lowering of pitch during the
sustain phase. The label is derived from empirical definitions crafted by the authors.
The label is derived from empirical definitions crafted by the authors. Additionally,
brief steady elements lasting less than 50ms within complex ornaments such as meend
or glissando are labelled as touch notes (Datta et al) 2017)).

Modulating elements can manifest various melodic ornaments, but most existing
methods focus solely on detecting vibrato. Other ornaments like trills, andolan (oscil-
lations), and “Souyin” (“#{&”) are often considered variations of vibrato, without any
specialised methods to distinguish them.

Transitory elements are more complex and can be labelled with a variety of melodic
ornaments. Yang, Rajab & Chew (2017) can directly detect pitch slides but does not
differentiate them based on their position within a note or their shape. In contrast,
Mayor et al| (2006) developed a system for Western singing performances that labels
position-related sub-level note segments—such as attack, release, and transition—with
specific melodic ornaments like scoop up, scoop down, portamento up, and portamento
down.

The most intricate melodic ornaments may consist of multiple pitch slides with
varying directions and shapes, or even a combination of transitory, steady, and mod-
ulation regions. These complex ornaments are especially common in Indian art music
and Chinese traditional opera. Despite their prevalence, automated labelling methods
for these ornaments remain in their early stages. This is primarily due to a lack of con-
sistent naming conventions in musicology. However, researchers are starting to bridge
this gap with computational methods. For example, a method has been developed to
automatically categorise ‘meends’ in Indian art music based on pitch contours (Datta
et al] 2017). This type of approach offers a systematic way to categorise and label
complex ornaments, supporting further development of automated analysis techniques.
In conclusion, the diversity and complexity of melodic ornaments underscores the need

for more comprehensive and nuanced labelling methods.
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2.5.7 Characterising the Pitch Contour Segment through Models

The objective of characterising pitch contour segments is to quantify specific features
that reflect their shape. This is typically achieved by constructing a mathematical
model that serves as a simplified representation of the pitch contour, making it more
manageable for analysis (De Cheveigne 2005). In essence, the model is defined by the
features we aim to measure, and these features are represented through parameters
that can be mathematically derived. Such models are often expressed as mathematical
functions that capture the relationships between variables in the system. The parame-
ters of these models are determined either through predefined rules or by data fitting
techniques that minimise a particular loss function.

While Deep Neural Networks (DNNs) have gained popularity for modelling complex
systems, their large number of parameters often results in low interpretability despite
high performance. In contrast, the models used for pitch contour segments only need a
few parameters to adequately capture the overall shape of the contour, which is enough
to distinguish the vocal style. Although various types of melodic ornaments have been
identified in the , prior research has mainly focused on a limited set of commonly

occurring shapes.

Characterising the Pitch Contour of Vibrato

In this thesis, vibrato is considered a specific type of modulating pitch contour, char-
acterised by four key features: rate, extent, regularity, and waveform (for details, see
Section ) The waveform is commonly assumed to be sinusoidal, based on observa-
tions that real-world vibratos often exhibit quasi-sinusoidal shapes (Sundberg [1995a).
Consequently, numerous studies have modelled the fundamental frequency (f0) of vi-
brato as a sinusoid. While most of these studies, such as Dai & Dixon (2016), focus
primarily on rate and extent, only a few, like the works of Wen & Sandler (2008) and
Yang (2017)), also consider regularity.

Wen & Sandler (2008) proposed a method to decompose the original f0 into a
smooth component (the carrier) and a vibrating component (the modulator). This

involved observing complete f0 modulation cycles and calculating an average frequency
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for each cycle to construct a vibrato-free frequency track. The modulator was then
obtained by subtracting this smooth component from the original signal. From the
modulator, they measured the vibrato’s regularity, rate, and extent. Regularity was
quantified using the maximum value of the autocorrelation coefficient, excluding the
value at time zero. Rate was estimated by calculating an overall modulation rate that
maximized regularity. Two features related to extent were measured: maximal pitch
departure from the pitch centroid and average pitch departure, calculated as the root-
mean-square of the modulator.

In contrast, [Yang et al| (2013) estimated rate and extent directly from the original
{0, reserving the decomposed modulator solely for calculating regularity. Yang assumed
that the interval between one peak and one trough represents a half cycle of the vibrato,
and the overall rate and extent were calculated as the average across these half cycles.
Additionally, Yang measured the envelope of the vibrato f0 contour to capture the
evolution of extent. This was achieved by taking the absolute value of the analytic
signal obtained from the Hilbert transform of the vibrato fO contour, followed by moving
average post-processing. Finally, regularity was assessed by calculating the normalised
cross-correlation between the modulator and a relevant sine wave, thereby quantifying

how closely the shape of the vibrato resembles a sinusoid.

Characterising the Pitch Contour of Portamento

To the best of our knowledge, only one study has developed a model to characterise the
pitch contour of portamento. Yang (2017, Section 4.1) employed a logistic model to
capture the fO contour of portamento with S shape, which suggests that a portamento
involves both an acceleration phase and a deceleration phase during its execution. The

logistic model is represented by Equation Ell:

(U -1L)

t) =L+
p(t) (1 +Ae*G(t*M))1/B

(2.1)

Here, L and U denote the initial and final pitches of the transition, while A, B, G,
and M are constant parameters. G can be interpreted as the rate of growth, indicating

the steepness of the transition’s slope. These parameters were estimated numerically
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using Matlab’s Curve Fitting Toolbox, employing the non-linear least squares method
for optimisation.

Five key features were identified to describe the shape of the portamento f0 contour:

1. The slope of the transition, represented by the coefficient G in Equation @

2. The transition duration, estimated by measuring the duration of the continuous
region where the first derivative of the logistic curve exceeds a threshold of 0.861

semitones per second, based on empirical data.

3. The transition interval, calculated as the absolute semitone difference between

the initial and final pitches.

4. The normalised inflection time, which is the time at which the slope reaches its
peak. This is calculated using Equation @ and standardised to fall within a
range of 0 to 1.

1 B

5. The normalised inflection pitch, standardised to fall within a range of 0 to 1,
where 0 corresponds to the lower asymptote and 1 to the upper asymptote within

the transition interval.

In addition to the logistic model, alternative models like Polynomial, Gaussian, and
Fourier Series were also tested. Their curve-fitting performance was found to be inferior
to the logistic model in terms of portamento with S shape, as evaluated by Root Mean
Squared Error (RMSE) and Adjusted R-Squared values. However, the logistic model

would not be the best choice for portamento with other shapes.

Characterising the Pitch Contour of the Pitch Slide

Different with portamento, pitch slide, in this thesis’s definition, does not have an
antecedent or subsequent sustained pitch for a duration at least 0.1s. In these situations,
the logistic model which is characterised with an S shape would fail to fit the signal.

However, several studies utilised different models to characterise the pitch slide.
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Dai & Dixon (2016), for the purpose of synthesising stimulus and characterising the
sung pitch contour in imitation, used first-order and second-order polynomial functions
for pitch ramps and initial or final pitch slides. We summarise the detailed explanations
from chapter three of Dai (2019).

Below are the three distinct types, each with its own mathematical model for char-

acterisation:

1. Initial Pitch Slide: This type of pitch slide starts with an initial quadratic pitch

glide and transitions into a constant pitch. The mathematical model is given by:

at? +bt+c, 0<t<d
p(t) = (2.3)
Pms d<t<1

2. Final Pitch Slide: Here, a constant pitch is followed by a final quadratic pitch

glide. The equation for this model is:

at? +bt+c, 1—-d<t<1
p(t) = (2.4)
D, t<1—d

3. Pitch Ramp: This is a linear pitch ramp, modeled by the following equation:
p(t) =pm +pp x (t—0.5), 0<t< 1 (2.5)
In these equations, the duration is normalized to 1 second. The models use three

key variables to characterize the pitch slide:

e p,, represents the main or central pitch.
e d denotes the duration of the transient part of the stimulus.

e pp is the extent of pitch deviation from p,,.

Additional parameters a, b, and ¢ are decided based on specific conditions. For

example, these parameters are determined such that the curve passes through the
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points (0, p,, + pp) and (d, pr,), and has its vertex at (d, p,). The values are given by
a=pp/d* b= —2xpp/d, and ¢ = py, + pp.

For parameters p,,, d, and pp, the estimation is performed numerically through
curve fitting. For both initial and final pitch slides, a grid search is conducted to
find the breakpoint of the piecewise function, as represented by Equations @ and @
The optimal parameters are those that minimize the mean square error. Once the
breakpoint is determined, the two segments of the piecewise function can be estimated
using regression methods. For pitch ramps, the parameter p,, is calculated as the
median pitch over the middle 80% of the duration, and a linear regression is used to
model the slope as given by Equation @

Devaney (2011) employed the type-IT Discrete Cosine Transform (DCT) as an alter-
native to polynomial models for characterising pitch slides. The DCT method has the
advantage of providing multiple, independent coefficients, with the Oth, 1st, and 2nd
coeflicients specifically corresponding to the mean, slope, and curvature of the pitch

slide, respectively.

= k(2n+ Dr
k) =w(k xr(n)cos ————
yiI) = (k) 3= afn)cos =50

1 (2.6)

VN’
2
V2, 1<k<2

In Equation @, the variable x denotes the input signal, N specifies its length, and

where w(k) =

n serves as the index for each sample in the signal. Coefficients can be calculated
according the equation @ Specifically, the Oth DCT coefficient represents the mean
value of the signal, normalised by the square root of N, the total number of samples.
A positive DCT coefficient indicates a negative slope, while a negative DCT coefficient
indicates a positive slope. The 2nd DCT coefficient provides insights into the curvature
of the pitch slide, detailing both its magnitude and direction (concave is negative value
and convex is positive value). Beyond these, the higher DCT coefficients represent more
complex components.

Limitations of the DCT Method:
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1. Coefficient Interpretation: Although the DCT coefficients do reflect the pitch
slide’s slope and curvature, they are not directly comparable to mathematical
definitions of these terms. This makes it challenging to compare DCT-based

measurements with those derived from other mathematical models.

2. Detail Loss: The DCT method is best suited for capturing the broad contours
of simple shapes like parabolic curves. It may not capture fine details, such as

pitch slide modulations.

3. Phase Sensitivity: DCT is sensitive to the phase of the input sinusoidal signal.
Vibrato in the starting or ending points of the signal can significantly affect the
DCT coeflicients. This necessitates pre-processing steps, such as moving averages

or precise boundary location, to remove the noises.

Characterising the Overall Pitch Contour in a Note and a Syllable

Dai (2019, Section 6.2.4) outlines a method for modelling the broad pitch contour of
a note as three distinct components: the initial transient (comprising the first 15%
of the note’s duration), the note’s middle section, and the final transient (occupying
the last 15% of the note’s duration). Based on linear regression approximations of
these components, the overall pitch contour of a note is categorised into one of four
types: Concave, Convex, Upward, or Downward. These categories are determined by
the slopes of the initial and final transients, which can be either positive or negative.
Beyond categorisation, the model also allows for the measurement of the slope and
variance for each of the three components: initial transient, note middle, and final
transient. However, this approach has limitations, as it overlooks finer details such as
overshoot and preparation.

For syllable segments, which may contain multiple notes, the overall pitch contour
can be indicative of specific musical or linguistic features. For instance, in Chinese, it
may correspond to the tone of a character, while in Indian art music, it could indi-
cate the Raga. The DCT serves as a useful tool for capturing the broad contours of

these syllables, particularly in terms of slope and curvature. While this approach is
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well-suited for modelling the tones of Chinese characters, it may not be sufficient for
capturing the complexity of f0 contours in Indian art music. In summary, for a more
nuanced characterisation of f0 trajectories at the note or syllable level, segmentation

into individual steady, modulating, and pitch slide regions is essential.

2.6 Review of Vocal Style Analysis in Pitch Contour Stud-
ies

This section reviews prior research in the field of computational vocal style analysis,
with a special emphasis on studies related to pitch contour. Statistics serves as a corner-
stone in this domain, encompassing various stages such as data annotation, description,
and analysis. The application of statistical methods offers multiple advantages. Firstly,
it enables the condensation and meaningful presentation of large datasets. Secondly,
it facilitates the identification of patterns and trends, thereby aiding in hypothesis
formulation and predictive modelling. Lastly, statistical analysis provides a robust
framework for quantifying uncertainties and assessing the reliability of predictions and
hypotheses. Beyond this, the theoretical interpretation of statistical results and the
empirical validation through practical applications further enhance our understanding
of the study’s reliability. The depth and approach to statistical methods vary across
different studies in vocal style analysis; specific examples illustrating these variations

will be provided in the subsequent sections.

2.6.1 Data Annotation in Vocal Style Analysis

It is generally accepted that annotations in a dataset may contain noise, which can
often be averaged out. However, this approach is not without risks. There are two
examples below. Dai (2019) focused on the regularity and characteristics of note pitch
trajectories. The note trajectory is divided into three components: the initial transient,
the note middle, and the final transient. The slope of these transient parts is estimated
using linear regression and is defined as the first 15% and the last 15% of the average

note pitch trajectory. However, this 15% duration is a rough estimation based on
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observations on the average note trajectory. The study acknowledges that this could
be inaccurate for most note trajectories.

Furthermore, the note segmentation may influence the results. For example, the
final slope, which is dominated by vibrato, could be classified as either positive or
negative depending on the phase of the vibrato at the offset of the note. A close
examination of a random sample revealed only a small fraction of cases where the sign
of the slope could be ambiguous and the few ambiguous cases would not change the
results significantly. Despite this, the study does not consider the amount of slope
measurement errors, the effect of transient time, and the compensation of them by
averaging. This leaves open the question of whether the measured slope genuinely
reflects real-world fO characteristics.

The second example comes from Section 3.2 of thesis (Devaney 2011), which aims
to estimate the slope and curvature of f0 during the transition between two notes. The
study straightforwardly cuts the last 250 ms of each note to represent the transition
part. However, this fixed-duration cut may include vibrato from the note’s middle
section, introducing noise into the measurement. Given that the DCT is sensitive to
the phase of the sinusoidal signal, the vibrato phase can significantly influence the slope
measure.

To mitigate this, a moving average smoothing is applied to the original fO signal with
a window size of 200 ms, and the last 150 ms of the fO trace is considered as the transient
part. Despite these adjustments, the study reports a large amount of variability in the
measurements and questions the reliability of the slope estimation method. As a result,
the author abandoned this method for measuring slope in subsequent experiments in
other sections.

In summary, the process of data collection and organization is intricate and multi-
faceted. It involves several steps and considerations, each of which has its own set of
challenges and limitations. Careful planning and execution are therefore essential to

ensure the reliability and validity of the research findings.
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2.6.2 Data Analysis

Data analysis in statistics is a multi-step process that begins with exploratory analysis
to understand the data’s characteristics and identify dependencies between variables.

This is followed by statistical testing to confirm the significance of these dependencies.

Exploratory Analysis in Vocal Style Research

Exploratory analysis serves as the foundational phase in research, where the primary
aim is to understand the key characteristics of the data. This is usually accomplished by
examining data distributions and summary statistics. The overarching goal is to identify
patterns or regularities in the data, which can manifest either as specific distributions
of a variable or as functional dependencies between variables. It is crucial to note
that these distributions and dependencies can often be mathematically represented as
functions. Additionally, such regularities may be conditional, appearing under specific
circumstances or conditions, which are relative to the content of music, such as note
pitch or melodic interval and to the musical form, such as raga.

Various studies that have employed exploratory analysis in the realm of vocal style
research. These studies aim to discern clear patterns or regularities specific to different

vocal styles. The examples are organised by the type of variable under investigation:

1. Categorical Variables:

e Nominal Variable Example:

In a study detailed in section 6.2.4 of Daj (2019), the authors aimed to model
note trajectories in singing and investigate how these trajectories vary across
different vocal parts—Soprano, Alto, Tenor, and Bass (SATB). The variable
of interest is the type of note pitch trajectory, categorized as a nominal
variable. Utilizing a dataset of 400 recordings from five different groups of
singers, focusing on two specific songs, the study yielded a total of 49,200

annotated single notes.

The shapes of these note trajectories were categorised into four types, Con-

cave, Convex, Upward, and Downward, based on the sign of the slope during
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the attack and release phases. The distribution of these shapes was analysed
conditionally, based on the specific vocal part, and was represented as fre-

quency percentages.

The study revealed that the most common trajectory shapes across all vocal
parts were Convex and Downward, both characterised by a negative note
release. This led to the hypothesis that there is a consistent tendency for
notes to end with a negative slope, irrespective of the vocal part. This
finding suggests a commonality in how singers approach the ending of notes,

possibly related to the relaxation of vocal muscles.

¢ Ordinal Variable Example:

In a study by Caro Repetto et al) (2017%), the focus was on the relationship
between linguistic tones and melodic contours in Jingju opera. The variable
of interest is the shape of the pitch contours of a syllable, categorised as an
ordinal variable. The dataset consisted of 7,283 syllabic contours from 92
Jingju scores.

The study was conditional on two dialects —Beijing (BJ) and Huguang
(HG)— and further refined by four tonal categories common to both dialects.
The distribution of these pitch contours was presented as frequencies for each
tonal category within the dialects.

The study identified specific preferences for each tone and hypothesised a
slight preference for the HG dialect. This research offers valuable insights
into the complex relationship between linguistic tones and melody in Jingju

opera, particularly how to infer dialects from syllabic pitch contours.
2. Continuous Variables:

e Vibrato Rate Example:
In a study by Caro Repetto et al| (2015), the aim was to compare the
variability of vibrato rates between two vocal styles developed by the Cheng
and Mei schools. The variable of interest is the vibrato rate, which is a

continuous variable. The dataset included four recordings for each vocal
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style, performed by six singers.
The study used mean and standard deviation (SD) to assess the distribution
of vibrato rates. Although the observed regularity aligned with the hypothe-
sis that the Cheng style would exhibit more variability, the results were not
statistically significant, possibly due to the limitation of the small sample
size.

e Expressive Characteristics Example:
In another study by [Yang, Tian, Chew et al. (20154), the focus was on
the expressive characteristics of Beijing opera singing, specifically examining
vibrato rates, extents, and sinusoid similarity, which are continuous variables.
The dataset comprised 16 monophonic performances, resulting in a total of
344 vibrato examples for the Laosheng role and 273 for the Zhengdan role.
The distribution of these variables was visualised using Box plots. The study
found that the Laosheng role exhibited a broader range of vibrato features
compared to the Zhengdan role. However, the study did not formulate hy-
potheses based on existing musicology literature.

¢ Duration of Meends Example:
In a separate study by Datta et al, (2017), the objective was to explore
the duration of different categories of simple meends, a musical ornamenta-
tion technique in Indian classical music. The dataset used for this research
consisted of 3,328 meends (longer than 300ms) that were automatically ex-
tracted from 116 songs performed by 41 eminent singers.
The distribution of this continuous variable was visualized using histogram
envelopes, which displayed the frequency of occurrences across different du-
ration categories. Although no specific hypothesis was formulated, the study
found that most meends had a duration of less than 600 ms, with the major-
ity falling within the 300—500 ms range. Additionally, less than 1% of the
total number of meends had a duration of less than 200 ms. These findings
offer valuable insights into the temporal characteristics of meends, revealing

variations in duration across different categories and performances.
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3. Discrete Variables:

Discrete variables are rarely the focus in vocal style analysis as vocal pitch is
generally continuous. When they do appear, it is usually in the context of musical

content analysis, such as the number of notes in a scale.

In summary, these exploratory analyses serve as initial investigations into various
aspects of vocal styles. Some studies aim to validate existing theories or hypotheses
in musicology, while others generate new hypotheses based on observed regularities.
However, it is important to note that these exploratory findings are not definitive and
should be further validated through rigorous statistical methods, which will be discussed

in the subsequent section.

Statistical Testing Methods in Vocal Style Research

Statistical methods are essential in the realm of vocal style analysis. They offer rig-
orous techniques for hypothesis testing and validation of observed patterns. Several
statistical techniques are commonly employed in vocal style analysis, including Analy-
sis of Variance (ANOVA), Kolmogorov-Smirnov (KS) tests, linear regression analysis,
and linear mixed models. Each of these methods comes with its own set of assump-
tions, application scenarios, and advantages, which will be discussed in detail along
with previous vocal style analysis studies as examples.

Analysis of Variance, commonly known as ANOVA, serves as a powerful statistical
tool for comparing means across multiple groups. Unlike the t-test, which is limited to
comparing two groups, ANOVA can handle comparisons among more than two groups
and is relatively robust against certain violations of its assumptions.

ANOVA operates under three main assumptions:
1. Observations within each group are normally distributed.
2. Variances within each group are approximately equal.

3. Observations are independent of each other.

The core objective of ANOVA is to test the null hypothesis, which posits that there

are no significant differences between the group means. The F-statistic is employed
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to compare the variance between groups against the variance within groups. A high
F-statistic value can lead to the rejection of the null hypothesis, thereby indicating
significant differences among the groups. Subsequent post hoc tests, like Tukey’s HSD,
can be used to pinpoint which groups significantly differ from each other.

One common variant is the one-way ANOVA, which focuses on the relationship
between a single categorical independent variable and a continuous dependent variable.
For instance, Dai (2019) used one-way ANOVA to identify significant differences in the
mean pitch error between male and female vocal parts, (F'(1,198) = 734.99,p < .001).
The study concluded that male singers tend to start notes at a higher pitch and adjust
downwards, whereas female singers generally begin at a lower pitch, overshoot the
target, and then adjust downwards.

Factorial ANOVA, which includes two-way, three-way, and higher-level ANOVAs,
extends the scope of one-way ANOVA by allowing for the analysis of effects of multiple
categorical independent variables (factors) simultaneously. This enables the investi-
gation of interactions between factors, represented by interaction terms like A x B.
In the same thesis (Dai 2019), a two-way factorial ANOVA was conducted to explore
interaction effects among various factors, such as note number in trial, singing con-
dition, listening condition, and vocal part, revealing significant interactions for most
combinations of factors.

The Kolmogorov-Smirnov (KS) test is a non-parametric test used to compare two
distributions. It is commonly applied to continuous variables and is especially useful
when the data do not meet the assumptions of other statistical tests. The KS test
quantifies the distance between two distributions. The null hypothesis in the KS test
posits that the samples are drawn from the same distribution. A low p-value (usually
p < 0.05) indicates that you should reject the null hypothesis in favor of the alternative
hypothesis, which states that the distributions are different.

In (Yang 2017), the exploratory analysis from ([Yang, Tian, Chew et al) 20154) was
further tested. The KS test was used to compare the distributions of vibrato extents
between the Zhengdan and Laosheng roles. The test showed a significant difference

between the two distributions, with a p-value of 2.86 x 10~* at the 1% significance level.
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This 1% significance level is more stringent than the commonly used 5% level, providing
stronger evidence to reject the null hypothesis and thereby reducing the likelihood of

committing a Type I error.

Linear Regression Analysis: Linear regression analysis is a statistical technique
used to model and analyse the relationships between a dependent variable and one or
more independent variables. The primary advantage of linear regression is its flexi-
bility to incorporate various types of predictors, including continuous and categorical
variables.

The general form of the linear regression model is:

y = Bo+ fro1 + fara + ...+ Bprp + € (2.7)
where y is the dependent variable, 3y is the intercept, 1, 52, ..., B, are the coefficients
of the independent variables 1, x2,..., 2y, and € is the residual or error term, which

captures the difference between the observed value of the dependent variable and the
value predicted by the model.

The use of coefficients 3, in the analysis indicates the size and direction of the
effect that the predictor has on the variable being predicted, allowing for a nuanced
understanding of the relationships between variables. The error term accounts for the
random variation in the data that cannot be explained by the model.

The assumptions for applying linear regression include:

Linearity: The relationship between the dependent and independent variables is

linear.

e Independence: Observations are independent of each other.

e Homoscedasticity: The variances of the residuals are equal across all levels of the

independent variables.

Normality: The residuals are normally distributed.

In one study by Devaney (2011), linear regression was used to examine the effects
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of various factors on the slope of the last part of the pitch contour of the first note in a
melodic interval. The study utilised 306 melodic intervals and found a significant effect
of certain intervals and of the professionalism of the singer on the slope. The linear
regression yielded a small R? value (R? = 0.04,p < 0.0001), indicating a significant
effect on the slope of A-Bb/Bb-A intervals versus other intervals. Additionally, a sig-
nificant effect was observed for group identity, with the professional group averaging a
10 cents/second larger slope than the non-professional group (95% confidence interval
= [3,18]).

However, the study also noted the potential for violating the assumption of inde-
pendence, due to the possible correlation between sung notes close in time. This leads
us to the next model, the linear mixed model, designed to address this issue. Linear
Mixed Models (LMMs), also known as linear mixed-effects regression (LMER), provide
a robust statistical framework that extends the capabilities of traditional linear regres-
sion models. One of the key advantages of LMMs is their ability to handle data that
violate the assumption of independent observations, a limitation inherent in standard
linear regression models. This makes LMMs particularly useful for analyzing correlated
data, such as repeated measures on the same subjects, observations within clusters, or
data points that are spatially or temporally close.

The strength of LMMSs lies in their incorporation of both fixed and random effects
into a single model. Fixed effects function similarly to standard regression coefficients,
capturing the primary relationships between the predictors and the response variable.
In contrast, random effects account for unexplained variability within clusters or among
subjects. This dual structure allows LMMs to provide a more nuanced understanding
of complex data, accommodating different baseline response values for each level of a
random factor.

The mathematical representation of an LMM is y = X34 Zv + €, where y is the re-
sponse variable, X and Z are design matrices for fixed and random effects, respectively,
B represents fixed effects, « represents random effects, and € is the error term. The
assumptions for LMMs include those of linear regression—linearity and independence

—along with additional assumptions concerning the distribution of random effects and
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the error term, such as homoscedasticity and normality.

Dai (2019) employed an LMM to investigate various factors affecting pitch differ-
ences between the fO0 contour and the score note pitch. The fixed effects used in the
LMM are singing condition, listening condition, vocal part and note number in trial,
and a random effect, the individual singer. Two examples of traditional Western church
choral music were sung by 16 amateur female singers eight sopranos and eight altos, in
different conditions for several times to generate 384 recordings and 18176 annotated
notes. The results showed that the effects of all the tested factors are significant and

some even with p-value smaller than 0.001.

2.6.3 Theoretical Interpretation

The theoretical interpretation of vocal styles serves as a crucial follow-up to the statis-
tical analyses discussed earlier. While the data analysis section focused on identifying
patterns and regularities in vocal styles, this section investigates how researchers have
theorised these findings. The interpretations range from physiological and psycholog-
ical factors to cultural and musical contexts. For instance, the study by Dai (2019)
found a consistent tendency for notes to end with a negative slope across different vocal
parts. The authors theorised that this could be due to the relaxation of vocal muscles
at the end of a note, a physiological explanation that aligns with the statistical findings.

Additionally, it was observed that singers often exhibit a rising inflection towards
the end of a note, just before the pitch falls at the very end. This pattern is thought
to be a form of psychological preparation for hitting a higher pitch in the subsequent
note. This specific pitch contour at the end of a note could be a characteristic feature
influencing vocal style. Similarly, in chapter 4 of Devaney (2011), the research measured
the curvature of the last part of the first note in melodic intervals. The intervals could
either be between two chord tones or non-chord tones. The study found that the
curvature values were smaller for intervals ending in a chord tone compared to those
ending in non-chord tones. The authors suggest that this could be because singers are
preparing for the stability of the subsequent note by introducing increased stability in

the current note.
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Panteli et al| (2017) employed an unsupervised K-means clustering method to ex-
plore similarities in singing styles. Their results indicated that clusters often grouped
recordings from neighbouring countries or those with similar languages and cultures.
The study also noted that the speed of syllabic singing plays a significant role in distin-
guishing between different singing styles. Separately, Shen (1982) provided an empirical
explanation for the influence of language on singing styles. According to Shen, Western
music, which aligns with Indo-European languages, often involves the use of ornaments
to combine groups of notes with varied duration and loudness. This is because meaning
in these languages is often formed through multiple syllables with stress emphasising
meaning. In contrast, Chinese music, reflecting the characteristics of Sino-Tibetan lan-
guages, emphasises the shaping of pitch contours within individual notes or syllables. In
these languages, single syllables carry independent meaning, and the tone itself conveys
meaning.

Sundberg et al| (2012) compared Peking and Western opera, attributing vocal style
differences to timbral variations in their orchestral accompaniments. Specifically, the
absence of a singer’s formant cluster (Sundberg [19954) in Peking opera singers was
linked to these timbral differences. Dai (2019) also suggested that the use of vibrato
might be less marked in unaccompanied ensemble singing, where the goal is for voices
to blend rather than stand out.

In summary, the theoretical interpretations in vocal style research often serve to
explain the patterns and regularities identified through statistical analyses. These
interpretations, grounded in various domains like physiology, psychology, and culture,
not only provide a deeper understanding of the data but also offer avenues for future

interdisciplinary research.



Chapter 3

Pitch Contour Segmentation and

Characterisation Methods

This chapter introduces the concept of ‘pitch contour unit’ (PCU), which represents
a discrete segment of the f0 signal delineated by consecutive local peaks and troughs,
aimed at providing a method for segmenting and characterising pitch contours across
diverse musical cultures. Traditional methods often struggle with the continuous nature
of pitch contours in vocal music, which varies significantly from one style to another.
While previous studies (Gong et al| 2016) have utilised similar concepts, this thesis
innovates by formalising PCU as a novel unit for pitch segmentation and analysis. The
segmentation level of PCUs, positioned between frame-level analysis and individual
notes, effectively bridges the gap between the excessive granularity of frame-level anal-
ysis, which does not align with human music cognition, and the subjective variability
inherent in note definition. This segmentation strategy provides a resolution that cap-
tures unidirectional movements within the pitch contour, making PCUs particularly
suited for analysing the subtle nuances and ornaments of diverse pitch contour pat-
terns. By dividing complex pitch contours into manageable PCUs and employing a
Hidden Markov Model (HMM) for their analysis, this methodology offers a novel way
to universally characterise the primary elements of pitch contours: steady, modulating,

and transitory elements, which have been elaborated in Section .



3.1. Dataset 85

3.1 Dataset

This section introduces four datasets. The first dataset, consisting of pitch contour
element segments, is divided into a training set and a test set for training and evaluating
the method’s capability in detecting the three element types, transitory, steady and
modulating. Furthermore, three additional datasets are employed solely for testing
purposes, to assess the method’s general effectiveness in detecting a specific type of
melodic feature individually in datasets annotated by different annotators and datasets

in different musical genres.

Pitch Contour Segments Dataset

A subset of the dataset from Gong et al, (2016) was employed for pitch contour segmen-
tation tasks, consisting of acapella singing recordings. This dataset primarily focuses
on two Jingju role-types: Dan (female) and Laosheng (elderly man), featuring 41 in-
terpretations of 33 arias by 13 Jingju singers. Manual annotation of the pitch contour
segmentation was performed, identifying the three elements: steady, unidirectional
transitory, and vibrato, totalling 14,467 segments, which were considered as ground
truth by Gong et al! (2016) to evaluate the pitch contour segmentation method they
proposed.

However, labels of the three elements are not published with the segments in Gong
et al, (2016). Recognising the importance of such labels for evaluating algorithm perfor-
mance in detecting pitch contour elements, this thesis includes manual correction and
labelling of these segments. Due to time constraints, this thesis selected 12 recordings
from the total dataset of 41 recordings (containing 14,467 segments). This subset, com-
prising 8 tracks for the training set (of which 1/10 was allocated for validation purposes,
detailed in Section ) and 4 for the testing set, was chosen to balance the need for
thorough manual verification against time constraints. The manual analysis involved
correcting and labelling pitch contour elements in these selected recordings to create
a validated ground truth dataset for algorithm evaluation. While this sample size is
relatively small, it is sufficient for this study because the model employed uses a sim-

ple Hidden Markov Model with fewer than 10 parameters—specifically, the transition
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probabilities between three states and the observation likelihood distribution functions
of these states. The selection was also carefully made to ensure a diverse representation
of singers, roles, and emotions, thereby achieving a balanced dataset. Tables @ and
@ provide detailed metadata for the training and test sets, respectively. The role type

and emotion labels are made by Black et al| (2014).

File Name Role Type Emotion
ben 001 Dan Positive
ben. 007 Dan Negative
fem_01_neg 1 Dan Negative
fem0O1_pos_ 1 Dan Positive

male 01 _neg 1 Laosheng Negative
male_01_pos_2 Laosheng  Positive
male_02_negl Laosheng  Negative
male_13_ posl Laosheng  Positive

Table 3.1: Training set recording metadata containing 3,096 manually annotated
pitch contour segments from 8 recordings

File Name Role Type Emotion
fem 07 pos 1 Dan Positive
fem_11_pos_1 Dan Positive
londonRecording-Laosheng-01 Laosheng  Negative
ben_ 003 Laosheng  Negative

Table 3.2: Test set recording metadata containing 1,135 manually annotated pitch
contour segments from 4 recordings

The annotation methodology involves grouping Pitch Contour Units (PCUs) into
higher-level segments to form three types of pitch contour elements based on their
shared boundaries and characteristics. Adjacent PCUs sharing the same boundary
are grouped together, and those with similar characteristics are categorized into either
steady or modulating regions. In steady regions, PCUs typically have small durations
and low amplitude variations, while in modulating regions, neighbouring PCUs exhibit
similar durations and intervals, indicating a vibrato-like modulation. PCUs that do
not fit into these categories are labelled as transitory. To save time, entire segments are
made for steady or modulating elements, rather than individually segment each PCU

within these regions. In contrast, PCUs were segmented and labelled for transitory
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elements. Noise regions, such as attacks, echo, or unvoiced consonants, are discarded.

However, it is not always that each PCU clearly belongs to a specific element. For
example, some transitory PCUs, have a steady region in the PCU either in the middle
or at ends. This characteristic requires to do a finer segmentation to distinguish the
steady part from the transitory within the individual PCU. Therefore, the curvature is
an important feature in the process of segmentation.

To accurately annotate the segments, the following steps are followed:
1. Listening through the entire track.
2. Labelling each segment based on subjective perception of the author.

3. If more than one element are observed in a segment, breaking it into multiple

regions.
The annotation challenges include:

1. Visual Effect Risks: The visualised pitch track can influence decision-making
during labelling, which should be based on hearing. Figure illustrates an f0
signal may indicate an outlier (highlighted by the blue box) in a segment, which
might not be audible due to the low loudness. Sole reliance on visual signals
is risky, as the perceived interval could be influenced by the vertical scale. For
example, the pitch slide in the blue region (Figure ), if the vertical scale is
compressed, the pitch slide would flatten and look like a steady region. Therefore,
visual f0 signals should not be the definitive reference for annotation, and caution

must be exercised against over-reliance on visual details.

2. Hearing Perception Risks: Dependence on auditory perception means that anno-
tations cannot be considered absolute ground truth. Hearing perception is inher-
ently subjective, and annotations may vary with different annotators. Moreover,
the consistency of annotations is influenced by factors such as musical context,

the purpose of the annotation, and the duration of listening.

In conclusion, despite the challenges posed by auditory perception, since music

is fundamentally based on hearing rather than visualisation, the most viable, albeit
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Figure 3.1: Visual effects of f0 signals on decision-making during labelling.

imperfect, approach is to rely on auditory rather than visual perception.

The adjustments made to the original segments made by Gong et al| (2016) include:

o Exclusion of silent parts, where the pitch is detected but it is too soft to be heard,

from the annotations.
e Splitting of transitory regions into PCU.

o Exclusion of noises.

Portamento Dataset

For the evaluation of portamento, this study utilises the dataset annotated by Yang et
al. [Yang et al| (2016). This dataset is composed of Beijing opera recordings, sourced
from the collection by Black et al, (2014). These recordings coincide with those used
in the pitch contour segment dataset, discussed in Section @, and include a subset of
audio tracks common to both collections. Portamento annotations for these opera pieces
were conducted utilising the AVA interface, as documented by Yang et al) (2016). To
maintain the integrity of the testing environment and prevent data leakage, audio tracks
(number 3, 5, 8, 11 and 13) that were previously used in the training set (see Section
@) have been omitted from this dataset. The statistics on portamento annotations
are detailed in Table @, where the ‘neg’ and ‘pos’ in the filename indicate the emotion

and the last column is the number of portamento annotations.
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Filename Role Duration (s) | Portamenti
fem_01_neg 3 | Zhengdan 51 71
fem_01_pos_3 | Zhengdan 41 48
fem_01_pos_5 | Zhengdan 181 219
fem_01_pos_7 | Zhengdan 71 87
fem_10_pos_1 | Zhengdan 160 173
fem_ 10_pos_3 | Zhengdan 81 49

male 01_neg 4 | Laosheng 148 106
male_01_pos_1 | Laosheng 171 144
male_12_neg 1 | Laosheng 104 94
male_12_pos_1 | Laosheng 185 224
male_13_pos_3 | Laosheng 95 166

Table 3.3: Summary of portamento dataset

Within the dataset, there are 39 instances where the majority of the annotated
portamento falls within unvoiced regions. Figure @ depicts an example of such a case.
The green line represents the interpolated pitch curve, while the purple shaded area
indicates the originally annotated portamento. This issue in portamento annotation is
attributable to the limitations of the AVA system (Yang et al. 2016), which renders a
continuous, smooth pitch representation that may not align with the true pitched and
dynamic characteristics of the audio (see Figure @) To rectify these inaccuracies, non-
pitched portions were excised from the annotation. Furthermore, any residual pitched

segments shorter than 50 ms were eliminated.

Steady Dataset

For the evaluation of steady regions in vocal recordings, this study employs a dataset
annotated using the methodology described by Rosenzweig et al| (2019). This dataset
comprises a selection of five audio tracks from the Erkomaishvili dataset (Rosenzweig
et al) 2020), a repository of Georgian chants. The selected recordings have been anal-
ysed to identify and annotate the stable regions of their pitch traces, using the interac-
tive tool developed by Miiller et al| (2017). The detailed statistics on the duration and

the number of stable regions for each audio track are presented in Table @
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Figure 3.3: A typical pitch curve as displayed by the AVA interface

Vibrato Dataset

For the evaluation of vibrato, this study utilises the dataset annotated by

lCheW et al] (bOlSal). In this dataset, the recordings are identical to those in the por-

tamento dataset. The vibratos are annotated by the first two authors, Yang and Tian,

using Tony Software (lMauch et alj b015b. The statistics on vibrato annotations is

detailed in Table @
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Audio No. | Duration (s) | Number of Stable Regions
1 129.30 71
2 181.76 176
3 204.28 237
4 55.48 27
5) 47.49 24

Table 3.4: Steady region dataset summary

Filename Role Duration (s) | Vibrato Regions
fem_01_neg 3 | Zhengdan 51 21
fem_01_pos_3 | Zhengdan 41 14
fem_01_pos_5 | Zhengdan 181 47
fem_01_pos_7 | Zhengdan 71 25
fem_10_pos_1 | Zhengdan 160 48
fem_10_pos_3 | Zhengdan 81 23
male_01_neg 4 | Laosheng 148 52
male_01_pos_1 | Laosheng 171 36
male_12 neg 1 | Laosheng 104 53
male_12_ pos_1 | Laosheng 185 61
male_13_pos_3 | Laosheng 95 40

Table 3.5: Summary of vibrato dataset

3.2 Methods

3.2.1 Pitch Extraction and Pitch Curve Modification

Accurate pitch tracking is crucial for our study of pitch contour analysis. We employ
the PYIN algorithm (Mauch & Dixon 2014), which is widely used for pitch extraction
in monophonic signals due to its ability to provide accurate and high-resolution f0
contours (5.8 ms hop size and 10 cent pitch resolution). This level of detail is essential
for capturing the nuanced pitch variations characteristic of singing performances.

In order to refine the continuous pitch trace segment for further analysis, two key
steps are employed to each continuous pitch trace segment separately: interpolation
and smoothing. Interpolation is applied before smoothing to reduce alterations to the
original pitch data during the smoothing process. Piecewise cubic spline interpolation
is selected because the pitch contour of singing is complex and nonlinear, making linear
interpolation unsuitable. Moreover, piecewise cubic spline is a widely used method

for curve interpolation. Next, in line with [Yang et al| (2016), a method of 10-point
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moving average smoothing, a common choice suggested, is applied to the interpolated
f0 to remove minor local extremes in the fO curve, which are considered noise in the

following detection method.

3.2.2 Pitch Variation Features Extraction

After acquiring the pitch, the subsequent phase involves the extraction of pitch variation

features.

PCU Characteristics: Each PCU, visualised in Figure @, is characterised by its

duration and extent:

e Duration: Duration is defined as the time difference between the PCU’s start
and end points, representing the interval between consecutive peaks and troughs

(Figure 3.2), as @ shows.

o Extent: Extent is half of the pitch interval between the PCU’s start and end

points, with signed values to indicate upward or downward direction.

Figure @ illustrates the application of the PCU concept to a pitch contour. Red
circles indicate local peaks and troughs. The pitch interval is marked by the vertical
distance between a peak and the following trough, while the duration captures the

horizontal extent of the PCU.

3.2.3 HMDM-based Pitch Contour Element Detection

The Hidden Markov Model (HMM) is a statistical tool ideal for analysing time series
data, such as pitch contours in music. It is based on the concept of Markov processes

with unobserved or hidden states, to infer the hidden states from the observed sequence.

HMM Structure and Parameters

e Hidden State: Denoted by X;, it represents the hidden state in the model at time

t. For instance, X; = j indicates that the system is in the j*® state at time ¢.
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Figure 3.4: Illustration of PCU characteristics in pitch contour. Red circles indicate
local peaks and troughs. Horizontal axis is time in seconds and vertical axis is pitch.

o Observed Sequence: Represented as O = {o01,02,...,0r}, where each o; corre-

sponds to a feature vector observed at time t.

o Emission Probability or Observation Probability: Denoted as bj(o;) (Equation
@), indicating the likelihood of observing a specific feature o; given a specific
hidden state j.

bj(or) = P(of| X = j) (3.1)

o Transition Probability: Represented by a;; (Equation @), these probabilities

form a matrix indicating the likelihood of transitioning from state ¢ to j.

o Initial Probability: Given by 7; (Equation @), this sets the initial conditions of
the Markov process.

An illustrative diagram of the HMM structure is provided in Figure @)
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Figure 3.5: Basic structure of a HMM for pitch elements

Sequence Inference in HMM

The goal of an HMM is to infer the most likely sequence of hidden states from the ob-
served sequence. To realise the inference, the Viterbi algorithm is commonly employed.
This dynamic programming algorithm calculates the most probable path through the

hidden states that results in the observed sequence.

HMM Structure for Pitch Contour Element Detection

The HMM is structured to reflect the nuanced behaviours of pitch elements as follows:

o Initial States: The model allows for any of the three states—steady, modulating,
and transitory—to be the initial state of a pitch sequence, reflecting the natural

variability in the onset of vocal expressions.

e State Transition Structure: The transitions between states are not arbitrary
but follow a probabilistic structure that encapsulates the natural progression of
pitch elements. This structure is visually depicted in Figure @, which details
the likelihood of transitioning from one state to another within the pitch contour

context.

e Observation Sequences: The sequences of observation has two dimensions, one

is duration and the other is extent.

Model Training

The training data comprise eight recordings selected from |Gong et alJ (|201d), with pitch

elements manually annotated on PCU level based on the original pitch curve and audio.
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.

Figure 3.6: State transitions of the HMM for pitch elements

For more details, see Section @ Given the availability of annotated data, this thesis
adopts a supervised learning approach for training the HMM. This approach uses the
labelled hidden states of each PCU and observed sequence of features to estimate the
transition probability matrix and observation probability distributions of each state.

Initial Probability

Since the starting pitch is unknown, this method introduces an assumption of equal
probability among states for initiating a pitch track. Specifically, each state—Transi-
tory (T), Steady (S), and modulating (M)—is assigned an identical initial probability.
Consequently, the initial probability for each state is uniformly set to %, reflecting the
equal likelihood of any state commencing a pitch sequence.

Transition Probability Matrix Estimation

The transition probabilities within an HMM are statistically derived from the la-
belled state transitions within pitch contour segments. Each transition links two succes-
sive states, denoted as Xy to X;11, indicating the progression from X; to X;41. Given
three distinct states—Transitory (T), Steady (S), and Modulating (M)—there are a
total of 3 x 3 =9 possible transitions.

Utilising Maximum Likelihood Estimation (MLE), the estimated transition proba-
bility a;; is:

N;;

aij = =3
j=1

, fori=1,2,37=1,23 (3.4)
Ny

where N;; represents the count of transitions from i to j and 3 is the total number of
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states.
The estimated transition probability matrix for the three states in the HMM is
presented in Table @

State Transitory Steady Modulating
Transitory 0.59 0.35 0.06
Steady 0.15 0.84 0.01
modulating 0.09 0.04 0.87

Table 3.6: Estimated transition probability matrix for HMM states

Observation Likelihood Distribution Estimation Method

The observation probability for each state in a Hidden Markov Model (HMM) would
be calculated from the estimated observation likelihood distribution. It is important to
note that the likelihood is denoted by L(0) = P(0|f) where parameters 6 are unknown
while the data o is known and is utilised for parameter estimation, whereas the proba-
bility P(0|f) relies on known parameters to calculate the probability of observed data
from the model which is defined by parameters 6. The operation of estimation of ob-
servation likelihood distribution involves first establishing the distribution of observed
features, and then fitting this to a chosen theoretical distribution while simultaneously
optimising its parameters to determine the estimated observation likelihood distribu-
tions.

Step 1: Feature distribution analysis: The features of each PCU, namely
duration and extent, are extracted and analysed for their distribution across different
labelled states. The scatter plots of duration and extent are depicted in Figure @
The figures illustrate the distribution of duration and extent of each PCU for different
pitch contour state, providing insight into the temporal and dynamic aspects of pitch

variation.

e Transitory State: The scatter plot shows a concentration of data points around
0 to 0.2 seconds, centred near the zero semitone mark, indicating that most events
have shorter durations and are centred around a specific extent. As duration in-
creases, the spread of points widens, indicating greater variability. The bottom

histogram reveals a high frequency of short-duration events, tapering off with
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Figure 3.7: Scatter plot of duration and extent distribution in three states
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longer durations. The right histogram shows a central trough around zero semi-

tones, with two modes around 1 and -1 semitone extent.

e Steady State: The duration histogram leans towards an exponential distribu-
tion, with most values concentrated at shorter duration. The extent histogram,
appearing more symmetric around its mode near zero, suggests a normal distri-
bution with low variance, alluding to minimal pitch variation. The scatter plot’s
tight clustering around lower values corroborates a pitch that is stable and steady,

with negligible fluctuations.

e Modulating State: The histogram for duration indicates a mode around 0.1
seconds, which is similar to that observed in transitory state. However, it exhibit
a more rapid decline for longer durations, indicating a lower likelihood of PCU
duration longer than 0.2 seconds in modulation. The histogram for extent has
similar modes with that in transitory state while the frequency declines more
rapidly on both sides. The scatter plot is densely packed, forming three distinct
clusters. One cluster is centred around smaller duration and extents, reflecting
rapid and slight pitch fluctuations. The other two, symmetrically positioned
around higher duration and larger intervals, suggest patterns of deliberate and
controlled pitch modulating. These clusters suggest the dual nature of pitch
variation in the modulating state potentially: both involuntary micro-variations

and purposeful modulations.

Additionally, these observed patterns reflect the interplay between the physical
mechanics of vocal production and the acoustic manifestation of pitch, with shorter
pitch movements generally corresponding to smaller extents due to the physiological
constraints of the vocal apparatus.

Step 2: Observation Likelihood Distribution Fitting with KDE:

Given the interdependence of duration and extent, their joint modelling in a two-
dimensional space is crucial. The Gaussian Mixture Model (GMM) is less suitable for
this task as it assumes Gaussian distributions, which do not fit the observed scatter

in transitory and steady states. Consequently, Kernel Density Estimation (KDE) is
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employed, a non-parametric approach that does not assume specific parametric forms
for the distribution, thus more accurately representing the intricate and diverse pitch
patterns observed in these states. KDE is characterised by a smoothing function and
a bandwidth value, which controls the smoothness of the estimated density curve. For-

mally, the KDE is expressed as:

—1h§n; ( ) (3.5)

where K denotes the kernel function, and h represents the bandwidth, o, denotes a
specific observation from the data, while n signifies the count of all observations. Each
0; contributes to the density estimation at a point o, with the summation across n
ensuring normalisation of the density estimate.

The selection of hyperparameters and preprocessing is below:

¢ Kernel Choice: Given that the choice of kernel has a relatively minor impact
on the fit, it is opted for the widely used Gaussian kernel function, one of the

most common choices in kernel density estimation.

« Bandwidth Selection: The choice of bandwidth in KDE is critical. A small
bandwidth may lead to overfitting, resulting in a “noisy” or “spiky” estimation, as
it closely follows individual data points. Conversely, a large bandwidth can cause
underfitting, overly smoothing the data and losing significant distribution features.
For selecting the appropriate bandwidth for each feature, the well-established
bandwidth optimisation method proposed by Botev et al! (2010) is employed,
which is widely recognised for its accuracy and fastness. To prevent overfitting,
bandwidth values ranging from 1 to 10 times the acquired bandwidth will be
experimented with to identify the optimal value during the HMM optimisation

process, which is presented in Step 3.

e Scaling Methods: Even though different bandwidths can be chosen for each
feature in Kernel Density Estimation (KDE), scaling is taken into consideration
since it is a standard pre-processing step that is beneficial for mitigating the

disproportionate influence of scale differences across features. Min-Max Scaling
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is able to normalise features to a fixed range, typically [0, 1] as defined by equation
O — min(0)
max(0) — min(0)

Xscaled = (36)

where O represents the set of observed values of the feature, and min(O) and

max(0O) are the minimum and maximum values, respectively.

Step 3: Further Optimisation of Hyperparameters Based on Validation:
Although the optimisation of hyperparameters has been discussed previously, further
optimisation based on validation data is still necessary. Using k-fold cross-validation,

the optimisation encompasses the following steps:

1. Data Partitioning: All the pitch contours in the training set is divided into k
mutually exclusive subsets of approximately equal size. The choice of k typically
depends on the size of the dataset, with kK = 5 or 10 being common choices. Since
the dataset utilised is large enough, k is set as 10. Considering the variance of
the number of PCU in each subset, this study performs partitioning 100 times

and select the partition that exhibit the smallest variance.

2. Model Training and Validation: For each fold, the HMM is trained on k£ — 1
subsets and then validated on the remaining subset. This process is repeated k

times, with each subset serving as the validation set exactly once.

3. Performance Aggregation: The performance at the frame level of the HMM
for each parameter set is aggregated across all k folds. The performance met-
rics are illustrated in Section . This aggregation includes both the average
and the variance of the performance metric. To succinctly represent the perfor-
mance of each parameter set with a single value, the average and variance of the

performance metric are combined using the equation @:
Score = P — \ x §° (3.7)

where P is the sample mean of the performance metric, representing the average

performance across k-folds. s? denotes the sample variance, reflecting the perfor-
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State Duration Extent
Transitory 0.0271 0.2572
Steady 0.0032 0.0091

modulating 0.0037 0.0436

Table 3.7: Optimised bandwidth of features of pitch contour states
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Figure 3.8: Observation probability density function for transitory state

1

mance variability. The parameter A, set as 15 empirically, to control the trade-off

between mean performance and its variability.

A common practice is to repeat the above k-fold cross-validation process 3 times

to achieve more robustness against the randomness in data splitting. The bandwidth

that yields the best aggregate performance score is selected as the optimal bandwidth

to train the HMM.

Estimated Observation Probability Density Functions of Each State Us-

ing KDE

With the optimised bandwidth (see Table @) for Kernel Density Estimation (KDE)

fitting, the observation probability density functions (PDFs) of each state are estimated

using the training set. The estimated PDFs are utilised to calculate the observation

probability of unknown data for each state in the HMM. The PDFs for the transitory,

steady, and modulating states are illustrated in Figures @, @, and m respectively.
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Figure 3.9: Observation probability density function for steady state
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Figure 3.10: Observation Probability Density Function for modulating State
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Post-processing

The post-processing step is designed to treat any modulated region comprised of fewer
than three PCUs as transitory, as two PCUs are insufficient to manifest a modulating
behaviour—at least three points are required to establish a clear oscillatory pattern.
This approach aligns with the understanding that a substantial modulated region, in-
dicative of vibrato, typically spans across at least three PCUs. Consequently, regions

not meeting this criterion are considered as transitory.

3.2.4 Finetuning the HMM-Based Method for Portamento and Steady

Region Detection

Other than basic pitch contour elements, this method has the flexibility to be used to
detect ornaments and steady regions in specific vocal style by finetuning the parameters

of the HMM empirically.

Portamento Detection in Jingju Singing

The finetuning process leverages the pitch contour element detection method introduced
in this chapter, adapting it from general transitory state detection to specifically target
portamento detection. Portamento, recognised as a specialised subset of transitory
elements, adheres to more strict criteria than transitory regarding the pitch interval.
It is also inherently unidirectional, in this thesis’s definition, manifesting either as
ascending or descending motions. These nuances are exemplified in Figure , where
the green curve represents the pitch trace of a song from the utilised dataset. The red
regions illustrate portamenti as annotated by Yang et al| (2016), contrasting with the
grey areas at the top that indicate the horizontal range of the transitory region.

This conceptual distinction is critical for the finetuning procedure, which incorpo-
rates an exponential decay factor in the observation probability of transitory states.
The decay factor in Equation @ is calibrated to diminish the probability of mistaking
slight transitory events for portamenti. If a PCU’s pitch extent falls below predeter-
mined thresholds, the decay factor reduces the observation probability accordingly,

thereby refining the detection of true portamenti.
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Figure 3.11: A pitch contour with portamento (red) and transitory region (grey)

T, —
bj(or) = P(oy | X = j) - exp(decay level - (%)) (3.8)

Here, decay_level is set to a negative value. The more negative the decay level,
the more significant the reduction in observation probability, with T, representing the
threshold and o; denoting the PCU’s feature value, whether it be duration or pitch
extent. The proximity of o, to T, inversely affects the decay. X = j corresponds to
transitory state. The decay levels are set empirically at -5 for duration and -10 for
extent through qualitative assessment of the decay function’s behaviour. This intuitive
approach was chosen primarily to test the feasibility of the decay function concept,

without pursuing formal optimisation, which could potentially cause over-fitting.

Steady Region Detection in Georgian Chant

For the steady region, it is essential to distinguish it from the steady elements of pitch
contour as defined. The primary distinction is that the steady region functions as an
indicator of the stable pitch within a melody. It is characterised by a sufficient duration
of 0.15 seconds, exceeding the 0.1 second threshold typically used in monophonic singing,
and is set to ensure clear perception in polyphonic data. Additionally, its pitch level is

consistent with the melody’s scale.
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In alignment with this empirical knowledge, three modules are applied in the fine-
tuning process. To decrease the observation likelihood of transitory states, a distinctive
decay method is applied to steady-state regions, differing from the finetuning approach
used for portamento (see Section ) This method is formalised by the decay func-
tion,

ol— M2
fdecay(o) = €xXp <_2((‘]\4|]\Q)2> O<xz< M (39)

where o denotes the value of extent of a PCU, M represents the half of the maximum
pitch interval between adjacent degrees of the musical scale, and m signifies the half
of the minimum pitch interval between adjacent degrees, determining the point of
maximum decay rate. The standard deviation is set as ¢ = M — m. The function
decreases as o surpasses M, with the decay rate reaching its apex when o equals m. This
tailored decay sets two decay ranges: the first, from m to M, where a transitory region
may link pitches across scales as a portamento; and the second, from 0 to m, where,
disregarding microtonal variations, a pitch is considered part of a steady region without
a connecting transitory. The second module augment the self-transition probability of
steady states by improving it from 0.84 to 0.99, which mitigates the fragmentation of
steady regions by transitory states. The third module eliminate steady-state regions
detected with durations shorter than 0.15 seconds. These three models are called
‘Observation Probability Decay’ (OPD), ‘Steady Self-Transition Increase’ (SSTI), and

‘Postprocessing Removing Short Region’ (PRSR) respectively.

3.3 Evaluation Results

To evaluate the proposed approach to pitch contour element segmentation and labelling,
this section employed four datasets introduced in Section @ The evaluation focused
on several key components. First, the detection of modulating, transitory, and steady
elements is assessed individually and the pitch contour element segmentation results
are compared against a prior published method. Then, portamento, vibrato and steady
region detection are evaluated separately, employing ablation studies with standard

metrics followed by comparisons with state-of-the-art systems. For all tables presented
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in this section, metrics with a downward arrow (/) indicate that lower values are better,
while metrics with an upward arrow (1) indicate that higher values are better. If no

arrows are present, it means all metrics have an upward arrow (7).

3.3.1 Evaluation of Pitch Contour Element Detection on Pitch Con-

tour Dataset

The evaluation of pitch contour element detection algorithms in this study is conducted
using two metrics: frame-level accuracy and confusion matrix analysis.

Frame-Level Accuracy: The frame-level accuracy metric is a quantitative mea-
sure of an algorithm’s performance, comparing the predicted state sequence against the
ground truth for each individual frame. As delineated in Equation , this metric
calculates the proportion of frames that are correctly predicted concerning their respec-
tive state of pitch contour elements. Here, N represent the total number of frames,
and S; and S; denote the ground truth state and the predicted state for the i-th frame,

respectively.

N
Accuracy = %ZH(S& =5;) (3.10)
i=1

This evaluation focuses on the overall proportion of correctly detected frames, pro-
viding a holistic perspective of the algorithm performance across all elements. Table @
presents the mean and variance of frame-level detection accuracy of each pitch contour

for this method.

Method | Mean Accuracy (1) | Variance ({)
Proposed 0.66 0.10

Table 3.8: Mean and variance of frame-Level detection accuracy for the proposed
method

Confusion Matrix Analysis: Tables @ and present the algorithm’s perfor-
mance through recall and precision metrics for each state. The recall values (Table @)
show that the algorithm is most effective at identifying transitory states (77.7% recall),
moderately successful with steady states (67.3% recall), but less reliable in detecting

modulating states (44.1% recall). The precision values (Table ) indicate similar
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Actual state | Transitory | Steady | Modulating | Total frames | Recall
Transitory 54009 6491 9032 69532 77.7%
Steady 10710 29565 3624 43899 67.3%
Modulating 15558 7183 17930 40671 44.1%

Table 3.9: Per-state recall showing how often each actual state was correctly
identified. Rows represent the actual states, while columns show how these states
were predicted by the algorithm. For example, of the 69,532 actual transitory frames,
54,009 were correctly identified (77.7% recall), while 6,491 were misclassified as steady
and 9,032 as modulating.

Predicted as | Transitory | Steady | Modulating | Total predictions | Precision
Transitory 54009 10710 15558 80277 67.3%
Steady 6491 29565 7183 43239 68.4%
Modulating 9032 3624 17930 30586 58.6%

Table 3.10: Per-state precision showing the reliability of each predicted state.
Columns represent the predicted states, while rows show the actual states of these
predictions. For example, of the 80,277 frames predicted as transitory, 54,009 were

correct (67.3% precision), while 10,710 were actually steady and 15,558 were actually
modulating.

patterns in prediction reliability: predictions of steady states are the most trustworthy
(68.4% precision), followed closely by transitory states (67.3% precision), while mod-
ulating state predictions are less reliable (58.6% precision). The lower performance
in modulating state detection, shown by both metrics, suggests there is a confusion
between modulating and transitory states, with 15,558 modulating frames misclassified
as transitory, indicating a notable tendency to confuse modulating states with transi-
tory ones. This confusion specifically highlights a key limitation of the current method:
the algorithm does not model the differences in pitch level between consecutive PCUSs,
making it particularly challenging to distinguish between modulating and transitory
states. This limitation represents a clear direction for future methodological improve-
ments. In addition, Figure displays the confusion matrix in a colorbar format after
normalising the counts, which enhances the interpretability of the matrix, making it
easier to discern the magnitudes of correct and incorrect classifications.

Comparison to the State-of-the-Art at Segment Level: Existing literature
reveals a singular study by Gong et al, (2016), which develops a method for pitch con-

tour segmentation based on elements, transitory, steady, and vibrato. Their method’s
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Figure 3.12: Colorbar confusion matrix of states classification: transitory, steady, and
modulating. The scale is from 0 to 1, and the values are normalized from the counts
in Table @

efficacy was evaluated using the Jingju dataset comprising 41 recordings. Three quar-
ters of the data were allocated for training, facilitating parameter optimisation, while
the remaining part served as the test set to assess segmentation accuracy. Section
@ details the selection of 12 recordings from the same dataset, with modifications to
segment annotations conducted by the author of this thesis. For fairness in compara-
tive analysis, metrics reported by Gong et al., based on their annotations, are utilised,
whereas the proposed method’s evaluation leverages the revised annotations.

In Table , the evaluation metrics are COnPOff and COnP, which are defined

in the MIREX protocols (IDownie et al.l I2004|). These measures assess the precision

in detecting the start and end boundaries of state regions. COnPOff is the stricter
of the two, accounting for the accuracy of the segment’s onset time within a margin
of 50 milliseconds, and offset time, which considers a 50 millisecond or 20% duration

threshold relative to the ground truth, whichever is greater. In the absence of the state
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label in Gong et al| (2016) and a requirement for pitch accuracy, the evaluation criteria
have been simplified to two metrics: COnOff, which assesses the correctness of both
the segment’s onset and offset, and COn, which evaluates the accuracy of the segment’s

onset alone.

Method COnOff COn

F-measure Precision Recall | F-measure Precision Recall
Gong et al. 0.388 0.480 0.326 0.642 0.793 0.539
Proposed 0.527 0.557 0.523 0.720 0.795 0.740

Table 3.11: Comparative results of pitch contour segmentation using COnOff and
COn metrics.

Precision, recall and F-measure are defined as Equations B.l]l, B.li and B.liﬂ:

Precisi r (3.11)
ecision = ———— .
recision = -5
TP
l=——— 12
Reca TP+ FN (3.12)

Precision x Recall
F- =2 1
feastre % Precision + Recall (3.13)

where TP, TN, FP, and F'N denote true positives, true negatives, false positives, and
false negatives, respectively.

Although the comparison in table suggests the proposed method achieving
higher performance metrics than the previous approach, these results must be inter-
preted with some caution as they are derived from different, though related, test sets
—both sourced from the same corpus of Jingju recordings. It is noted that replicating
the method of Gong et al. would indeed be the ideal approach to ensure an equitable
comparison. However, given that the algorithm is outdated and difficult to replicate, re-
lying on their reported results offers a practical alternative. This comparison approach
enables an assessment of the proposed method’s performance against established bench-
marks, which, despite not being based on identical test sets, still offers valuable insights

into relative efficacy.
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3.3.2 Evaluation on Portamento Detection

Evaluation Metrics for Portamento Detection: The evaluation of the portamento
detection method is multi-faceted, incorporating both frame-level and segment-level
metrics. At the frame-level, precision, recall, and F-measure are employed. In addition,

two types of accuracy are considered. The first is the conventional accuracy A,, which

is defined in equation :

s TP + TN
P TP+ FP+ FN+ TN

(3.14)

The second type, accuracy (A;,), focuses solely on the correct detections and is
given by equation , which was proposed by Dixon (2000), aiming to exclude the
influence of true negatives (T'N) to provide a more focused assessment of the model’s

performance in identifying portamento instances.

" TP

= 3.15
P TP+ FP+ FN ( )

At the segment-level, except F-measure of COnOff and COn as used in this section,
additional metrics that assess segmentation errors are untilised, including “Merged”
errors, “Split” errors, “Spurious” state regions, and “Non-detected” errors which are
defined by Molina, Barbancho, Tardén & Barbanchg (2014). A “Merged” error means
the multiple ground truth state regions are merged into one region in the detection,
while a “Split” error is the opposite. A “Spurious” state region error occurs when
a detected state region does not overlap in time with any ground truth state region,
while a “Non-detected” error is the opposite. The measures of these metrics are the
proportion of all the ground truth portamenti which meet this error (except “Spurious”
error which is the proportion of all the detected portamenti).

Ablation Experiment The ablation experiments are designed to compare the
original pitch contour element detection method (see Section ) with the finetuned
approach for portamento detection proposed in Section , particularly focusing on
the efficacy of the decay module introduced during finetuning. In the finetuning process,

the decay in observation probability is triggered under two conditions: when observed
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duration is less than 0.1 seconds or its extent is less than 0.5 semitones.

This dual-threshold approach is grounded in both empirical data and the theoretical
framework of Beijing Opera’s musical scale. The 0.5 semitone threshold for extent,
corresponding to the minimum pitch interval in the scale commonly used in Beijing
Opera, is substantiated by the investigation of Beijing Opera modes by Li & Lj (2006).
Additionally, the study in Section 6.2 in [Yang (2017) provides statistical support for
these thresholds, as shown in the histogram of pitch distribution, where the distance
between any pairs of peaks is larger than one semitone, and the histogram envolopes
of portamento duration indicate a rarity of durations below 0.1 seconds. The deciding
of duration threshold also aligns with Mauch et al] (2015) for discarding short notes.
The decay levels are set empirically at -5 for duration and -10 for extent (see Equation
@) This distinction emphasises the greater influence of extent over duration in the
accurate identification of portamento in the context of this data and singing style.

The evaluation of the portamento detection methods demonstrates a marked im-
provement when using the fine-tuned approach. Table and summarise the
results, highlighting the enhanced accuracy of the fine-tuned method compared to the
original in frame-level and segment-level. Notably, there is a trade-off indicated by a
slight increase in the Non-detected rate of the fine-tuned method, suggesting a more

conservative detection strategy.

Method Ap A;) Precision Recall F-Measure
Original 0.68 0.38 0.41 0.86 0.55
Fine-tuned 0.78 0.44 0.51 0.76 0.60

Table 3.12: Comparison of original and fine-tuned methods on frame-level evaluation
metrics.

Method  COnOff(t) COn(t) Split(]) Merged(l) Spurious(]/) Non-detected(])

Original 0.37 0.41 0.08 0.01 0.66 0.11
Fine-tuned 0.50 0.55 0.03 0.01 0.48 0.22

Table 3.13: Segment-level evaluation metrics for original and fine-tuned methods. An
upward arrow (1) indicates that a higher value is better, while a downward arrow (/)
indicates that a lower value is better.

Comparison to the State-of-the-Art at Frame Level: Only one study, which

is in the chapter four of Yang (2017), developed a method to do portamento detection.
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This method is developed based on the same portamento dataset this thesis used. The
difference is that they choose k-fold cross-validation to test the portamento detection
method, in which approach k-1 parts of the data are used to train the model, while the
method proposed by this thesis is tested on the whole dataset. From Table , the

proposed method outperforms Yang et al’s method in all metrics.

Method A;, Precision Recall F-Measure
Yang et al.  0.35 0.39 0.72 0.44
Proposed 0.44 0.51 0.76 0.60

Table 3.14: Comparison of proposed method and Yang’s method on frame-level
evaluation metrics.

3.3.3 Evaluation on Steady Region Detection

Evaluation Metrics for Steady Region Detection: The evaluation of the steady
region detection method adopts the same metrics on evaluation on portamento detec-
tion, applied at both the frame level and the segment level. The approach incorporates
accuracy, precision, recall, and F-measure at the frame level. At the segment level,
the metrics “COnOf”, “COn”, “Split”, “Merged”, “Spurious”, and “Non-detected” are
utilised.

Ablation Experiment: The ablation experiments are designed to compare the
original pitch contour element detection method (see Section ) with the finetuned
approach for steady region detection proposed in Section . The hyperparameters
used to finetune the model are set based on the empirical knowledge of the vocal style.
The parameters M and m in the decay function detailed in Equation @ is set at 1.065
and 0.73 semitones, respectively, based on the 213 cents and 146 cents for maximal and
minimal pitch intervals within a scale, as investigated by Rosenzweig et al, (2020) for
the dataset of Erkomaishvili’s recordings. Additionally, the steady-state self-transition
probability is heightened to 0.99. Lastly, the minimal duration threshold for detecting
a steady region in polyphonic singing is set at 0.15 seconds, which exceeds the 0.1-
second threshold typically used in monophonic singing. While these parameters are

specifically set for Georgian music, the model maintains flexibility to accommodate
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different musical cultures through parameter adjustment according to their respective
theoretical foundations.

The evaluation results as presented in Tables and indicate that each mod-
ule within the fine-tuning approach contributes to the overall enhancement of steady
region detection performance, both at the frame level and segment level. The three
modules are Observation Probability Decay (OPD), Steady Self-Transition Increase
(SSTI), and Postprocessing Removing Short Region (PRSR).

Frame-level analysis reflects the basic classification accuracy of steady versus non-
steady states for individual time points. At this level, all module combinations achieve
similar F-Measure scores around 0.89, with the full combination (OPD, SSTI, and
PRSR) and the OPD-PRSR pair reaching 0.892, and PRSR alone achieving 0.890.
These marginal differences in frame-level performance suggest that this metric may not
fully capture the musical relevance of the detected regions.

More importantly, segment-level analysis evaluates the musical coherence of the de-
tected steady regions by considering their temporal continuity and boundaries. At this
level, the PRSR module distinctly excels, evidenced by achieving the highest ConOff
of 0.371 and Con of 0.522. In contrast, the OPD and SSTI modules negatively im-
pact ConOff and Con, although they reduce the errors related to Split, Merged, and
Non-detected events.

Overall, the PRSR module emerges as the most impactful. The OPD module’s
role is ostensibly to complement the PRSR module by diminishing split errors. It
is suggested to reconsider the SSTI module’s inclusion due to its negligible or even
detrimental impact on detection performance.

Comparison to the State-of-the-Art: Table compares the performance of
the two proposed methods with two steady region detection methods by Rosenzweig
et al| (2019) on the same dataset. Specifically, the analysis focuses on the OPD+PRSR
and PRSR techniques to benchmark against the results reported in Rosenzweig et al.
(2019). This comparison underscores the precision, recall, and F-measure values for each
method, providing an overview of their effectiveness in steady region detection. The

highest F-measure for each dataset is highlighted in bold. Regarding the F-measure,
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Modules Ap A;) Precision Recall F-Measure

OPD-+SSTI+PRSR  0.837  0.805 0.840 0.953 0.892
OPD+SSTI 0.815 0.787 0.811 0.965 0.880
OPD+PRSR 0.837 0.806 0.840 0.954 0.892
SSTI+PRSR 0.835 0.799 0.855 0.926 0.888
OPD 0.817 0.790 0.813 0.966 0.882

SSTI 0.819 0.788 0.823 0.949 0.881

PRSR 0.838 0.802 0.856 0.929 0.890

None 0.821  0.790 0.826 0.950 0.882

Table 3.15: Steady region detection performance at frame-level of different

combinations of finetune modules

Modules COnOff(t) COn(t) Split(}) Merged(}) Spurious(]) Non-detected(])

OPD+SSTI+PRSR 0.339 0.500 0.086 0.086 0.115 0.083
OPD+SSTI 0.266 0.399 0.119 0.086 0.425 0.046
OPD+PRSR 0.344 0.503 0.075 0.090 0.115 0.081
SSTI+PRSR 0.360 0.513 0.104 0.035 0.114 0.095
OPD 0.274 0.406 0.110 0.090 0.409 0.047

SSTI 0.272 0.397 0.155 0.035 0.414 0.046

PRSR 0.371 0.522 0.100 0.037 0.107 0.093

None 0.284 0.412 0.141 0.037 0.403 0.047

Table 3.16: Steady region detection performance at segment-level of different

combinations of finetune modules

the methods introduced by Rosenzweig et al, (2019) slightly outperform those proposed

in this thesis on recordings 001, 087, and 110.

D Vorph - OPD+PRSR PRSR

P R P R F|P R F | P R F
001 | 082 094 0.88 | 0.82 094 0.88 077 096 085|080 0.93 0.6
002 | 0.94 0.85 0.89 | 0.93 0.87 0.90 | 0.89 0.90 0.90 | 0.89 0.87 0.88
010 | 0.87 0.92 0.89 | 0.84 0095 0.89 | 0.83 0.95 0.89 | 0.84 0.93 0.88
087 | 0.88 0.98 0.93 | 0.87 0.98 0.92 | 0.86 0.99 0.92 | 0.88 0.97 0.92
110 | 0.90 0.96 0.93 | 0.88 0.97 0.92 | 0.85 0.97 0.90 | 0.86 0.95 0.90

Table 3.17: Comparison of methods Yasorpn, Yarask Proposed by Rosenzweig et al.
(2019), and OPD+PRSR, and PRSR across Precision (P), Recall (R), and F-measure
(F), with the highest F-measure values in each row highlighted in bold. The first
column is the ID of the recording.

3.3.4 Evaluation on Vibrato Detection

This section compares the performance of the proposed method with the FDM-based

vibrato detection method by [Yang, Rajab & Chew (2017) on the same dataset intro-

duced in Section @ Table compares the performance of two methods at the
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frame level. The HMM demonstrates a higher accuracy in the frame level evaluation,
as reflected in the A;, Precision, Recall, and F-Measure values. Table m compares
the performance of two methods on segment level. The FDM method exhibits superior
performance in terms of the “Spurious” and “Non-detected” metrics, indicating a lower
spurious rate of detected vibrato and a lower non-detected rate of ground truth vibrato,
respectively. These results suggest that the FDM method is particularly more effective
in identifying vibrato segments than HMM. On the other hand, the HMM outperforms
FDM particularly in the metrics of COnPOff, COnP, denoting a higher accuracy in
detecting the correct onset and offset of vibrato, a better precision in characterising
vibrato. Interestingly, although FDM has a better spurious rate and non-detected rate,
this did not translate into a higher F-Measure at the frame level, which may be due to

its lower precision of onset and offset of vibrato compared to HMM.

Method Ap A;) Precision Recall F-Measure
FDM 0.80 0.39 0.62 0.52 0.56
HMM 0.78 0.44 0.70 0.55 0.60

Table 3.18: Comparison of methods FDM and HMM on frame level across two types
of accuracy, precision, recall, and F-measure, with the highest values in each column
highlighted in bold.

Method COnOff(t) COn(1) Split({) Merged()) Spurious(]{) Non-detected(])
FDM 0.05 0.10 0.04 0.04 0.34 0.20
HMM 0.17 0.25 0.00 0.02 0.48 0.44

Table 3.19: Comparison of methods FDM and HMM on vibrato level across COnOff
in F-Measure, COn in F-Measure, Split (Split rate of ground truth vibrato), Merged
(Merged rate of ground truth vibrato), Spurious (Spurious rate of detected vibrato),
Non-detected (Non-detected rate of ground truth vibrato), with the best values in
each column highlighted in bold.

3.4 Conclusion

This chapter proposes a novel pitch contour segmentation method that addresses the
limitations of previous research by enabling cross-cultural vocal music analysis. The
concept of the Pitch Contour Unit (PCU) was introduced to segment and characterise

pitch contours. By formalising the PCU, this thesis offers a novel approach that bridges
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the gap between note-based methods and frame-based methods. Utilising the duration
and extent of PCU sequences as input, a Hidden Markov Model (HMM) is employed
to detect the primary elements of pitch contours: steady, modulating, and transitory
elements.

The results from the confusion matrix analysis and frame-level accuracy metrics
demonstrate the effectiveness of the proposed method. The fine-tuning of HMM pa-
rameters specifically for portamento and steady region detection in a Jingju dataset and
a Georgian dataset further highlights the versatility and robustness of this approach.
Comparisons with state-of-the-art methods at the frame level show that our proposed
methods achieve comparable but generally slightly lower F-measures across the test
recordings.

Future research could extend this work by exploring the application of PCUs and
HMDM-based analysis to other vocal music styles. Additionally, further refinement of the
model could improve the robustness and accuracy of the proposed methods to reduce
the confusion between transitory and vibrato elements.

Utilising the method proposed in this chapter, the next chapter will delve into
note-level pitch contour analysis across two datasets related to Russian and Alpine
vocal traditions. The analysis of various ornaments will be based on the pitch contour

elements detected through this method.



Chapter 4

Note-Level Pitch Contour

Analysis

This chapter presents a comparative analysis of note-level pitch contours in Alpine and
Russian singing. Section El! introduces the datasets used, consisting of two versions
of note-level segmentations from recordings transcribed by two experts. Section @
details both an automatic note segmentation method and a manual note segmenta-
tion approach applied in building the dataset. Section @ evaluates the automatic
note segmentation and examines the consistency between the two versions of manually
annotated note segments in each culture, considering the importance of reliable segmen-
tation as the ground truth for this chapter. Two characteristics of note annotation are
used for the comparison: note types and note boundary displacements. In the analysis
of note boundary displacements, two key concepts are defined for musical notes: the
“held region” and the “transitional region.” In the following sections, to compare singing
styles between two cultures, the concepts of held region and transitional region are used
again. Section @ characterises held regions and extracts features for comparison. Sec-
tion @ characterises transitional regions and extracts features for comparison.

The primary aim of this exploratory study is to demonstrate the use of a computa-
tional framework for note-level pitch contour analysis across different cultures, focusing
on entirely different songs rather than different versions of the same song. Nevertheless,

this study does not aim to test any musicological hypothesis regarding the singing style
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of the two cultures. It is crucial to bear in mind that these explorations of vocal styles
focus on a specific dataset from Proutskova et al, (2023) for each culture and do not

fully represent all aspects of Alpine and Russian vocal traditions.

4.1 Dataset Overview

The VocalNotes dataset, as detailed by Proutskova et al| (2023), encompasses audio
recordings alongside annotations of vocal performances from five diverse musical tra-
ditions: Japanese Min’yo, Chinese Hebei Bangzi opera, Russian traditional singing,
Alpine yodel, and Jewish Romaniote chant. Each tradition is represented by approxi-
mately ten minutes of audio coupled with comprehensive metadata regarding the origin
of the song excerpts. Other annotations, meticulously performed by two or three ex-
perts per tradition, comprise f0 data, along with independent onset, offset, and pitch
information for each note.

This chapter demonstrates the proposed computational methods by analysing Rus-
sian traditional singing and Alpine yodel. These two traditions were selected because
yodel offers a clean and simple melody, and there is expertise available in Russian
traditional singing, making them more suitable for the detailed pitch contour analysis
employed in this study. In contrast, the other traditions incorporate more complex
musical elements, which complicates the analysis. Tables @ and @ provide the data
statistics of the selected recordings. Variations in note counts between two annotators

from the same culture reflect the inherent subjectivity in note segmentation



Audio Filename

Song title

Performer

Duration (s) Location

LS YW

Franz Lustenberger Entlebuch.wav

Ehrler - Juuz.wav
Sophie Brunner.wav

Dr Braemiser.wav

Juz Paul Fetz.wav

Juez Sepp Schneider.wav
hechobeA.wav
hechobeB.wav

Juz
Juez

Hech Obe
Hech Obe

De Schratte zue
Schwyzerjuuz
Solojodel

Dr Braemiser

Franz Lustenberger

Paul Ehrler
Sophie Brunner
Beny Betschart
Paul Fetz

Sepp Schneider
Ruedi Rymann
Ruedi Rymann

26.204
44.431
68.023
64.639
27.133
18.895
20.997
14.472

Entlebuch 26 28

Schwyz

91 98

Appenzell 65 69
Muotatal 98 98
Vorarlberg 54 56
Vorarlberg 31 20
Obwalden 30 31
Obwalden 21 23

Table 4.1: Metadata table for Alpine songs. Note: LS and YW are initials for the names of the annotators. The two columns indicate the

annotated note count of each annotator.

Audio Filename Song title Performer(s) Duration (s) Location oV PP
Da_ po_ zoriushke_ 1.mp3 Da po zoriushke  Basova Tatiana Timofeevna 40.565 Kursk, Russia 72 68
Da_ po_ zoriushke_ 2.mp3 Da po zoriushke = Lamanova Maria Antonovna 39.741 Kursk, Russia 92 90
Da_ po_ zoriushke_3.mp3 Da po zoriushke = Khodosova Daria Semenovna 40.281 Kursk, Russia 97 91
Da_ po_zoriushke 4.mp3 Da po zoriushke  Motorykina Ekaterina Illarionovna 39.776 Kursk, Russia 93 90
Kak_letala_ jara.mp3 Kak letala jara Britikova Anna Afanasievna 32.067 Pskov, Russia 98 72
Milyj_moj_ zhalkij.mp3 Milyj moj zhalkij Pilant Natalia Osipovna 31.643 Pskov, Russia 26 48
Neumyvataja.mp3 Neumyvataja N.Kalosha 27.777 Briansk, Russia 56 54
0Oj_ kumushki.mp3 Oj kumushki Sergeeva Olga Fedoseeva 25.420 Pskov, Russia 47 53
Uzh ja dumala 2.mp3  Uzh ja dumala Eliseeva Pelageja Sidorovna 41.169 Tver, Russia 60 72
Zhil_byl_Lazar.wav Zhil byl Lazar Koroleva Maria Vasilievna 18.907 Kursk, Russia 61 59

Table 4.2: Metadata table for Russian songs. Note: OV and PP are initials for the names of the annotators. The two columns indicate

the annotated note count of each annotator.
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4.2 Note Segmentation Methods

The note segmentation process assigns meaning to sounds by emphasising certain per-
ceptions or interpretations while disregarding others. The results are largely influenced
by the transcription’s purpose. For example, analytical transcriptions may be very
detailed, while transcriptions intended for performers might only include essential in-
formation for reading the score, assuming familiarity with the style. Additionally,
segmentation can focus on various aspects such as note boundaries, pitch, mode, lin-
guistic elements (like vowels), rhythm, dynamics, and vocal style. Often, focusing on
one aspect can detract from others. Therefore, this study will mention the transcrip-
tion’s purpose and the characteristic focused on when describing the note segmentation
method.

The pitch of the recording is instrumental in note segmentation. Using a computa-
tional approach, an automated pitch curve estimation is followed by manual correction.
The pitch curve visually represents the singer’s pitch trajectory over time, where pitch
values are estimated for each audio frame based on PYIN’s probabilistic framework,
which computes pitch probabilities and uses a Hidden Markov Model to optimise the
pitch value sequence. Tony software (Mauch et al| 2015), utilising the PYIN algorithm
(Mauch & Dixon 2014), provides automated pitch curve estimation. This algorithm
returns candidate pitches with probabilities, selecting the highest probability across
the entire track using an HMM. A digital interface is available for manual correction
of errors, such as octave mistakes, by selecting different candidates. In rare cases, such
as unclear pitch sounds, PYIN may struggle to provide meaningful candidates. Taking
the estimated and corrected pitch curve, note segmentation can be approached both

automatically and manually.

4.2.1 Automatic Note Segmentation Approach

The details of this automatic note segmentation approach are documented in ILi et al.
(2021). This proposed automatic note segmentation method considers acoustic features

while not limiting itself to domain knowledge of a specific musical tradition in terms of
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Singing Voice

l 1 | l 1

RMS Amplitude Pitch Track Phoneme Voicing Onset Detection
(YIN) (PYIN) Recognition (PYIN) (Spectral Reflux)

First-pass
Segmentation

Voiced Segments

Second-pass
Segmentation

Extended Vowels

Third-pass
Segmentation
(Tony)

Notes

Figure 4.1: The proposed three-step note segmentation method.

language, rhythm, vocal style, and mode. Based on the annotation approach of Molina,
Barbancho, Tardén & Barbanchg (2014), this method assumes that note boundaries
can be categorised into four types: (1) the beginnings and ends of voiced segments; (2)
phonetic changes; (3) pitch Changesﬂ; and (4) amplitude changes. The four types of note
boundaries are detected, and the vocal track is segmented using a three-step cascading
approach which produces successively finer segmentations at each step (Figure @)

In Step 1, voiced segments (segments of continuous pitch activity) are determined
based on the PYIN pitch track. In Step 2, the voiced segments are further segmented
based on phonetic change, to create what are termed extended vowel regions, which
are defined in the following paragraph. In Step 3, extended vowel segments are further
divided based on pitch and amplitude changes using the algorithm from PYIN. The
main novelty of this approach is the incorporation of phonetic information into an
existing framework for note segmentation through the introduction of the second step,
which addresses “soft” onsets and offsets. These occur when two adjacent notes are
smoothly connected without obvious pitch and loudness variations. In most cases,
however, there is a phonetic change between notes.

In order to detect phonetic change, the phonemes are automatically transcribed
and temporally aligned using the state-of-the-art speech transcription system by Xu
et al, (2021). The Spectral Reflux onset detection function proposed by Sapp (2006) is

then used to fine-tune the note boundaries. To detect note boundaries more reliably,

'PYIN (Mauch et al) 2015) is followed in setting the threshold of pitch change required for a note
boundary to % of a semitone.
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the phonetic output is fine-tuned with a simple additional signal processing step. First,
the phonemes are categorised into vowels and consonants, determining the inter-vowel
regions. The inter-vowel regions are then expanded by 50 ms on each side to account
for the system’s boundary accuracy tolerance. Finally, the maximum of spectral reflux
in the expanded inter-vowel region determines the exact note boundary.

Although Demirel et al| (2020) developed a system specifically for phoneme-level
lyrics transcription, which improved note segmentation in Li et al) (2021), it was trained
only on English and is no longer accessible. The speech transcription system (Xu
et al| 2021) instead leverages the wav2vec 2.0 model (Baevski et al| 2020), pretrained
on 53 languages using self-supervised learning. This model, fine-tuned for phoneme
recognition across multiple languages, maps phonemes from training to target languages
during inference using articulatory features. A beam-search decoder with an integrated
language model generates the phoneme sequences, enabling effective transcription of
unseen languages without task-specific modifications.

Figure @ illustrates the need for this step, showing examples where Tony makes
the systematic error of under-segmentation of successive notes having continuous steady
pitch tracks during note transitions. These instances occur generally when consecutive
notes are sung either without any consonants or silent gaps (breathing, articulation,
etc.), or with short voiced consonants between successive vowels. When there are two
adjacent vowels with no gap in between (Figure ), the note boundary is determined
by the timing of the vowel transition. For instances where there is a gap between
consecutive vowels (Figure ), the note boundary is determined as the location of
the local maximum of the spectral flux between the vowels in question.

Steps 1 and 2 detect inter-vowel note boundaries, but there are also note boundaries
within vowels that are communicated via pitch and amplitude changes. In such cases,
phoneme-based segmentation is expected to fail at determining the note boundaries. In
order to retrieve the timings of such boundaries, the HMM-based segmentation method
of Tony (Mauch et al|2015) is applied within the extended vowel regions resulting from
Steps 1 and 2. This HMM takes as input the pitch and amplitude estimates from PYIN

and outputs discrete notes, based on Viterbi HMM-decoding. The HMM models pitches
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Time/s

1.65 1.8 1.95 2.1 2.25

(a) Adjacent vowels with similar pitches erroneously merged into a single note.

15.2 15.5 15.8 16.1 16.4

(b) Successive notes sung on similar pitches with voiced phonemes between vowels, resulting in
multiple merge errors.

Figure 4.2: Examples of soft onset errors made by the Tony software in vocal tracks
‘afemale2’ and ‘afemale4’ from the dataset proposed by lMolina, Barbancho, Tardén
lBarbanchol (|‘2014|) The waveform is shown in blue, the ground truth segmentation is
in red, labelled with median pitch in semitones (MIDI). The pitch track from PYIN is

yellow, the note region extracted by Tony is bright green, detected phoneme
boundaries are orange, and spectral flux is represented by the brightness of vertical
lines.
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from B1 to C6 at three steps per semitone, and each pitch has three states representing
its attack, stable part, and silence, respectively. The observation probabilities model
the fact that the beginnings of notes and note transitions tend to vary more in pitch
than the main, stable parts of notes, and the transition model favours continuity in

pitch transitions.

4.2.2 Manual Approach

This section describes the existing manual annotation methodology developed by Prout-
skova et al. (2024), which provides the ground truth data for computational analysis
in this chapter. In their approach, two transcribers from each culture are tasked with
manually segmenting the music using the interface of Tony software. To mitigate differ-
ences in transcription purposes, within each team, transcribers may agree on a detailed
transcription objective tailored to their specific repertoire. Once the initial common
objective is agreed upon, transcribers work independently without discussing their tran-
scriptions or the challenges encountered. To ensure consistency, teams must agree on
a correct pitch curve before independent segmentation.

The transcription process benefits significantly from technical affordances and vi-
sualisation tools. Tony software provides features for creating, splitting and merging
note segments, and adjusting note boundaries. Users can listen to the original record-
ing, pitch curve, and note segments either simultaneously or individually. They can
also observe the displayed waveform and the spectrogram, with the temporal resolution
being easily adjustable to aid in determining note boundaries. The software includes
looping mechanisms for repeated listening to specific passages, which is particularly
useful when uncertain.

However, the segmentation is greatly influenced by technical support. For example,
visualising the pitch curve can affect the interpretation of sounds. Another considera-
tion is the number of times transcribers are allowed to listen to a fragment or context,
as repeated listening can lead to new cognitive constructs. Constraints may be im-
posed on the length of the context in which a transcribed element should be heard.

Tony allows for slowing down the recording, a technique commonly used in some eth-
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nomusicological communities but one that can alter the perception of note boundaries.
Therefore, despite having a predetermined segmentation objective, the segmentations
produced by different transcribers are likely to be varied and flexible. This variability
is influenced by personal perception and cognition, individual characteristics, the ef-
fects of the tools used, and the difficult or ambiguous decisions encountered during the
process. Accordingly, the next section analyses the differences between annotations of

different versions.

4.3 Analysis of Note Segmentation Characteristics

Note segments form the cornerstone of this note-level analysis and significantly impact
the analysis results. Given that multiple versions of note segmentation are available and
they can differ significantly, it is necessary to analyse the segmentation characteristics

of different versions.

4.3.1 Evaluation of Automatic Note Segmentation

To evaluate the note segmentation made by the method proposed in Section , the
manual annotations introduced in Section are used as ground truth. The first
and third tracks listed in Table [1] are excluded from the evaluation due to very few
phonemes being recognised. Since two versions of manual annotations are available,
two separate evaluations are conducted for each culture, with each evaluation using
one version of the manual annotations as the ground truth to assess the other manual
annotation and the automatic segmentation.

Five evaluation metrics are employed. “COnOft”, defined in the MIREX protocols
(Downie et al) 2004), accounts for the accuracy of the note’s onset time within a margin
of 50 milliseconds, and the offset time within either 50 milliseconds or 20% of the note’s
duration relative to the ground truth, whichever is greater. As this study focuses solely
on note segmentation rather than note transcription, it is not required to evaluate
pitch accuracy. Additional metrics are used to assess segmentation errors, including

“Merged” errors, “Split” errors, “Spurious” notes, and “Non-detected” errors, as defined
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Metric YW | Stepl+2 | Stepl1+3 | Stepl+2+3
COnPOff (F-measure) T | 0.68 0.09 0.45 0.16
Split | 0.04 0.20 0.21 0.35
Merge | 0.04 0.61 0.09 0.07
Spurious | 0.02 0.28 0.04 0.03
Non-detected | 0.01 0.00 0.01 0.08

Table 4.3: Comparison of segmentation performance for different parts of the
automatic note segmentation system and the manual annotations of YW on the
Alpine dataset, using LS’s manual annotations as ground truth. All measurements
represent the mean values across all recordings. The arrows indicate whether a higher
(1) or lower ({) value is better for each metric.

by Molina, Barbancho, Tardén & Barbanchg (2014). A “Merged” error occurs when
multiple ground truth notes are merged into a single note in the detection, while a
“Split” error is the opposite. A “Spurious” note error is identified when a detected
note does not overlap in time with any ground truth note, and a “Non-detected” error
occurs when a ground truth note is not detected. These metrics are measured as the
proportion of all ground truth notes that exhibit the respective error, except for the
“Spurious” error, which is measured as the proportion of all detected notes.

The results are shown in Tables @ to @ For both the Alpine and Russian datasets,
the manual annotations achieve the best performance, with the note segmentation
from Stepl+3 being the second best. The Stepl+2+3 method results in the lowest
split error among the three automatic segmentation across all four tables, but this
comes at the cost of a high merged error. Although Li et al} (2021)) demonstrated that
phoneme segments improve note segmentation on the dataset in Molina, Barbancho,
Tardén & Barbanchg (2014), the poor performance of Stepl+2+3 is not surprising.
The phoneme segments transcribed by Xu et al| (2021) are inaccurate because the
model was trained on speech rather than singing. In summary, the consistency between
two versions of manual note segmentation is higher than that between manual and
automatic segmentation. Therefore, automatic note segments will not be used as the

ground truth for analysing singing style in this chapter.
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Metric LS | Stepl+2 | Stepl1+3 | Stepl+2+3
COnPOff (F-measure) T | 0.68 0.09 0.51 0.20
Split | 0.02 0.21 0.21 0.32
Merge | 0.08 0.64 0.10 0.10
Spurious | 0.04 0.30 0.05 0.04
Non-detected | 0.01 0.00 0.02 0.09

Table 4.4: Comparison of segmentation performance for different parts of the
automatic note segmentation system and the manual annotations of LS on the Alpine
dataset, using YW’s manual annotations as ground truth. All measurements
represent the mean values across all recordings. The arrows indicate whether a higher
(1) or lower (/) value is better for each metric.

Metric PP | Stepl+2 | Stepl1+3 | Stepl1+2+3
COnPOff (F-measure) 1 | 0.61 0.10 0.38 0.16
Split | 0.04 0.49 0.07 0.16
Merge | 0.13 0.39 0.24 0.07
Spurious | 0.06 0.11 0.13 0.05
Non-detected | 0.00 0.00 0.03 0.10

Table 4.5: Comparison of segmentation performance for different parts of the
automatic note segmentation system and the manual annotations of PP on the
Russian dataset, using OV’s manual annotations as ground truth. All measurements
represent the mean values across all recordings. The arrows indicate whether a higher
(1) or lower ({) value is better for each metric.

Metric OV | Stepl+2 | Stepl1+3 | Stepl+2+3
COnPOff (F-measure) T | 0.62 0.08 0.29 0.10
Split | 0.06 0.52 0.07 0.15
Merge | 0.08 0.36 0.23 0.07
Spurious | 0.04 0.10 0.12 0.03
Non-detected | 0.05 0.01 0.04 0.10

Table 4.6: Comparison of segmentation performance for different parts of the
automatic note segmentation system and the manual annotations of OV on the
Russian dataset, using PP’s manual annotations as ground truth. All measurements
represent the mean values across all recordings. The arrows indicate whether a higher
(1) or lower (/) value is better for each metric.
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Figure 4.3: Illustration of held and transitional regions. The black curve is the pitch
contour, the coloured blocks are pitch contour elements (red: modulating; green:
steady; grey: transitory) and the double arrows indicate the held region and
transitional region.

4.3.2 Comparison of Manual Note Segmentation

To delve into the distinct tendencies of the two manual segmentation versions of each
culture, this section elucidates the distribution of types of transcribed notes alongside
the analysis of note boundary demarcation from different transcribers. Two pivotal
concepts, namely held and transitional regions, are introduced to facilitate categorising
note types and quantifying note boundary locations. Held regions are identified as
segments where the pitch stability of a note is maintained by the singer. These regions
consist of either a single steady element or modulating element described in Chapter
E, or a mix of both of them within a note’s span. Each element was set to be longer
than 50 ms empirically. Conversely, transitional regions - bridging two distinct notes or
marking the commencement or conclusion of a note - are composed of individual or a
series of transitory elements along with brief steady and modulating elements (shorter
than 50 ms). For visual reference, Figure @ presents an example. All pitch contour
element segments are automatically estimated via the algorithm proposed in Chapter

E and subsequently undergo manual verification and adjustments by the author.
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Figure 4.5: Distribution of note types in Russian data as annotated by transcribers

Transcribed Note Type Distribution

Note types are categorised into three distinct classes: steady-dominant notes, modulation-
dominant notes, and transitory-dominant notes. The analysis of the distribution of
these note types provides insight into the tendencies of a transcriber, to reveal specific

patterns and preferences in how notes are transcribed.

o Steady-dominant note: Characterised by a held region, where the longest individ-

ual pitch contour element is steady.

e Modulation-dominant note: Characterised by a held region, where the longest

individual pitch contour element is modulating.

o Transitory-dominant note: A note without any held region or with one or more

held region but the longest individual pitch contour element is transitory.

Figure Q and @ present the distribution of different types of note annotations
(steady-dominant, modulation-dominant, transitory-dominant) as annotated by two

transcribers within the Alpine and Russian dataset.
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The distributions of note types show similarities between annotations from two an-
notators within the same dataset, with only minor differences observed. Annotator YW
tended to annotate slightly more steady-dominant notes and fewer transitory-dominant
notes compared to Annotator LS. Similarly, Annotator PP favoured a higher number
of steady-dominant notes and fewer transitory-dominant notes than Annotator OV. To
determine if there is a significant difference between two categorical distributions, this
study performs a chi-squared test on the Alpine and Russian datasets separately. The
chi-squared test results for the Alpine dataset are x?(2, N = 883) = 0.842,p = 0.656,
and for the Russian dataset, x?(2, N = 1464) = 0.065,p = 0.968. These p-values sug-
gest that any observed differences in their annotations are likely due to chance, rather

than indicating a systematic difference in annotation styles.

Note Boundary Displacement Distribution

Note boundary analysis focuses predominantly on how boundaries mark the onset and
offset of steady-dominant and modulation-dominant notes. Crucially, the investigation
probes into whether note boundaries are placed within transitional regions around the
note and assesses the extent of inclusion of such regions. Figure @ provides more
details.

Several metrics have been established to facilitate this analysis:

e Note boundary displacement: Dis quantifies the displacement between the onset
or offset (t,, or t,g) and the transition points (). Onset displacement (Dis,y,)

and offset displacement (Dis,g) are given by Equation @ and @

Dison =ty — ton (4.1)

Diso = to — tir (4.2)

e Note boundary displacement proportion of transitional region: This is denoted

by Disyr,, measuring the extent of displacement relative to the duration of the
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Figure 4.6: Illustration of note boundary analysis. The red curve is a pitch contour,
the orange bar is a note segment, the black vertical lines indicate the transition points
which connect the transitional regions and the held region, and the red vertical lines
indicate the annotated onset and offset of the note.

associated transitional regions (diens). This proportion is expected to be greater
than 0 and can exceed 100% if the note boundary extends beyond the transitional
region boundary. Disy,, is defined by:

Di
= Dis>0 (4.3)

Dispro = 7
trans

The distribution of onset and offset displacements, their proportion of transitional
regions and the relationship between the proportion and transitional region durations
are illustrated here. For Alpine data, figures @ and @ illustrate the displacements
for note onset and offset across different segmentation versions. The analysis indicates
that the distributions of onset and offset displacements annotated by transcribers LS
and YW are right-skewed. Notably, LS’s distribution is more balanced compared to
YW’s, suggesting that although their annotations consistently cover the entire held
region within a note, LS is more stringent than YW.

To compare the distributions of annotations between two transcribers, A two-sample
Kolmogorov-Smirnov test is conducted, as it is suitable for continuous distributions

and does not assume the data follows any specific distribution. The test statistic
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Figure 4.7: Comparative analysis of onset displacement for Alpine data
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Figure 4.8: Comparative analysis of offset displacement for Alpine data
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Figure 4.9: Comparative analysis of onset displacement proportion for Alpine data

are: D(380,407) = 0.252,p < .001 for onset and D(380,407) = 0.095,p > .05 for
offset, indicating a significant difference for onset, while, for offset displacements, no
significant difference between the two transcribers.

Figures @ and depict the proportions of onset and offset displacements within
the transitional region. LS’s annotations for onset demonstrate a mode around 20%
followed by an exponential decay, whereas YW’s distribution exhibits a bimodal pattern
with modes at 30% and 100%. For offset annotations, YW shows a mode at 100%
displacement, highlighting a tendency to position offsets at the end of the transitional
region. In contrast, LS’s data shows a mode around 25% with a secondary mode at
100%, reflecting a more varied approach. The two-sample Kolmogorov-Smirnov test
statistics are: D(380,407) = 0.241,p < .001 for onset and D(380,407) = 0.121,p > .05
for offset. These results indicate that the two transcribers have systematically different
approaches to marking note onsets: LS tends to place onsets late in the transition
region, while YW varies between early (to include portamento at note beginnings) and
late placements. However, their approaches to marking note offsets are more similar,
showing no statistically significant difference.

Figure and Figure display scatter plots that elucidate the relationship be-
tween the duration of transitional regions and onset or offset displacements. The distri-
butions of each variable are presented marginally. The visualisations reveal observable
trends, specifically, an increase in displacements corresponding to longer durations of
transitional regions, as indicated by the positive slopes in the linear fitting lines. How-

ever, the linear models exhibit limited efficacy in capturing the data’s variability, as
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Figure 4.10: Comparative analysis of offset displacement proportion for Alpine data
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Figure 4.11: Comparative analysis of scatter plots for onset displacement for Alpine
data

reflected by the low R-squared values: 0.11 and 0.10 for LS, and 0.26 and 0.09 for YW,
respectively. These values suggest that linear models may not adequately describe the
complex relationships present within the data. To measure the relationship between the
variables more robustly, given the potential skewness or non-normality in the marginal
distributions, Spearman’s Rank Correlation was chosen. This non-parametric method,
advantageous for its indifference to data distribution assumptions, reveals moderate to
strong positive correlations: Spearman coefficients of 0.29 (onset) and 0.35 (offset) for
the LS, and 0.53 (onset) and 0.42 (offset) for the YW, substantiate the observed trends.
YW demonstrates higher coefficients with 0.53 for onset and 0.42 for offset, suggesting
a more consistent approach to marking note boundaries relative to the transitional du-
rations. In contrast, LS records lower coeflicients of 0.29 for onset and 0.35 for offset,
indicating a potentially more flexible annotation style.

Figures and present the distributions of onset and offset displacements
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Figure 4.12: Comparative analysis of scatter plots for offset displacement for Alpine
data. In YW’s annotations, a notable diagonal constraint appears in the upper-left
region where points follow a line with approximately equal x and y values (as shown
by the point (0.066, 0.066) marked with a red dot). This pattern suggests that note
offset displacements are constrained by their corresponding transitional durations for
most time in YW’s offset annotation, indicating that offsets are typically placed
within, not beyond, the transitional region’s ending point.
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Figure 4.13: Comparative analysis of onset displacement for Russian data

in the Russian dataset, as annotated by two different transcribers, OV and PP. Inter-
estingly, despite the fact that they conducted their note annotations completely inde-
pendently, the patterns displayed by both transcribers are remarkably similar. The
two-sample Kolmogorov-Smirnov test statistics are: D(574,584) = 0.054,p > .05 for
onset and D(574,584) = 0.081,p > .05 for offset. These values indicate that there is
no statistically significant difference in the onset and offset displacements between the
two transcribers’ annotations. This similarity in annotation styles, despite the lack of
an intentional agreement, underscores the potential for implicit shared understanding

of note segmentation in vocal data between the two annotators.



4.3. Analysis of Note Segmentation Characteristics 136

%V - Offset Displacement Distribution 5POP - Offset Displacement Distribution
60 ] R M
40 - _
50
> >
240 230"
L% 30 L% 20 -
20
10 -
10
0 —_— 0 - -
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0.4 0.5
Displacement (s) Displacement (s)

Figure 4.14: Comparative analysis of offset displacement for Russian data

The distributions of both onset and offset displacements are right-skewed. This
skewness indicates a general tendency for both transcribers to mark the onset and offset
beyond the held region. However, the offset displacements show a more symmetric
distribution than the onset displacements. This suggests a more stringent approach
when marking the offsets, as indicated by the lower spread of values compared to
onsets.

Figures and present the proportions of onset and offset displacements
within the transitional region. The onset displacement proportions for both transcribers
predominantly concentrate at 100%, indicating that they often place note onsets at the
starting point of the transitional region. The offset displacement proportions, however,
exhibit multi-modal patterns, indicating a more variable annotation style for offsets.
Particularly, OV shows a stronger tendency to place offsets at the endpoint of the
transitional region compared to PP (see the peak at 100% position). The two-sample
Kolmogorov-Smirnov test statistics are: D(574,584) = 0.103,p = 0.047 for onset and
D(574,584) = 0.113,p > .05 for offset. These results shows that the differences in onset
and offset marking styles between OV and PP are significant for proportions of onset
displacements, and not significant for proportions of offset displacements.

Figure and Figure show scatter plots that examine the relationship be-
tween the durations of transitional regions and the associated onset and offset displace-
ments, with the distributions of each variable depicted marginally alongside the main
plot. The visualisations of onset displacement identify clear trends where displacements

increase as the transitional durations extend, while the offset displacement does not. To
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Figure 4.15: Comparative analysis of onset displacement proportion for Russian data
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Figure 4.16: Comparative analysis of offset displacement proportion for Russian data
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Figure 4.17: Comparative analysis of scatter plots for onset displacement for Russian
data. In OV’s annotations, a notable diagonal constraint appears in the upper-left
region where points follow a line with approximately equal x and y values (as shown
by the point (0.21, 0.21) marked with a red dot). This pattern suggests that note
onset displacements are constrained by their corresponding transitional durations for
most time in OV’s onset annotation, indicating that onsets are typically placed
within, not beyond, the transitional region’s starting point.

demonstrate the linear relationship, linear fitting and Spearman’s Rank Correlation are
employed. The linear models show limited capacity to encapsulate the full variability
of the data, with R-squared values indicating a relatively poor model fit: 0.11 for onset
and 0.01 for offset in OV, alongside 0.22 for onset and nearly -0.003 for offset in PP.
Spearman coefficients of 0.42 (onset) and 0.20 (offset) for OV, and 0.46 (onset) and 0.17
(offset) for PP confirm the observed trends. These results highlight that transcribers
in the Russian dataset adopt a relatively consistent approach in annotating note onsets

relative to transitional durations, while showing more flexibility in offset annotation.

4.3.3 Conclusion

In conclusion, although there is no significant difference in note types between the dif-
ferent versions of note annotations, there may still be significant differences in note
boundary markings. For instance, discrepancies are observed in the onset markings
between two transcribers in the Alpine data, as well as in the proportions of onset
displacements within the transitional region in the Russian data. Additionally, the
transitional region can influence note boundary markings differently for different indi-

viduals, such as the two transcribers in the Alpine dataset.
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Figure 4.18: Comparative analysis of scatter plots for offset displacement for Russian
data

This suggests that note boundaries are set subjectively, and comparative analysis
of singing styles based on note boundaries could be influenced by the transcriber. To
mitigate this influence, the held regions and transitional regions of musical notes can
be used to set more robust boundaries when comparing two singing styles. The next
two sections compare Alpine and Russian singing styles in terms of the held region and

the transitional region, respectively.

4.4 Held Region Analysis

Held regions include both steady and modulating elements, each characterised by dis-
tinct features. The steady element is analysed through several measures: the slope,
estimated via linear fitting to diminish the effects of the endpoints of f0 (as depicted in
Figure ); the duration; the instability, measured by the variance of the f0 values;
and the median of the f0. The modulating element is characterised by regularity, mean
and evolution of vibrato rate and extent, instability and slope of carrier, duration and
overall pitch. The method proposed by Wen & Sandley (2008) (see details in Section
) is utilised to demodulate the original modulating element signal into modulator
and carrier (see Figure as an example). The regularity of the modulator, mean
vibrato rate and extent of the modulating element, along with the instability and slope
of the carrier, are estimated. Regularity is quantified using the maximum value of the

autocorrelation coefficient of the modulator, excluding the value at time zero, as pro-
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Figure 4.19: Linear fitting for pitch contour of a steady element

posed by Wen & Sandler (2008). This method is selected because it does not limit the
modulator to ideally conforms to any specific function, such as a sinusoid. Following
Yang et al| (2013), which assumes that the interval between one peak and one trough of
the pitch curve represents a half cycle of the modulating element, the rate and extent of
each half cycle are calculated. The overall vibrato rate and extent are then calculated
as the average across these half cycles.

To investigate how vibrato rate and extent change over time within a modulating
element, this study proposes using the Discrete Cosine Transform (DCT) on the se-
quences of the rate and extent of half cycles. The evolution is measured by the 1st
to Tth order coefficients of the DCT. The details of the DCT have been introduced in
Section , where the DCT is applied to pitch slides, which are sequences of pitch

data.

4.4.1 Analysis Results of Steady Elements in Held Region

This section compares the distribution characteristics of slope, instability, and duration
of the steady elements in held regions between Alpine and Russian data. To get a clear
visual comparison between two groups of data, distributions are obtained by applying
kernel density estimation or exponential fitting on the histogram. Additionally, this
section explores the interrelationships among these parameters by regarding the pitch

change, which is represented by the vertical distance from one end of the linear regres-
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Figure 4.20: An example of demodulation of a modulating element. The graph on the
left displays the original pitch track and the carrier signal, with local extrema points
marked. The graph on the right illustrates the pitch contour of the modulator with

local extrema. In this representation, semitone 69 is set as the reference point A4,
equivalent to 440 Hz.

sion line to the other, and instability as dependent variables and duration and median
pitch as independent variables, to provide deeper insights into singing behaviour.

Figure displays the characteristics of steady elements within the Alpine and
Russian vocal data in this analysis. The leftmost plot, which contrasts the slope of
steady elements, indicates that both Alpine and Russian distributions are symmetrically
centred around zero, forming a bell-shaped curve. This pattern implies a dominant
singing style that upholds a relatively unchanging pitch. The Alpine data exhibits a
denser distribution with a more pronounced peak, suggesting a higher prevalence of
flat steady elements compared to the expansive curve observed in the Russian data.
The two-sample Kolmogorov-Smirnov test statistic is : D(812,1177) = 0.279,p < .001,
indicating significant differences between Alpine and Russian.

The second plot, which focuses on the instability of steady elements, reveals an
exponential distribution for both styles, with a majority of values clustering towards
lower instability. This pattern infers that both Alpine and Russian singers generally
maintain a steady pitch, yet the Alpine samples display marginally less variability. The
two-sample Kolmogorov-Smirnov test statistic is : D(812,1177) = 0.225,p < .001,
indicating significant differences.

The third plot, which shows the duration of steady elements, underscores a right-

skewed distribution for both styles, with short durations of less than 0.5 seconds being
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more prevalent. The Russian distribution peaks sharply around 0.25 seconds, while the
Alpine distribution has a broader range, implying that Alpine singers in this data might
utilise a wider array of steady durations. The observed difference is notable, with a
two-sample Kolmogorov-Smirnov test statistic of D(812,1177) = 0.313,p < .001.
Collectively, these distributions suggest that while both the Alpine and Russian
singing styles exhibit a tendency towards a steady pitch and short steady elements, the

Alpine data might display a more stable pitch of steady elements.
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Figure 4.21: Comparative analysis of features of steady elements

Figures , , , and present scatter plots with marginal distributions

of variables, providing comparative analyses of the relationship between discussed char-
acteristics of steady elements in Alpine and Russian vocal data. The red lines in the
scatter plots represent linear fits to the data, yet these yield R-squared values below
0.1. Such low values suggest that the linear model fails to offer a reliable or meaningful
explanation of the relationship between the variables. Furthermore, visual inspection
of the scatter plots reveals non-linear relationships between variables. Given these
characteristics, this analysis considers the Spearman correlation coefficients instead.
Figures and display scatter plots of slope versus pitch and instability versus
pitch, respectively. For the Alpine data, the Spearman Correlation Coefficients are
-0.11 (p-value < 0.01) for slope and 0.01 for instability, while the Russian data exhibit
Spearman Correlation Coefficients of 0.01 for slope and -0.06 (p-value < 0.05) for insta-
bility. Although statistically significant correlations were observed for Alpine slope (

=-0.11, p < 0.01) and Russian instability ( = -0.06, p < 0.05), the small magnitude of
these coefficients suggests very weak relationships between pitch level and both slope
and instability characteristics in both Alpine and Russian steady elements. Further-

more, Figures and present the relationship between steady characteristics and
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Figure 4.22: Comparative analysis of relationship between slope and pitch of steady
elements

the duration of steady elements. For the Alpine data, the Spearman Correlation Coeffi-
cient is 0.04 for pitch change versus duration, and 0.16 (p-value < 0.001) for instability
versus duration, indicating a subtle trend. Conversely, the Russian data show Spear-
man Correlations of -0.05 for pitch change and 0.34 (p-value < 0.001) for instability,
suggesting a slight relationship. These results indicate that while pitch change shows
no significant correlation with duration, instability exhibits a weak positive correlation
with the duration of steady elements in both vocal styles, with the correlation being
notably stronger in Russian (0.34) than in Alpine (0.16) data, suggesting that Alpine
steady elements maintain more consistent pitch stability as duration gets longer com-
pared to Russian steady elements. The correlation between duration and instability
raises an important question: whether this increased variability in longer notes stems
from motor control limitations or represents deliberate expressive choices by singers.

This distinction requires further investigation.

4.4.2 Analysis Results of Modulating Elements in Held Regions

Figure presents a comparative analysis of the mean vibrato rate and vibrato extent
between Alpine and Russian vocal data. The graph on the left depicts the probability
density of the vibrato rate, measured in Hz. The Alpine style is characterised by two
peaks around 6 and 8.5 Hz, indicative of rapid vibrato rates. On the other hand, the
Russian style displays a distinct peak around 7.5 and 10 Hz, suggesting a faster vibrato

rate. The observed difference is notable, with a two-sample Kolmogorov-Smirnov test
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Figure 4.24: Comparative analysis of relationship between pitch change and duration
of steady elements
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statistic of D(22,51) = 0.506,p < .001.

The graph on the right portrays the vibrato extent, measured in semitones. Here,
the Alpine style exhibits a sharp peak at approximately 0.4 semitones, suggesting a
more regulated vibrato extent. Conversely, the Russian style presents a broader, right-
skewed curve with a pronounced peak near 0.1 semitones, implying a small yet diverse
range in vibrato extent within this data set. The difference in vibrato extent between
the two data is statistically significant, with a two-sample Kolmogorov-Smirnov test
statistic of D(22,51) = 0.622,p < .001.

Collectively, these visualisations and statistics indicate that the Alpine style tends
to employ a quicker and more pronounced vibrato, while the Russian style leans towards
a slower and less extensive vibrato.

Figure and Figure present a statistical analysis of the vibrato rate and
extent evolution within a vibrato in Alpine and Russian vocal data through the appli-
cation of DCT coefficients. Each set of box plots across the two panels corresponds
to individual DCT coeflicients, ranging from 1st to 7th order, illustrating the central
tendency and spread of DCT coefficients of vibrato rates and extents within each vocal
tradition.

In Figure , both Alpine and Russian datasets show a general trend of positive
first and second coefficients, indicating an increase in vibrato rate over most of time and
an overall concave shape. The Analysis of Variance (ANOVA) conducted on the first
and second coeflicients did not reveal significant differences between the two groups
with a significance level as 0.05: for the 1st coefficient, F/(1,71) = 1.03,p = 0.314; for
the 2nd coefficient, F'(1,71) = 0.69, p = 0.407.

Figure illustrates the differences in vibrato extent evolution between Alpine
and Russian singing styles. The Alpine data displays relatively stable DCT coefficient
values, with minor variance around zero. The median of the 1st DCT coefficient leans
slightly towards a positive skew, while the 2nd DCT coefficient shows a mild negative
trend. This pattern indicates a subtle concave contour of vibrato extent evolution,
characterised by a slight increase after the onset and a decrease towards the end.

In contrast, the Russian samples present a greater degree of variability in the first



4.4. Held Region Analysis 146

two coefficients. The 1st DCT coefficient exhibits a positive skew, implying a decrease
in vibrato extent. The 2nd DCT coefficient, displaying a variance closely aligned with
the first, suggests a distinct bend in the vibrato extent change. Coeflicients 3 through
7 maintain a relatively symmetrical distribution, with the variance progressively de-
creasing. This pattern suggests that these coefficients capture less noticeable nuances
of vibrato extent evolution. The ANOVA yielded F(1,71) = 7.78,p = 0.007 and
F(1,71) = 0.33,p = 0.569 for the first and second coefficients, respectively. These
results indicate a statistically significant difference in the 1st DCT coefficient between
the two singing styles, while the difference in the 2nd DCT coefficient is not statistically
significant.

In summary, the two styles exhibit distinct characteristics in the evolution of vibrato
rate and extent, with the Alpine style demonstrating more variability in rate and the
Russian style showing more variability in extent. However, statistically significant
differences were only found in the first DCT coefficient of the vibrato extent evolution.

Figure presents an analysis of the regularity of the modulator, instability and
slope of the carrier, as well as the duration of modulating elements in both Alpine and
Russian singing styles.

The graph on the top left, illustrating the modulator regularity, shows that both
Alpine and Russian singers generally produce regular modulator, with peaks around
0.96 (where 1 is the maximum). No significant difference is found with a two-sample
Kolmogorov-Smirnov test statistic of D(22,51) = 0.242,p > .05.

The instability measurements, depicted in the figure adjacent to the regularity
graph, suggest that the carrier of vibrato in both styles are similar. Again, no sig-
nificant difference is detected with a two-sample Kolmogorov-Smirnov test statistic of
D(44,102) = 0.122,p > .05.

The analysis of the slope of the carrier reveals that both styles predominantly avoid
rapid pitch changes. However, the Alpine style exhibits a sharper peak at zero, implying
a flatter baseline for modulation. A significant difference is indicated by a two-sample
Kolmogorov-Smirnov test statistic of D(22,51) = 0.386,p = 0.014.

The duration analysis, depicted in the figure at the bottom right corner, reveals sim-
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ilar bimodal distributions in both styles, albeit with an approximate shift of 0.2 seconds.

The Russian style typically centers around a narrower and shorter duration (peaking at

approximately 0.4 seconds), while the Alpine style shows a preference for longer dura-

tions, peaking at around 0.8 seconds. The difference in duration is significant, as shown

by a two-sample Kolmogorov-Smirnov test statistic of D(22,51) = 0.504,p < .001.

Accordingly, these findings highlight distinct stylistic nuances in the use of vibrato.

Alpine singers, as represented in the data, display slightly longer and more regular

vibrato, with a carrier showing greater stability than that of Russian singers.
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4.5 Transitional Region Analysis

4.5.1 Transitional Region Characterisation

This study presents automated approaches for detecting and identifying musical or-
naments in transitional regions, focusing on four main types: glissando, portamento,
miscellaneous slides, and mordent. Furthermore, for all pitch slides, including glissando,
portamento, and miscellaneous slides, overshoot and preparation are considered. These
ornaments are defined in Section and illustrated in Figure . For each identified
ornament, pitch contour features are extracted.

The criteria for detecting and identifying each type of ornament are defined below.
The threshold for distinguishable note pitch differences is set according to Mauch et al.
(2015). Subsequently, automated methods are developed based on these predefined rules
to detect the four types of ornaments (glissando, portamento, miscellaneous slides, and
mordent) as well as two subtypes, overshoot and preparation, which apply to the first

three ornaments.

1. Glissando: Transitory elements that connect one held region or two held re-
gions of two different notes with pitch difference larger than % semitones. These

elements are characterised by at least three consecutive elements:

e A transitory starting element: The initial movement away from the first held

region before the steady middle element (marked in red in Figure )

¢ A steady middle element: A brief region where the pitch momentarily sta-

bilises, similar to a touch note introduced in Section .

e A transitory ending element: The final movement leading to the second
held region, which continues in the same direction as the transitory starting

element.
2. Portamento: Identified by:

e Transitory elements that connect two held regions of two different notes with

pitch difference larger than % semitones.
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e The largest slide in the transitory elements should have direction which aligns

with the direction of note progression.
3. Mordent: Defined by the following characteristics:

o Transitory elements linking two held regions (this study does not consider
mordents consisting a held region),

1

 The pitch difference between neighbouring held regions is set to less than 3

semitones.

e The pitch of the transitory element deviates from the mean pitch of two held

regions by more than % semitones.

4. Miscellaneous Slides: Pitch slides that do not fall under glissando, portamento,

or mordent.

5. Overshoot: Indicated by the pitch in the glissando, portamento or miscellaneous

slides extending beyond the target note.

« If the transition is from a higher pitch to a lower pitch, the lowest pitch in
the transitional region should be lower than the target note’s pitch, which

is calculated as the median of the pitch in the target note’s held region.

o If the transition is from a lower pitch to a higher pitch, the highest pitch in
the transitional region should be higher than the target note’s pitch, which

is calculated as the median of the pitch in the target note’s held region.

e The correction from the overshoot is defined slides occurring subsequent to
the turning point, which is identified as the highest or lowest pitch discussed

above.

6. Preparation: Indicated by the pitch in the glissando, portamento or miscella-

neous slides extending beyond the previous note.

o If the transition is from a higher pitch to a lower pitch, the highest pitch in

the transitional region should be higher than the start pitch of the transition.
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o If the transition is from a lower pitch to a higher pitch, the lowest pitch in

the transitional region should be lower than the start pitch of the transition.

e The preparation region is defined as slides occurring before the turning point,

which is identified as the highest or lowest pitch discussed above.

Then multiple features are measured based on the f0 of each ornament. The defini-

tion of these features are:
1. Glissando:

o The number of touch notes (short steady notes).

e Pitch interval of glissando, defined as the pitch difference between the be-

ginning and endpoint.
e Duration of glissando.

e The pitch interval of a glissando is segmented into several intervals by touch
notes, where each interval is defined as the distance between the median
pitch of the touch note and either the boundary pitches of the glissando or

the median pitch of the neighbouring touch notes.

e The time interval is segmented into several intervals by touch notes, where
each interval is defined as the time between the median time of the touch
note and either the boundaries of the glissando or the median time of the

neighbouring touch notes.
e Duration of each touch note.

e Slope of glissando. Due to the linear model or logistic model not accurately
fitting to the overall slope as the glissando example in Figure shows,

the slope is calculated directly using:

Pitch int 1
Slope — itch_interva (4.4)

Duration
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Figure 4.30: Examples of ornaments from different cultures. Each subfigure shows a
specific ornament type with the corresponding culture, song name, and time range.
Both linear and logistic models are applied to glissandi and slides to determine the
optimal approach for measuring slope. Linear fitting is exclusively used for overshoot
correction and preparation, as some segments are too brief for the logistic model.
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2. Portamento: The features of portamento, as estimated using the logistic model
(Yang, Chew & Rajab 2015), include the following list. This model has been
evaluated as providing the best fit for portamento. The definitions and calculation

methods for these features have been introduced in Section .

(a) Slope

(b) Duration

(c) Interval

(d) Normalised inflection time

(e) Normalised inflection itch

3. Miscellaneous Slides:

e Interval,
e Duration,

e Slope, which is estimated by linear fitting, as this method captures the overall
slope better than the logistic model, as illustrated by the slide example in
Figure .

o Position, which has three categories, head, middle and tail of the pitch con-

tour.

o Evolution, which is measured by the 1st-7Tth DCT coefficients, introduced in

Section .

4. Mordent: The features include duration, as well as the interval between the
maximum or minimum pitch value and the mean of the median pitches in the

two surrounding held regions.

5. Overshoot correction region: The features include duration, interval and

slope which is estimated by using linear fitting.

6. Preparation region: The features include duration, interval and slope which is

estimated by using linear fitting.
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Figure 4.31: Comparison of transitional region durations between Alpine (653 regions)
and Russian (1041 regions) datasets

4.5.2 Transitional Region Analysis Results
Overall Transitional Region Feature Distribution

First of all, the duration of transitional regions of Alpine and Russian styles is compared,
as shown in Figure . The duration graph indicates that both styles exhibit a similar
distribution, with the probability density peaking around 0.1 seconds and decreasing
rapidly as the duration increases. This indicates that transitional regions in both
datasets mostly last around 0.1 seconds. However, the difference is significant as shown
by a two-sample Kolmogorov-Smirnov test statistic of D(653,1041) = 0.215,p < .001.

To gain a further understanding of the use of transitional regions in connecting or
transitioning between held regions, several measures are examined. Table @ presents
data on the Transition-Held Ratio (THR), quantifying the ratio of transitional regions
to held regions, and includes the counts of both transitional and held regions. The
Russian dataset shows a higher Transitional-Holding Ratio (THR). However, the dif-
ference is not statistically significant, as evidenced by the chi-squared test statistics,
x2(1, N = 3740) = 0.643,p = 0.423.

This study further evaluated the characteristics of transitional regions by analysing

their distribution by position. Table @ presents the percentages of different transi-
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tional region positions relative to held regions and notes. The categories include head,
representing transitional regions at the beginning of a note; tail, indicating transitional
regions at the end of a note; connect, which refers to transitional regions connecting two
held notes; and intra, denoting transitional regions connecting two held regions within
a single note. Both cultures predominantly use transitional regions to connect held re-
gions, followed by transitions at the beginning of held regions. Transitional regions at
the ends of held notes are less common, and the least frequent are transitional regions
with intra position. The chi-square test statistic is x?(3, N = 1694) = 17.442, p < 0.001,
indicating a significant difference between the Alpine and Russian datasets in terms of
the positions of transitional regions.

Moreover, Table @ compares the distribution of ornament types between the Alpine
and Russian datasets. The Russian data shows a more use of glissando (2.69%) com-
pared to the Alpine data (1.23%). Both datasets exhibit similar usage of portamento,
with the Alpine data at 35.38% and the Russian data slightly lower at 34.97%. The mis-
cellaneous slides category is more prevalent in the Alpine data (61.56%) compared to
the Russian data (56.58%). However, the Russian data utilises mordent more frequently
(3.07%) than the Alpine data (0.77%). This distribution underscores distinct prefer-
ences in ornament types between the two datasets, suggesting a richer use of mordent
and glissando in the Russian data, while the Alpine data shows a higher reliance on mis-
cellaneous slides. The chi-square test statistic is X2(3,N = 1659) = 15.396, p = 0.002,
indicating a significant difference between the Alpine and Russian datasets in terms of
the ornament types used in singing.

Finally, Table presents the subtype distribution for pitch slides, categorised into
three groups: overshoot, preparation, and none. A commonality between the Alpine
and Russian data is the majority of instances in both datasets falling under the ‘None’
category, with 54.60% for Alpine and 54.54% for Russian. The chi-square test statistic

is ¥2(2, N = 1622) = 1.539, p = 0.463, indicating no significant difference.
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Data | THR | Transitional Region Count | Held Region Count
Alpine | 0.80 653 815
Russian | 0.85 1041 1231

Table 4.7: Ratio between transitional region and held region counts

Data | Head (%) | Tail (%) | Connection (%) | Intra (%)
Alpine 30.32 27.26 38.13 4.29
Russian 32.18 19.31 41.69 6.82

Table 4.8: Percentage of each position type of transitional region counts

Characteristics of Glissando Distribution

This analysis of glissando focuses on several key features: the number of touch notes,
pitch intervals segmented by touch notes, time intervals segmented by touch notes, the
duration of each touch note, the overall pitch interval of the glissando, the duration of
the glissando, and the slope of the glissando.

Table indicates a tendency for the single-touch glissando in both Alpine and
Russian vocal data, as they are more prevalent in the counts provided. No significant
difference is found between Alpine and Russian as indicated by the chi-squared test
result as x?(2, N = 36) = 0.937, p = 0.626.

Figure compares the probability density of pitch and time intervals for glissando
notes segmented by touch notes between Alpine and Russian styles. The two-sample
Kolmogorov-Smirnov test statistics are D(17,65) = 0.339,p > .05 for pitch intervals
and D(17,65) = 0.363, p = 0.043 for time intervals, indicating no significant difference
in pitch intervals but a significant difference in time intervals.

Figure compares the distributions of glissando duration and touch note dura-
tion in Alpine and Russian vocal data. The left graph illustrates the distributions of
touch note durations, while the right graph shows the distributions of glissando dura-

tions in Russian and Alpine data. The two-sample Kolmogorov-Smirnov test statistics

Data | Glissando (%) | Portamento (%) | Miscellaneous Slides (%) | Mordent (%)
Alpine 1.23 35.38 61.56 0.77
Russian 2.69 34.97 56.58 3.07

Table 4.9: Distribution of ornament type
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Data | Overshoot (%) | Preparation (%) | None (%)
Alpine 9.98 35.41 54.60
Russian 11.82 33.64 54.54

Table 4.10: Subtype of pitch slide distribution for Alpine and Russian data

Data

Single-Touch

Double-Touch

Triple-Touch

Alpine
Russian

7
20

1
7

0
1

Table 4.11: Count of Single-Touch, Double-Touch and Triple-Touch glissando.
Single-Touch glissandos represent glides with an intermediate touch note that
segments the glide into two parts. Double-Touch refers to glissandos with double
touch notes. Triple-Touch refers to glissandos with triple touch notes
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Figure 4.32: Comparative analysis of pitch interval and time interval segmented by
touch note

are D(9,37) = 0.586,p = 0.008 for glissando duration and D(8,28) = 0.375,p > .05 for

touch note durations, indicating a significant difference in glissando durations but no

significant difference in touch note durations.
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Figure 4.33: Comparative analysis of touch note duration and glissando duration

Figure , compares pitch interval and slope of glissandos in Alpine and Russian
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vocal data. No significant differences are found. The two-sample Kolmogorov-Smirnov

test statistics are D(8,28) = 0.339,p > .05 and D(8,28) = 0.411,p > .05.
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Figure 4.34: Comparative analysis of the interval and slope of glissando

Overall, Alpine singing exhibited greater variation in time intervals segmented by
touch notes, as well as in glissando duration. No significant differences in other features
were observed. This lack of significance is likely attributable, at least in part, to the

limited number of data points.

Characteristics of Portamento Distribution

This analysis of portamento focuses on several features: normalised inflection pitch,
normalised inflection time, duration, interval, and slope of portamento. The compari-
son between the data of Alpine and Russian vocal styles reveals distinct patterns and
preferences in their respective distributions.

Figure compares the probability density of normalised inflection pitches and
times between Alpine and Russian portamento. The inflection pitch graph indicates a
very similar downward trend for both styles. The two-sample Kolmogorov-Smirnov test
statistic is D(223,362) = 0.083, p > .05, indicating no significant difference in inflection
pitch between the two styles. However, the inflection time graph highlights notable
differences: the Russian data exhibits a more prominent peak around 0.6, whereas the
Alpine data has a broader distribution with concentration approximately from 0.2 to 0.6,
suggesting varied inflection timings in Alpine portamento. The two-sample Kolmogorov-
Smirnov test statistic is D(223,362) = 0.289, p < .001, indicating a significant difference

between the two styles in this aspect.
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Figure 4.35: Comparative analysis of normalised inflection pitch and time of
portamento

Figure compares the distribution of duration, interval, and slope of porta-
mento in Alpine and Russian vocal data. The duration graph shows that the mode
of the distribution for the Russian data is around 0.1 seconds, while the Alpine data
displays a mode at a shorter duration of approximately 0.05 seconds, indicating quicker
portamento in the Alpine data. The interval graph reveals that Alpine data features
more prominent mode at around -2 semitones than Russian data, while they have
very similar distribution of the positive intervals. The slope graph illustrates that
the Russian data has higher peaks approximately at 0, while Alpine data presents
a broader distribution. These differences are significant, as indicated by the two-
sample Kolmogorov-Smirnov test statistics: D(223,362) = 0.289,p < .001 for dura-
tion, D(223,362) = 0.172,p < .001 for interval, and D(172,338) = 0.244,p < .001 for
slope. In summary, Alpine singing displayed more varied inflection timings and quicker

portamento, with a tendency towards larger downward intervals.
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Figure 4.36: Comparative analysis of duration, interval, and slope of portamento. For
the interval, the probability density remains above 0 between —% and % due to the
smoothing effect of KDE.
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Characteristics of Miscellaneous Slide Distribution

This section analyses the characteristics of miscellaneous slides, focusing on several key
features: duration, interval, slope and evolution. The comparison between the data
of Alpine and Russian styles reveals similarities and distinct characteristics in their
respective distributions.

Figure compares the duration, interval, and slope of miscellaneous slides be-
tween Alpine and Russian data. The duration graph shows that both Alpine and
Russian styles have a mode around 0.1 seconds. However, the Russian style exhibits
a lower peak, suggesting a broader duration distribution in Russian slides. This indi-
cates that Russian slides tend to have more variability in duration. The two-sample
Kolmogorov-Smirnov test statistics is D(402,589) = 0.203,p < .001, indicating a sta-
tistically significant difference.

In the interval graph, both styles show peaks around -1 and 1 semitone. However,
the Alpine slides display a more prominent peak around 1 semitone, suggesting a pref-
erence for upward slides, while the Russian slides show a broader distribution with a
lower peak, indicating a tendency for downward slides. The two-sample Kolmogorov-
Smirnov test statistics is D(402,589) = 0.133,p < .001, indicating a statistically sig-
nificant difference. The slope graph reveals that both styles have modes around 0
semitones/second with similar levels. The two-sample Kolmogorov-Smirnov test statis-

tics is D(402,589) = 0.068, p > .05, indicating no statistically significant difference.
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Figure 4.37: Comparative analysis of duration, interval, and slope of miscellaneous
slides between Alpine and Russian data

Figure compares the distribution of DCT coefficient values (from 1st to 7th) for
both Alpine and Russian data. The boxplots illustrate the median, interquartile ranges,

and outliers for each DCT coefficient. Both styles show a similar pattern, where the
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first coefficient takes the majority of the energy and the second coefficient is the second
largest. This suggests that the slides tend to be linear with a slight curvature. The
ANOVA yields F(1,456)=0.34,p=0.562 and F(1,456)=0.99,p=0.320 for the first and
second coefficients, respectively, indicating no statistically significant difference in the
1st and 2nd DCT coefficient of slides between the two singing styles. Overall, Russian
singing shows a broader distribution in the duration of slides, while Alpine singing

displayed a tendency for upward slides.
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Figure 4.38: Comparative analysis of DCT coefficient values for slides in Alpine and
Russian styles. The median is presented by the red line, the interquartile range is
captured within the blue boxes, outliers are denoted by red plus signs, and the
whiskers extend to capture the range of data points excluding the outliers. Each
boxplot correspond to an individual DCT coefficient. Higher absolute coefficient value
indicates the component with higher energy.

Characteristics of Mordent Distribution

This section analyses the characteristics of mordents, focusing on the duration and
interval. Figure compares the probability density of the duration of mordents
between Alpine and Russian styles. The two-sample Kolmogorov-Smirnov test statistics
is D(5,32) = 0.519,p > .05, indicating no statistically significant difference. (The K-S
test can compare distributions of any shape (unimodal, bimodal, etc.) due to its non-
parametric characteristic, but with such a small sample size (n=5) for Alpine data, the
test’s power to detect real differences is limited.)

Figure compares the interval of mordents between Alpine and Russian data.
The two-sample Kolmogorov-Smirnov test statistics is D(5,32) = 0.345,p > .05, indi-

cating no statistically significant difference. Overall, no significant differences between
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Figure 4.39: Comparison of the duration of mordent between Alpine and Russian data

the datasets regarding mordant features were observed. This lack of significance is

likely attributable, at least in part, to the limited number of data points.

Characteristics of Overshoot Correction Distribution

Figure compares the duration, interval, and slope of overshoots between Alpine and
Russian styles. The duration graph indicates that both styles have similar distribution
shapes, with the Russian style having a mode around 0.04 seconds, while the Alpine
style has a mode at 0.02 seconds. The Russian style also exhibits a lower probability
density at the mode and a broader duration distribution. The interval graph reveals
that both styles have a mode around 0 semitones, with the Russian style showing a lower
mode and a broader distribution. The slope graph shows a similar pattern between the
two styles, though the Russian style exhibits a broader distribution. The two-sample
Kolmogorov-Smirnov test statistics are D(100,201) = 0.297,p < .001 for duration,
D(100,201) = 0.248,p < .001 for interval, and D(100,201) = 0.208, p = 0.005 for slope,
indicating statistically significant differences across all measures. In summary, the
Russian style exhibites broader distributions in duration, interval, and slope, indicating

greater variability in overshoot correction compared to the Alpine style.
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Figure 4.40: Comparison of the interval of mordent between Alpine and Russian data

Characteristics of Preparation Distribution

Figure compares the duration, interval, and slope of preparations between Alpine
and Russian data. The duration graph indicates that both styles have similar distri-
bution shapes, with the Russian style exhibiting a broader distribution. The interval
graph shows that both styles have a mode around 0 semitones, with the Russian style
showing a slightly broader distribution. The slope graph shows a similar shape between
the two styles, though the Russian style has a mode around -7 semitones per second,
while the Alpine style has a mode around 3 semitones per second. The two-sample
Kolmogorov-Smirnov test statistics are D(227,330) = 0.118,p = 0.043 for duration,
D(227,330) = 0.233,p < .001 for interval, and D(227,330) = 0.218,p < .001 for slope,
indicating statistically significant differences across all measures.

In summary, the preparation duration, interval, and slope between Alpine and Rus-
sian styles suggest that the Russian data exhibits more flexibility and a slight tendency
to prepare for upward pitch slides, while the Alpine style shows a slight tendency to pre-
pare downward pitch slides. The p-values indicate that the differences in preparation

duration, interval, and slope are statistically significant.
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Figure 4.41: Comparative analysis of duration, interval, and slope of overshoot
correction between Alpine and Russian data
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4.6 Conclusion

This chapter conducts a comparative analysis of note-level pitch contours in Alpine
and Russian singing, using datasets with two versions of note segments transcribed
by two experts. The study examines multiple features of both held and transitional
regions of musical notes, highlighting differences between these distinct singing styles
through visual and statistical comparisons. As this study analyses only 8 Alpine and 10
Russian recordings, the results should be considered as a case study of these particular
examples rather than a comprehensive representation of the entire Alpine and Russian
vocal traditions.

Key findings include:

1. Note Type Distribution: Steady-dominant notes occurred more frequently
in the annotated notes. Chi-square tests indicated that variations in annotations
within the same dataset are likely due to chance rather than systematic differences

in style.

2. Note Boundary Displacement: For the Russian dataset, transcribers PP and
OV showed remarkably similar annotation patterns, while in the Alpine dataset,
transcribers LS and YW displayed significant differences in their note boundary
placements, especially highlighting that LS adopts a more flexible annotation
approach, whereas YW consistently marks note boundaries relative to transitional

regions.

3. Steady Elements Analysis: Steady elements in Alpine and Russian data ex-
hibit symmetrical distributions around zero, indicating pitch stability. Alpine
data displayed a higher prevalence of level steady elements, suggesting more pitch

stability.

4. Modulating Elements Analysis: The analysis reveals significant differences in
vibrato characteristics between Alpine and Russian singing styles. Alpine singers
exhibit quicker vibrato with rate between 6 and 8.5 Hz, and a regulated extent

around 0.4 semitones. In vibrato extent evolution, Alpine data is stable around
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zero, while Russian data shows greater variability. Both styles produce regular
vibrato, but Alpine singers have a more stable carrier and longer modulating

elements, with significant differences in the carrier slope and duration.

5. Transitional Region Analysis: The Russian data demonstrates a richer use of
glissando (2.69% vs. 1.23%), mordent (3.07% vs. 0.77%), and overshoot (11.82%
vs. 9.98%), while showing less use of other ornaments compared to Alpine singing.
Alpine singing in this dataset tends to place transitional regions more towards
the tail of the note, exhibits greater variation in time intervals segmented by
touch notes of glissando, and shows longer glissando durations. Alpine singing
also displays more varied inflection timings, quicker portamento, and a tendency
towards larger downward intervals of portamento. In contrast, Russian singing
shows a broader distribution in the duration of slides, a greater variability in
overshoot correction, and a slight tendency to prepare for upward pitch slides,
while Alpine singing tends towards upward slides and shows a slight preference

for preparing downward pitch slides.

The framework is designed to be genre-agnostic in its note-level analysis approach
by decomposing complex pitch variations and ornaments into three fundamental pitch
contour elements: steady, modulating, and transitory regions. While the framework
has demonstrated effectiveness in differentiating characteristics between Alpine and
Russian singing styles, its broader applicability across diverse vocal traditions requires
further empirical validation.

Overall, the findings highlight broad similarity and nuanced differences in vocal
styles between Alpine and Russian singing, based on a framework for computational
vocal music analysis using music information retrieval techniques. The manual seg-
mentation approach, while labor-intensive, remains crucial for accurate analysis due to
the current limitations of automatic methods. Future work could focus on enhancing
automatic segmentation techniques and expanding the analysis to other singing styles

and languages.



Chapter 5

Syllable-Level Pitch Contour

Analysis

This chapter investigates the realisation of tones in the pitch contours of Chaozhou
folk singing, a genre of Chinese folk music originating from Chaozhou, a city in south-
ern China known for its distinctive dialect, which features a greater number of tones
compared to Mandarin. In tonal languages, syllables are articulated with specific tones
that employ pitch variations to distinguish word meanings. Given the tonal complexity
of the Chaozhou dialect, this chapter examines the preservation and modification of
these lexical tones in Chaozhou folk singing. This research builds upon an existing
Chaozhou folk singing dataset with syllable-level segmentations and tone labels. The
study also benefits from the expertise of collaborator who has extensive experience in
Chaozhou folk singing research. The objective is to apply computational methods to
uncover patterns in syllable-level pitch contours and assess the effects of lexical tones
and other contributing factors on the pitch contours in singing.

Section Ell introduces the dataset and the factors considered in the analysis. Section
@ provides an in-depth examination of the effects of lexical tones on the syllable-level
sung pitch contours. Section @ explores the influences of additional factors on tone
realisation in Chaozhou folk singing, beyond the effect of tones alone. Finally, Section
@ presents the conclusions and briefly discusses potential future research directions in

light of the limitations of this study.
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5.1 Dataset and Considered Factors
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Figure 5.1: Musical score of On a op ( )

The dataset ( ) utilised in this study involves a folk song, On a oy
(translated as ‘I am tucking you in, my little baby’, #IMI#). The musical score is
shown in Figure @ The song is performed by thirty-four Chaozhou singers, resulting
in 34 recordings of the same song. For each recording, the pitch track was extracted
using Praat software ( ) An expert of Chaozhou music and dialect, Xi
Zhang, then segmented the singing at the syllable level (the irregular pitch contours
introduced by consonants are excluded from syllable segments) and manually labelled
each syllable’s lexical tone by looking up a dictionary ( ), using Praat software.

The sung syllables are consistent across all performances, with a total of 71 annotated
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syllables (the last syllable of the song is not annotated).

Multiple variables are considered for singers and syllables in this study, some of
which are referenced in Zhang (2024). Among them, four are related to singers:

Gender: The singers’ gender distribution is as follows: 22 females and 12 males.

Age: Regarded as a continuous variable, the mean age is 38.12 years (SD = 8.11).

Vocal training background: Three categories are decided: Western bel canto,
Chinese folk singing, and non-professionals. Six professional singers (2 females, 4 males)
have extensive vocal training in Western bel canto, with a mean training duration of 6.33
years (SD = 1.25). Thirteen professional singers (11 females, 2 males) have extensive
vocal training in Chinese folk singing, with a mean training duration of 11 years (SD =
4.56). The fifteen non-professionals (9 females, 6 males) have little or no vocal training,
with a mean training duration of 0.67 years (SD = 1.29).

Experience in singing in Chaozhou: This is an ordinal variable and refers
to how frequently the singers perform Chaozhou dialect. Participants reported their
frequency of singing in Chaozhou in four levels: often (6), sometimes (13), seldom (11),
and never (4).

The following factors are identified for each syllable:

Tone Step and Tone Contour: This study examines two variables related to
tone: “tone step” and “tone contour”. The tone labels are based on the “five-level tone
mark” system introduced by Yuen Ren Chao (Chao 1930), where numbers indicate
lexical pitch (lower numbers signify lower pitch). The syllables in this song feature ten
tones, including three level tones (/11/, /33/, /55/) and seven non-level tones (/35/,
/53/, /42/, /213/, /23/, /21/, /12/). The first variable, tone step, categorises tones
based on the difference in pitch level. For example, /11/ is categorised as 0 steps,
/23/ as 1 step, and /53/ as -2 steps. The tone /213/ is considered a unique step level.
This variable is ordinal, ranging from -2 to 2 steps. Tone /213/ falls between 1 and 2
steps. The second variable, tone contour, distinguishes between tones with simple and
complex pitch movements. The /213/ tone, which involves multiple pitch changes, is
the only complex tone contour. All other tones are simple tone contours, involving only

two pitches.
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Metrical Structure: There are two levels: strong & long and weak & short. In
the song On a on, syllables on a strong beat are sustained longer, while syllables on a
weak beat are shorter.

Melodic Interval: The melodic interval indicates the pitch interval between two
neighbouring syllables, as referred to in the musical score shown in Figure @, where
each syllable corresponds to a note. There are two types of intervals: preceding melodic
interval (PMI) and succeeding melodic interval (SMI). Based on existence, size, and

direction, there are six levels for each type of interval:

e None: For syllables at the beginning or end of a phrase, without a preceding or

succeeding interval.
e Level 0: Unison.

e Ascending Level 1: Minor 2nd, Major 2nd, minor 3rd intervals with ascending

direction.

e Descending Level 1: Minor 2nd, Major 2nd, minor 3rd intervals with descend-

ing direction.

e Ascending Level 2: Major 3rd, perfect 4th, perfect 5th, major 6th with ascend-

ing direction.

e Descending Level 2: Major 3rd, perfect 4th, perfect 5th, major 6th with de-

scending direction.

Citation/Sandhi: This refers to the phenomenon where the tone of a syllable
changes based on the tonal context of surrounding syllables. For this variable, there
are two levels: tone citation and tone sandhi. The term “citation tone” in Chaozhou
refers to tones when single characters are spoken alone(Bag 1999, Lin [1995), while “tone
sandhi” refers to the tonal changes that occur when characters are spoken in connected
speech (e.g., within words or phrases) (Chen 2000, p. 19).

Vowel Type: This study identifies 42 unique syllables and 17 unique vowels, which

are categorised into three vowel types:
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w'}

Monophthong: {‘w’, ‘a’, ‘0’, ‘e’, ‘i’,

¢ ’ ¢

Diphthong: {‘ai’, ‘au’, ‘ia’, ‘ua’, ‘ue’}

¢

Nasalised: {‘am’, ‘ay’, ‘oy’, ‘er’, ‘im’, ‘in’}
This categorisation was applied to this song in a simplified approach based on the

classifications proposed by Lin (1995) and has been validated by an expert in the

Chaozhou dialect.

5.2 Tone Effects on Syllable-Level Sung Pitch Contour

To observe the effects of tone on the pitch trajectories of sung syllables, the pitch
contours of different syllable segments with the same tone were averaged to create an
overall pitch contour. This allowed for comparison of the overall pitch contour shapes
across different tones. The process involved three main steps: first, for each syllable
segment, the pitch variation trajectories were calculated by obtaining the difference
between the continuous f0 contour and its median; second, the syllable-level pitch
variation trajectories were normalised by re-sampling them to 100 points; finally, the
common pitch contour shape for each tone was obtained by averaging the re-sampled

trajectories of syllables with the same tone.
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Figure @ compares the sung pitch contours for ten distinct tones (11, 12, 21, 213,
23, 33, 35, 42, 53, and 55). Each subplot presents the individual pitch variations
and their averaged pitch variation in semitones relative to the normalised time of the
syllable. To assess differences in pitch behaviour across the tones, the pitch changes
of the averaged pitch variations are estimated through linear fitting and the standard
deviations are obtained to quantify the consistency of individual pitch variations within
each tone.

For the three level tones (11, 33, and 55), tones 33 and 55 exhibit average pitch
trajectories with minimal pitch change magnitudes of —0.28 semitones and —0.13 semi-
tones, respectively. In contrast, tone 11 shows a slight upward trend, with a pitch
change of 0.68 semitones. The rising tones 12 and 23, both characterised by a step size
of 1, display an upward pitch trajectory over time, with tone 12 having a larger pitch
change magnitude (0.89 semitones) than tone 11, while tone 23 has a smaller pitch
change (0.44 semitones). Tone 21, with a step size of —1, presents a relatively level
average pitch contour with the smallest pitch change magnitude of 0.003 semitones,
resembling the pitch contour shape of tone 55, which has a pitch change of —0.13
semitones. Tones 35, 42, and 53, characterised by two-step scales, exhibit lager pitch
changes over time, consistent with their directions. The pitch changes for these tones
are 2.03, —0.97, and —2.44 semitones, respectively.

Tone 213, expected to have a distinct contour, instead presents a sliding-up shape
rather than the anticipated down-and-up pattern. The pitch change magnitude of tone
213 (1.05 semitones) is smaller than those of the two-step tones 35 and 53, but larger
than those of the one-step and level tones. Furthermore, the standard deviations of
pitches, indicated by the red dashed lines, tend to be smaller in the middle of the
syllable’s duration for each tone and larger at the two ends. Although tone 21 exhibits
the smallest pitch change magnitude, its standard deviation increases towards the end,
becoming greater than that of the level tones 11 and 55.

To assess the significance of tone effects, this study examines the influence of tone
step and tone contour on syllable-level sung pitch trajectories. Specifically, it evaluates

the effect of tone step on the linear tendency of these pitch trajectories. Additionally,
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the study investigates whether the unique tone 213, characterised by its complex tone
contour, introduces a greater degree of convex curvature in the sung pitch contour
compared to tones with simple contours. The linear tendency and curvature of the
pitch variation are quantified using the first and second coefficients of the Discrete
Cosine Transform (DCT), respectively. A positive first coefficient corresponds to a
negative slope, while a negative first coeflicient indicates a positive slope. For the second
coefficient, a negative value indicates concave curvature, and a positive value indicates
convex curvature. DCT is chosen for its efficiency in simultaneously quantifying linear
tendency and curvature without requiring any pre-smoothing. More details about DCT
have been provided in Section .

This study hypothesises a significant correlation between tone step and the first
DCT coeflicient of sung pitch contours in terms of both direction and magnitude, while
no significant correlation is expected between tone contour and the second DCT coeffi-
cient, based on observations of the averaged pitch variation for tone 213. Linear mixed
models (LMMs) are selected for the analysis because they are well-suited for analysing
correlated data, such as repeated measures from the same subjects or data points that
are temporally close. In this study, multiple DCT measures are obtained from syllables
sung by the same singer, and syllables within the same phrase are temporally close.
Tone step and tone contour are treated as fixed effects to capture the primary rela-
tionships between the predictors and the response variable, while singer and syllable
are included as random effects (intercepts only) to account for unexplained variability
within clusters or among participants.

The linear mixed models used in this study are described in Equations @ and @

using Wilkinson-Rogers notation.

DCT1stCoef ~ Tone step + (1|Singer) + (1|Syllable) (5.1)

DCT2ndCoef ~ Tone__contour + (1|Singer) + (1]|Syllable) (5:2)
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Tone step | Estimate | p-Value | 95% CI Lower | 95% CI Upper
-1 -4.480 ook -6.460 -2.500
0 -4.304 otk -5.709 -2.900
1 -6.317 ook -7.713 -4.922
Tone 213 -7.515 ook -9.495 -5.535
2 -11.120 ok -12.910 -9.336

Table 5.1: Statistical analysis results for 1st DCT coefficient including estimates,
p-values, and 95% confidence intervals for levels of tone step. The stars are used to
represent the p-values based on their significance levels: *** for p-values < 0.001, **

for p-values < 0.01, * for p-values < 0.05.

Tone step levels are ranked in the order of -2, -1, 0, 1, tone 213, and 2, with step
-2 set as the reference level. The statistical results of tone step effects, presented in
Table El], are consistent with the hypothesis and show that all levels of tone step
exhibit significant effects. Specifically, holding other fixed effects constant, changing
from tone step -2 (reference level) to tone step -1 decreases the 1st DCT coefficient
by 4.480 units, indicating that step -1 results in a less steep linear slope compared to
step -2. Step 0 decreases the 1st DCT coefficient by 4.304 units, slightly less than
step -1, which aligns with Figure @, where the averaged pitch variation in tone 21
exhibits the smallest slope magnitude. The effect of step 2 has the largest absolute
effect size, indicating the strongest influence on pitch contour. Steps 1 and tone 213
also show significant effects, though smaller than that of step 2, with each step from
0 to 2 demonstrating progressively larger effects. Additionally, no significant effect is
observed for tone contour, suggesting that the spoken pitch contour of tone 213 is not

preserved in singing within this Chaozhou folk singing dataset.

5.3 Effects of Other Considered Factors on Syllable-Level

Sung Pitch Contour

To account for the potential confounding effects of other factors discussed in Section EI
on the influence of tone step on sung pitch contour, a linear mixed model, represented as
Equation @, is employed that includes these variables alongside tone step. To properly
interpret the effects, it is necessary to set a reference level for categorical variables of

interest, which are listed in Table @
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Categorical Variable Reference Level
Tone step -2
Vocal training background non-professional
Experience in singing in Chaozhou | never
Gender of singers female
Metrical Structure weak & short
Forwards Melodic Interval none
Backwards Melodic Interval none
Vowel type nasalised
Citation\Sandhi citation

Table 5.2: Categorical variables and their reference level

DCT1stCoef ~ Tone_ step + Age + Gender

+ Training background + Experience_in_ CZ + Citation\Sandhi )
(5.3

+ Vowel + Metrical _structure + PMI + SMI

+ (1|Singer) + (1|Syllable)

The statistical results, presented in Table @, show the levels of variables that
exhibit significant effects. In addition to the tone step, six other factors are found to
have statistically significant effects. To interpret the effects of these factors of interest,
two methods are employed.

First, to visualise the influence of these factors on tone realisation in singing, syllable-
level pitch variation trajectories, shown in Figure @, are categorised according to the
levels of each factor. Figures @ through @ displays the averaged pitch contours for
different categories of each factor across specific tones.

Second, to assess the effects of the different levels of the factors illustrated in Fig-
ures @ through @, linear mixed models are applied to data for each specific tone.
The analysis process was as follows: First, for each tone category, multiple syllables
produced by different singers were collected. Then, for each syllable, the 1st DCT coef-
ficient of its pitch contour was calculated. Finally, the six factors of interest, training
background, experience in singing in Chaozhou, tone citation sandhi, vowel, PMI, and

SMI, are included as fixed effects in the linear mixed model, with syllable and singer



5.3. Effects of Other Considered Factors on Syllable-Level Sung Pitch

Contour 178
Fixed effect Coefficient p-Value Lower Upper
Tone_ step_ -1 -3.582 HEX -5.219  -1.945
Tone_step_0 -6.255 o -7.597  -4.914
Tone_step_ 1 -4.510 HkX -5.578  -3.442
Tone 213 -5.441 HoAk -6.990 -3.891
Tone_ step_ 2 -12.380 oAk -13.740 -11.020
Training Chinese folk -0.952 * -1.833  -0.072
Experience_in_ CZ_ Often -1.160 * -2.206 -0.114
Citation_ Sandhi Sandhi -2.034 Aok -3.158  -0.911
Vowel _Diphthongs 0.809 * 0.102 1.516
PMI_ Descending level 1 1.332 Hok 0.327 2.337
PMI_Level 0 2.019 ok 0.821 3.216
PMI_ Ascending level 1 2.534 KX 1.376 3.692
PMI__Ascending_ level 2 1.588 * 0.012 3.164
SMI_ Descending level 2 2.357 Hok 0.751 3.963
Age 0.013 n.s. -0.021 0.047
Gender Male -0.534 n.s. -1.107 0.038
Training_ Bel canto -0.262 n.s. -0.876 0.353
Frequency_in_ CZ_ Seldom -0.757 n.s. -1.736 0.223
Frequency_in_ CZ_ Sometimes -0.880 n.S. -1.913 0.152
Vowel _Nasalised -0.537 n.s. -1.270 0.196
Metrical _Strong & long -0.635 n.s. -1.594 0.325
PMI_ Descending level 2 0.029 n.s. -1.375 1.434
SMI_ Descending_level 1 -0.487 n.s. -1.835 0.860
SMI Level 0 -0.927 n.s. -2.349 0.496
SMI__Ascending level 1 -1.159 n.s. -2.622 0.305
SMI__Ascending_level 2 -1.468 n.s. -3.358 0.422

Table 5.3: Statistical analysis results for 1st DCT coeflicient including estimates,
p-values, and 95% confidence intervals for levels of fixed effects. The stars indicate
significance levels: *** for p-values < 0.001, ** for p-values < 0.01, * for p-values <

0.05, and n.s. for non-significant results (p > 0.05).
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Tone Correlated Factors

11 Vowel, PMI, SMI

12 Vowel, PMI, SMI

21 Citation_ Sandhi, Vowel, PMI, SMI
213 Citation_Sandhi, Vowel, PMI, SMI
23 Vowel, SMI

33 Vowel, PMI, SMI

35 Citation_ Sandhi, Vowel, PMI, SMI
42 Vowel, PMI, SMI

53 Citation_ Sandhi, Vowel, PMI, SMI
55 Vowel, PMI, SMI

Table 5.4: Tone and correlated factors

treated as random effects, resulting in Equation @

DCT1stCoef ~ Training_ background + Experience_in_ CZ + Citation\Sandhi
+ Vowel + PMI + SMI (5-4)

+ (1|Singer) + (1|Syllable)

When a factor has only one level within a specific tone, it is removed from the
analysis. Additionally, certain factors are excluded due to strong correlations with other
factors within the same tone, leading to multicollinearity. Table @ lists the correlated
factors that potentially introduce these multicollinearity issues. This is identified by
finding factors that have correlation coefficients greater than 0.05 with other factors.
To address this multicollinearity issue, different combinations of the correlated factors
are tested. For example, for tone 11, Vowel, PMI, and SMI are identified as correlated
factors. The analysis then examines all possible combinations of these factors: (Vowel,
PMI, SMI), (Vowel, PMI), (Vowel, SMI), (PMI, SMI), (Vowel), (PMI), and (SMI). If a
particular combination leads to a model that cannot be fitted due to multicollinearity,
it is discarded. For combinations that can be successfully modelled, the factors with
significant effects are reported. This systematic approach avoided bias in favour of
retaining any particular factor while discarding another.

The effects of these factors on the first DCT coefficient are assessed using linear
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mixed models. While some effects were statistically significant, the predominant obser-
vation across all visualisations is that the variations are relatively minor when compared

to the overarching similarities.

e Vocal Training Background: Statistically significant effects are identified for
tone 21, where transitioning from ‘non-professional background’ (reference level)
to ‘Chinese folk background’ results in a reduction of 3.722 units in the 1st DCT
coefficient. In tone 42, a shift from ‘non-professional’ to ‘bel canto training’ results
in a reduction of 2.054 units, while transitioning to ‘Chinese folk training’ leads
to a more substantial reduction of 4.490 units. For tone 53, transitioning from
‘non-professional’ to ‘bel canto background’ results in a decrease of 2.860 units.
These outcomes, shown in tones 21, 42, and 53 of Figure @, suggest that for these
three falling tones (the only falling tones among the ten analysed), singers with
professional training exhibit a less pronounced pitch decline at the syllable’s end.
This reflects a less ‘speech-like’ style, with subtler tone communication, compared

to singers without professional training.

« Experience in Singing in Chaozhou: Initial analysis using 'never’ as the ref-
erence level revealed significant effects only in tone 42, showing an unexpected
pattern: transitioning to ‘seldom’ results in a decrease of 6.624 units, to ‘some-
times’ results in a decrease of 5.402 units, and to ‘often’ leads to a decrease of
4.048 units. These results suggest that singers with no experience in Chaozhou
singing exhibit the most speech-like singing, tending to realise the falling tone
more effectively with a stronger communication of tone at the syllable’s end.
This pattern contradicts the expectation that greater experience would lead to

more tonal realisation.

Given this unexpected behaviour of the 'never’ group, further analyses were con-
ducted using ’often’ as the reference level to better understand the experience-
dependent patterns across different tones. The results show that in tone 12, tran-
sitioning to ‘seldom’ leads to an increase of 3.150 units; in tone 213, changing to

‘seldom’ results in an increase of 2.329 units; and in tone 23, moving to ‘seldom’
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shows an increase of 1.398 units. The visualisation in Figure @ corroborates
these findings. These patterns suggest experience-dependent strategies in tonal
realisation: for rising tones (12, 23, 213), singers with more experience ("often’)
tend to start with lower pitch in the sung syllable to realise rising contour more
efficiently, while for falling tone (42), they focus on realising the falling contour

more effectively at the syllable’s end.

o Tone Citation/Sandhi: A significant effect is identified for tone 213, where
transitioning from ‘citation’ (reference) to ‘sandhi’ leads to an increase of 2.857
units in the 1st DCT coefficient. This outcome, which suggests a reduction in
pitch slope, contradicts the pattern illustrated for tone 213 in Figure @, indi-
cating potential interactions with other factors influencing the realisation of tone

213 during sandhi.

e Vowel Type: Statistically significant effects are detected for tones 11, 213, and
55. In tone 11, the shift from ‘monophthong’ (reference) to ‘diphthong’ results
in an increase of 1.086 units in the 1st DCT coefficient. In tone 213, transi-
tioning from ‘monophthong’ to ‘diphthong’ results in a decrease of 1.456 units,
and changes to ‘nasalised’ vowels leads to a decrease of 4.761 units. In tone 53,
the shift from ‘monophthong’ (reference) to ‘nasalised’ results in an decrease of
11.067 units. In tone 55, the change from ‘monophthong’ to ‘diphthong’ results
in a decrease of 2.150 units. These results, visualised in Figure @, suggest that
vowel type affects the tone realisation in singing, particularly in tones 11 and
213. Additionally, the effect on tone 213 may interact with the effect of ‘tone

citation/sandhi’.

o Preceding Melodic Interval (PMI): Significant effects are found across sev-
eral tones. For tone 11, transitioning from ‘descending level 2’ (reference) to
‘descending_level 1’ results in an increase of 1.086 units in the 1st DCT coeffi-
cient. In tone 12, the same transition leads to an increase of 1.972 units. For tone
23, transitioning from ‘none PMI’ (reference) to ‘descending level 1’ results in

an increase of 1.707 units, while transitioning to ‘level 0’ results in an increase
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of 2.213 units, and to ‘ascending_ level 1’ leads to an increase of 2.669 units. For
tone 53, changing from ‘ascending level 1’ (reference) to ‘ascending level 2’
results in a decrease of 10.918 units. For tone 55, transitioning from ‘none’ (ref-
erence) to ‘level 0’ results in an increase of 2.203 units, while moving to ‘as-
cending_level 1’ leads to an increase of 2.435 units, and to ‘ascending_level 2’
results in an increase of 1.984 units. With the visualisation in Figure @, these
results suggest that the PMI significantly influences the pitch at the onset of the
syllable, with smaller descending PMI and ascending PMI generally contributing

to a pitch rise, except for the case of tone 53.

o Succeeding Melodic Interval (SMI): Changes in SMI significantly influenced
various tones. For tone 11, transitioning from the reference level ‘ascending_level 1’
to ‘ascending level 2’ results in a decrease of 1.086 units in the 1st DCT coeffi-
cient. In tone 21, shifting from 'none’ to ‘ascending level 1’ leads to a decrease
of 3.244 units. Tone 213 exhibits increases of 2.689 units and 3.024 units when
switching from ‘level 0’ to ‘ascending level 1’ and ‘ascending level 2’ respec-
tively. In tone 42, a change from ‘decending level 1’ to ‘ascending level 1’
results in a decrease of 2.892 units. Additionally, for tone 53, transitioning from
‘none’ to ‘descending_level 2’ produces an increase of 13.221 units. Lastly, in
tone 55, altering from ‘none’ to ‘level 0’ leads to a decrease of 2.248 units. With
the visualisation in Figure @), these results suggest that the ascending SMI

tends to elevate the pitch at the end of the syllable.

Furthermore, when compared to the results presented in Table EI, the effect sizes of
tone steps -1 (tone 21), 1 (tones 12 and 23), and the tone step in tone 213 become atten-
uated. This attenuation is likely due to the variance explained by the aforementioned
factors, which were previously attributed to tone steps.

An interesting finding is that singers with professional vocal training show less
speech-like characteristics in falling tones (53, 21, 42), while those with more Chaozhou
singing experience demonstrate more speech-like features, particularly in rising tones

(12, 213, 23) and falling tone (42). This raises a question of whether singers with more
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Training background Never Seldom Sometimes Often

Professional 3 8 ) 3
Non-professional 1 3 8 3

Table 5.5: Distribution of Chaozhou singing experience across different training
backgrounds.

vocal training tend to have less experience in Chaozhou music. However, a Chi-square
test of independence between training background and singing experience in Chaozhou
style shows only a weak association (x? = 3.543, p = 0.315). As shown in Table
@, the distribution of singing frequency is similar across training backgrounds. This
distribution suggests that professional training and Chaozhou singing experience are
largely independent factors. Professional vocal training (both bel canto and Chinese
folk) may emphasise controlled, refined pitch release at the syllable’s end, resulting
in a diminished tonal realisation in sung syllables with falling tones. Experience in
Chaozhou singing appears to enhance tonal features by lowering initial pitch for rising

tones.
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Figure 5.3: Averaged pitch variations split by different vocal training backgrounds. Each subplot corresponds to a specific tone. The
dashed black curve represents the overall averaged pitch variation, while the coloured curves correspond to different training background
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categories. The numbers in the legend indicate the number of individual pitch contours for each category.
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Figure 5.4: Averaged pitch variations split by singing experience in Chaozhou. Each subplot corresponds to a specific tone. The dashed
black curve represents the overall averaged pitch variation, while the coloured curves correspond to different singing experience levels.

The numbers in the legend indicate the number of individual pitch contours for each category.
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Figure 5.5: Averaged pitch variations split by tone citation and sandhi. Each subplot corresponds to a specific tone. The dashed black
curve represents the overall averaged pitch variation, while the coloured curves correspond to tone citation and tone sandhi. The numbers

in the legend indicate the number of individual pitch contours for each category.
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Figure 5.6: Averaged pitch variations split by vowel type. Each subplot corresponds to a specific tone. The dashed black curve represents
the overall averaged pitch variation, while the coloured curves correspond to three categories of vowels. The numbers in the legend
indicate the number of individual pitch contours for each category.
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Figure 5.7: Averaged pitch variations split by preceding melodic intervals (PMI). Each subplot corresponds to a specific tone. The dashed
black curve represents the overall averaged pitch variation, while the coloured curves correspond to different PMI categories. The

numbers in the legend indicate the number of individual pitch contours for each category.
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Figure 5.8: Averaged pitch variations split by succeeding melodic intervals (SMI). Each subplot corresponds to a specific tone. The
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5.4 Conclusion and Future Work

This chapter has investigated the realisation of lexical tones in Chaozhou folk singing,
with a specific focus on pitch contours at the syllable level. By employing the Dis-
crete Cosine Transform (DCT), the overall shape of the pitch contour is captured and
parameterised to reflect the linear tendency and curvature of Chinese tones.

The relationship between lexical tones and syllable-level pitch contours in Chaozhou
folk music was explored, revealing how tonal variations are preserved or modified in
singing. The results indicate that both lexical tone steps and directions significantly
influence the linear tendency of the pitch contours, while the curvature of the pitch
contour is not significantly affected by the tones. These findings partially align with
the traditional Chinese opera principle of “singing according to the syllables” (“YiZiX-
ingQiang”), which has been introduced in Section . While the preservation of tonal
direction and step supports this principle, the lack of tonal influence on pitch curvature
suggests some deviation from strict syllable-based singing. Additionally, six factors,
music training background, experience in singing in the Chaozhou dialect, tone sandhi,
vowel type, preceding musical interval, and succeeding musical interval, affect the linear
tendency of tone realisation, albeit to a lesser extent than the tones themselves, and
exhibit an overall similarity in the manner in which each tone is sung.

The methodological framework developed in this study, using DCT coefficients and
statistical analysis of tonal influences, could potentially be adapted to investigate tone-
melody relationships in other tonal languages and singing styles. However, the broader
applicability of this approach across different genres requires further empirical valida-
tion.

Overall, this chapter contributes to the understanding of tone realisation in the
Chaozhou folk vocal style, providing insights into the complex interplay between spo-
ken and sung pitch contours. The findings underscore the importance of considering
both linguistic and musical factors in the study of Chinese vocal music, paving the
way for further research in this interdisciplinary field, particularly when employing a
computational approach. However, several limitations of this work have to be discussed

to guide future research. First, although the recordings are from 34 singers, the data
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is limited to a single song. Expanding the dataset to include more Chaozhou folk
songs would provide a broader basis for analysis. Furthermore, it would be valuable
to extend the study to other vocal styles in Chinese music, such as traditional Chinese
opera or folk music from other regions. Finally, recent advances in technology, such
as automatic lyrics transcription (Zhuo et al| 2023), could be utilised to streamline the

annotation process.



Chapter 6

Conclusions and Future

Perspectives

6.1 Summary

This thesis develops a systematic and computational approach to characterising the
pitch aspect of vocal style through pitch contour analysis across diverse musical cul-
tures. It is organised into three case studies: 1. defining and automatically detecting
basic pitch contour elements; 2. comparing vocal styles across different cultures by
analysing pitch contours in the transitional and held regions of musical notes; 3. inves-
tigating lexical tone effects through the characterisation of syllable-level pitch contours.
These studies are conducted over a broad range of musical traditions, including West-
ern art music, Jingju, Georgian chants, Russian folk singing, Alpine yodel, and Chinese
Chaozhou folk music.

The motivation for this research stems from the need to better understand how
pitch contours shape vocal style, addressing gaps in previous studies that often focused
on narrow aspects or specific cultural contexts. By employing the proposed automatic
pitch contour segmentation method, trained on Jingju pitch contour segments and eval-
uated using Jingju and Georgian chant data, this thesis provides a systematic frame-
work for pitch contour analysis, enabling the characterisation of both universal and

culture-specific expressions in vocal music. This work examines pitch contours at both
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the note and syllable levels, depending on the cultural context. The note-level analysis
demonstrates the differences and similarities in steady regions and ornaments between
Russian folk singing and Alpine yodel, while the syllable-level analysis confirms the
effects of lexical tones on the pitch contours of sung syllables in Chinese Chaozhou folk

music.

6.1.1 Pitch Contour Segmentation and Characterisation Methods

To characterise complex pitch variations in vocal music, Chapter 3 first defined three
fundamental pitch contour region types: steady, modulating, and transitory. To enable
the automatic segmentation of the pitch contour into these regions, the concept of the
Pitch Contour Unit (PCU) was introduced, which represents discrete segments of the f0
signal delineated by consecutive local peaks and troughs. Positioned between individual
frames and notes, PCUs effectively bridge the gap between the excessive granularity of
frame-level analysis and the subjective variability inherent in note definition. Duration
and extent features are estimated from each PCU to serve as input sequences to a
Hidden Markov Model (HMM).

The effectiveness of this method is evaluated not only through the pitch contour
segmentation task but also demonstrated in downstream tasks focused on detecting
portamento and vibrato in Jingju and steady regions in Georgian vocal datasets, respec-
tively. Comparisons with state-of-the-art methods reveal that the proposed approach
either outperforms or matches existing techniques in both frame-level and segment-level

evaluations.

6.1.2 Note-Level Pitch Contour Analysis

The purpose of Chapter 4 is to conduct a comparative analysis of note-level pitch con-
tours in Alpine and Russian singing, exploring the differences and similarities in vocal
styles between these two cultures. The chapter uses datasets that include two versions
of note segments of each culture, each transcribed by different experts. Comparative
analyses between the two versions of annotations within each culture were performed

to evaluate the reliability of the analyse. It was found that both transcribers in each



6.1. Summary 194

culture tend to annotate steady-dominant notes, with chi-square tests indicating that
variations in note types between transcribers were not significant. The analysis of note
boundary displacements revealed that, in the Russian dataset, transcribers PP and
OV showed remarkably similar annotation patterns, while in the Alpine dataset, tran-
scribers LS and YW displayed significant differences in note boundary placements. LS
adopted a more flexible annotation approach, whereas YW consistently marked note
boundaries relative to transitional regions.

To address the subjectivity in note boundary annotations, the chapter introduces
the concepts of “held regions” and “transitional regions” within the annotated notes to
characterise and compare vocal pitch contours between the two cultures. Steady and
modulating regions, which compose the held regions, are characterised separately. The
analysis of held regions reveals that Alpine singing exhibits a higher prevalence of level
steady regions, suggesting greater pitch stability compared to Russian singing. Addi-
tionally, the study highlights significant differences in modulating characteristics, with
Alpine singers demonstrating quicker vibrato and Russian singers displaying greater
variability in vibrato extent.

Significant differences are also observed in the characteristics of transitional regions
between Russian and Alpine vocal styles. The Russian data shows a richer use of
glissando (2.69% vs. 1.23%), mordent (3.07% vs. 0.77%), and overshoot (11.82% vs.
9.98%), while relying less on other ornaments compared to Alpine singing. Alpine
singing tends to position transitional regions more towards the tail of the note, exhibits
greater variation in time intervals segmented by touch notes, and shows longer glissando
durations. Alpine singing also displays more varied inflection timings, quicker porta-
mento, and a tendency towards larger downward intervals. In contrast, Russian singing
shows a broader distribution in slide durations, greater variability in overshoot correc-
tion, and a slight tendency to prepare for upward pitch slides, while Alpine singing
tends towards upward slides and shows a slight preference for preparing downward
pitch slides.

This analytical framework, through its decomposition of pitch variations into funda-

mental elements (steady, modulating, and transitory regions), demonstrates potential
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for cross-cultural application. While successful in distinguishing Alpine and Russian
singing characteristics, its effectiveness across a broader range of vocal traditions awaits

further investigation.

6.1.3 Syllable-Level Pitch Contour Analysis

Chapter 5 aimed to investigate the realisation of lexical tones in Chaozhou folk singing,
with a specific focus on syllable-level pitch contours. By employing the Discrete Cosine
Transform (DCT), the chapter captured and parameterised the overall shape of the
pitch contours, reflecting the linear tendency and curvature of Chinese tones. The
analysis revealed that lexical tone steps and directions significantly influence the linear
tendency of pitch contours in Chaozhou folk singing, although the curvature was not
significantly affected by the tones.

Additionally, the study examined other factors, such as music training background,
experience in singing the Chaozhou dialect, tone sandhi, vowel type, and musical in-
tervals, which were found to influence tone realisation, though to a lesser extent than
the tones themselves. Notably, in all three falling tones, untrained singers exhibited
more ‘speech-like’ singing style than trained singers. The preceding and succeeding
musical intervals were found to affect the pitch contour at the beginning and end of
the syllables, respectively.

Overall, this chapter demonstrated a computational methodology to analyse tone
realisation in singing and contributed to a deeper understanding of the complex interac-
tion between syllable features, melodic features, and sung pitch contours. The findings
emphasised the importance of considering both linguistic and musical factors in the
study of Chinese vocal music, paving the way for further interdisciplinary research.
The computational approach developed in this study, combining DCT parameteriza-
tion with statistical analysis of tonal influences, offers a systematic framework that
could extend beyond Chaozhou folk music to other tonal languages and singing tradi-

tions, though such broader applications require additional empirical studies.
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6.2 Future Perspectives

During the development of the methods and the writing of this thesis, several promising
research ideas surfaced. Although these ideas could not be pursued within this thesis
due to time constraints and practical limitations, they hold significant potential for
future exploration. I would like to highlight a few of these concepts that could guide
further research on pitch contour and singing style characterisation.

The method established in Chapter 3 had limitations in robustly distinguishing
modulating and transitory regions, due to the inability of the HMM to model the
similarity between neighbouring PCUs. Several solutions are worth exploring: 1) group
two or three connected PCUs as a single token, parameterising the shape of each token
using DCT and inputting this sequence into the HMM; 2) apply conditional random
fields to the PCU sequence, as thet can model the similarity between neighbouring
tokens; 3) fine-tune recent large-scale pre-trained music models, such as [Li et al. (2023),
using the training data.

Additionally, the note transcription method could be improved from two sources.
First, the proposed pitch contour segmentation technique could provide prior infor-
mation and utilise more note segment data, such as that from the Vocalnotes project
(Proutskova et al. 2023), to train a more robust and controllable note segmentation
model using HMM. Second, a more robust lyrics transcription system, potentially pro-
posed in the future, could be leveraged to further enhance note segmentation.

Moreover, an application for singing pitch contour analysis is planned. This applica-
tion will offer an interface to visualise the pitch contour segmentation, characterisation,
and statistical results obtained from the methods proposed in this thesis, enabling users
to annotate and correct pitches, notes, syllables, and ornaments. Several contributions
are promising: 1) By leveraging Al agent frameworks like LangChain,E], users can inter-
act with computer algorithms using natural language, making the application accessible
to those without programming knowledge.

2) In addition to displaying waveforms, piano rolls, pitch curves, and segment bars,

embedding musical notation systems, such as the Global Notation System (Killick 2020),

'https://wuw.langchain. com/
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can provide better visualisation for musicians; 3) This tool will enable musicologists to
create more annotations and access more recordings, potentially contributing to future
musicology and Al research. On one hand, an expanded data scale can lead to more
general and convincing musicological findings; On the other hand, improvements in
ornament detection and folk music generation could be achieved with the availability
of more recordings and expert annotations, which are currently limited in the field of
music. 4) This application could also serve as a platform for musicologists to share
data and knowledge, fostering communication on music learning, appreciation, and
musicology research, as well as supporting the protection and transmission of intangible

cultural heritage.
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