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Abstract

This paper focusses on some of the more dif-

�cult issues involved in creating an automatic

transcription system. The initial stages of the

project follow traditional approaches based on

Fourier analysis, but as these methods are not

su�ciently robust to process arbitrary musical

data correctly, they are augmented by mod-

els of auditory perception derived from au-

ditory scene analysis and dynamic models of

the sources. We argue that by using dynamic

modelling, it is possible to solve many of the

constituent problems of automatic transcrip-

tion.
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1 Introduction

Most approaches to machine transcription suf-

fer from brittleness | they have a steep degra-

dation in performance under non-ideal condi-

tions, such as the minor variations and im-

perfections in tempo, rhythm and frequency

which commonly occur in musical perfor-

mances. This problem has been noticed in

computer implementations of both frequency

tracking and beat tracking algorithms, and is

cited as one of the major weaknesses of beat

tracking programs [Dannenberg, 1991]. For

example, if at some stage of the music the

program gets out of synchronisation, it is di�-

cult to rectify the problem and bring the pro-

gram back into step with the music. A simi-

lar problem was found in frequency tracking

[Dixon, 1996], where music played at about

half a semitone sharper than concert pitch

caused poor note identi�cation. In this case

the frequency analyser was out of synchroni-

sation with the music.

In contrast, the human perceptual system

is robust; it is capable of recognising musi-

cal information under extremely poor condi-

tions. Although it is quite easy to obtain bet-

ter performance from computer implementa-

tions by carefully setting and adjusting param-

eters, this defeats the goal of automatic tran-

scription. The dynamic modelling approach

emulates human perception in the sense that

it is self-adjusting; that is, it \tunes in" to

the features of the music it is analysing. This

approach extends ideas appearing in previous

note identi�cation systems [Chafe et al., 1985]

of using context and the expectations derived

from the context to disambiguate di�cult pas-

sages of music.

After developing a dynamic model of the

musical sources, the system uses the model to

perform its analysis. This methodology can

be applied multiple times, extracting di�erent

features of the music each time. In this way,

the system automatically adapts to di�erent

types of instruments, instead of requiring man-

ual setting of parameters.

This approach has been applied successfully

in the frequency domain to provide automatic

tuning of the system. In current work, the

same approach is being used in the time do-

main to perform beat tracking. The next stage

of the system will apply dynamic modelling



to the amplitude envelopes and spectral en-

velopes of instruments, to achieve a greater

degree of discrimination of fundamentals from

harmonics and then also to perform part sep-

aration.

In this paper, we discuss dynamic modelling

as it applies to automatic tuning, tempo recog-

nition and synchronisation, analysis of spec-

tral envelopes (formants) and analysis of am-

plitude envelopes. For a fuller description of

the underlying system, readers are referred to

[Dixon, 1996].

2 Automatic Tuning

For the vast majority of people, music recogni-

tion relies almost entirely on the relationships

between frequencies of notes rather than the

precise frequencies themselves. For example,

a shift of several percent in all of the frequen-

cies in a piece of music does not produce a sig-

ni�cant change in the perception of the music,

whereas a similar change in a single note will

be immediately noticed as being out of tune.

Even for those who have absolute pitch, the

frequency o�set may be noticed, but the re-

lationships between notes are still recognised

as being the same as they were without the

o�set.

Computer implementations of frequency

tracking do not necessarily share the

same robustness. In a prototype system

[Dixon, 1996], it was found that the spec-

tral peak detection algorithm su�ered a

considerable degradation in performance as

the relative tuning shifted by up to half a

semitone. This was due to the fact that

the system was tuned to recognise the even-

tempered semitones of western music, so that

frequencies were quantized to the nearest

semitone. The system lacked the human

ability to "tune in" to the initial frequencies.

To create a model of the tuning of the

source, the �rst step was to select an initial

reference frequency (A

4

= 440Hz), and con-

struct an even-tempered chromatic scale from

this reference. The next step was to measure

the deviation of the frequency of each note

from its expected value (the nearest note in

the chromatic scale), and then adjust the refer-

ence frequency towards reducing the error, and

reconstruct the chromatic scale. These steps

were iterated until the reference frequency

converged on a reasonably stable value.

More precisely, starting from the given

reference frequency, we construct an even-

tempered chromatic scale. Then for each spec-

tral peak, the precise frequency of the peak is

estimated by calculating the phase change in

the frequency bin over a single sample. (This

is the frequency estimation method of the

phase vocoder [Flanagan and Golden, 1966,

Dolson, 1986].) The frequency is then

matched to the nearest note in the chromatic

scale, and the deviation from the expected

value is calculated.

The average deviation could be used to gen-

erate a new reference frequency, but due to the

large variability in frequencies detected from

natural sounds, and the presence of many un-

wanted artefacts in the Fourier transform, the

algorithm is not stable if the new value is com-

puted in this way. Similarly, using the aver-

age deviation su�ers too much in
uence from

outlying values, and the average does not con-

verge to a stable value. Thus any error close

to half a semitone is discarded, as it is not

possible to determine the direction of the er-

ror. Then, to reach a stable estimate for the

reference frequency, the previous reference fre-

quency is adjusted slightly by the error term,

by calculating a geometric mean of the pre-

vious and present estimates of the reference

frequency, heavily weighted towards the previ-

ous value. In this way, the e�ect of erroneous

values is greatly reduced, and the corrections

gradually bring the tuning in line with the cor-

rect value. Although the convergence is not

absolute (it continues to vary within a range

of about 0.5%, which is less than the variance

of the frequency estimates of individual notes),

it provides a su�ciently accurate reference for

spectral peak detection.

Having obtained the corrected reference fre-

quency, a new chromatic scale is generated,

and the process is iterated for the next sam-



ple. It is important not to use the same sample

for the iterations, as the notes within the sam-

ple may not be representative of the tuning

of the piece. This could occur, for example,

if the sample contained a transition between

two stable notes, or the onset of a note from a

percussive instrument such as a guitar or pi-

ano, which tends to be slightly sharper than

the same note as it decays.

The automatic tuning was tested on several

pieces of solo guitar music, and it was found

that the system converged on a value within

the �rst few seconds of music, even when the

initial error was maximal (half a semitone).

Faster convergence can be obtained if required,

but slower convergence is preferred, as it is

more robust in noisy data.

As it stands, the system calibrates itself at

the beginning of a piece, and then matches all

notes to this calibrated scale. This is su�cient

for music in which the tuning is stable over

the duration of the piece, but it is possible

that it may be necessary to recalibrate peri-

odically; for example, unaccompanied singing

may drift in pitch by a substantial amount

during a piece.

3 Spectral Envelopes and

Amplitude Envelopes

There is a considerable amount of informa-

tion available in musical data to disambiguate

the parts of music which appear to have more

than one possible transcription. For example,

the problem of recognising harmonics as be-

ing part of a complex tone, which are not no-

tated in the printed score, can be solved much

more accurately if the context of the surround-

ing notes is taken into account. The spec-

tral composition of other notes gives clues to

the resonances of the instrument and of the

room in which the recording was made, and if

these factors are modelled, it becomes possi-

ble to predict the spectral composition of other

notes, and thus di�erentiate between various

possible decompositions of chords containing

complex tones.

The approach suggested in

[Tanguiane, 1993] which reduces spectra

to boolean values (each component is either

present or absent) is naive, as it requires de-

tection thresholds to be su�ciently well-tuned

to give highly accurate spectra. Experiments

involving solo guitar music show that this is

not possible, and a range of acoustic clues

must be combined to verify or deny the

presence of a component. Clearly the di�-

culty of this task is magni�ed with multiple

instruments, so it does not appear to be

realistic to obtain accurate boolean spectra.

Amplitude envelopes also give clues about

the decomposition of multiple notes, as

shown by research in auditory scene analy-

sis [Bregman, 1990, Brown and Cooke, 1994].

This work cites the Gestalt principle of com-

mon fate to suggest that if partials have a

similar amplitude envelope, such as beginning

and ending together, or having a similar and

parallel pattern of decay, then they may have

come from the same source. But partials do

not decay at the same rate, so the pattern of

change in the spectral envelope may in fact

be more useful in providing information about

the source of the sound.

The current system does not yet make use

of dynamic models in this area. The audi-

tory scene analysis principles provide a static

model which is used for matching of harmonics

to fundamentals.

4 Tempo Recognition and

Synchronisation

Another necessary constituent of an automatic

transcription system is a procedure which can

determine the underlying rhythmic structure

of a piece of music. Unlike commercial nota-

tion and sequencing software, which requires

the speed and time signature to be speci�ed

explicitly, we assume that such information is

not available from the user and must be gen-

erated automatically.

A dynamic modelling approach can also be

used at this level to automatically extract such



features as the bar and phrase structure of mu-

sical pieces. This is the approach advocated

in [Rosenthal, 1992], and is similar to the one

proposed in [Tanguiane, 1993].

In the implementation, rhythm is detected

by a two-stage process. A small window size

is used to create a high-resolution time-line of

events. The current rhythm detection stage

relies on the sudden onset of percussive instru-

ments, and is not suitable for analysing music

containing other instruments. The percussive

onset gives a peak across a wide range of fre-

quencies, which is easily detected, and signals

the beginning of a note, which can then be

identi�ed by examining the spectrum from a

large time window, which gives high resolution

in the frequency domain. This gives an accu-

rate mapping to a MIDI-like representation,

but lacks the underlying rhythmic structure.

To obtain this, statistical correlation methods

are used to determine the best estimation of a

beat, and to synchronise the beat to the sam-

ple counts.

5 Conclusions

The philosophy behind this project is to de-

velop an unsupervised transcription system,

that is, one which requires little or no ad-

justment of parameters or a priori informa-

tion about the piece of music being analysed.

Therefore, it is desirable to make as few as-

sumptions as possible about the nature of the

music and the instruments.

To achieve this aim, it is necessary to de-

velop models of the sound sources on the 
y,

and then use these models to further analyse

the music. This iteration makes it di�cult to

use the system for real-time analysis, but pro-

vides a degree of re�nement which would not

otherwise be possible.

Although much of the work still remains to

be done, the initial results are encouraging,

and it is planned to continue this line of re-

search to the completion of an automatic mu-

sic transcription system.
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