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Abstract

This paper focusses on some of the more dif-
ficult issues involved in creating an automatic
transcription system. The initial stages of the
project follow traditional approaches based on
Fourier analysis, but as these methods are not
sufficiently robust to process arbitrary musical
data correctly, they are augmented by mod-
els of auditory perception derived from au-
ditory scene analysis and dynamic models of
the sources. We argue that by using dynamic
modelling, it is possible to solve many of the
constituent problems of automatic transcrip-
tion.
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1 Introduction

Most approaches to machine transcription suf-
fer from brittleness — they have a steep degra-
dation in performance under non-ideal condi-
tions, such as the minor variations and im-
perfections in tempo, rhythm and frequency
which commonly occur in musical perfor-
This problem has been noticed in
computer implementations of both frequency
tracking and beat tracking algorithms, and is
cited as one of the major weaknesses of beat
tracking programs [Dannenberg, 1991]. For
example, if at some stage of the music the
program gets out of synchronisation, it is diffi-
cult to rectify the problem and bring the pro-
gram back into step with the music. A simi-

mances.

lar problem was found in frequency tracking
[Dixon, 1996], where music played at about
half a semitone sharper than concert pitch
caused poor note identification. In this case
the frequency analyser was out of synchroni-
sation with the music.

In contrast, the human perceptual system
is robust; it is capable of recognising musi-
cal information under extremely poor condi-
tions. Although it is quite easy to obtain bet-
ter performance from computer implementa-
tions by carefully setting and adjusting param-
eters, this defeats the goal of automatic tran-
scription. The dynamic modelling approach
emulates human perception in the sense that
it is self-adjusting; that is, it “tunes in” to
the features of the music it is analysing. This
approach extends ideas appearing in previous
note identification systems [Chafe et al., 1985]
of using context and the expectations derived
from the context to disambiguate difficult pas-
sages of music.

After developing a dynamic model of the
musical sources, the system uses the model to
perform its analysis. This methodology can
be applied multiple times, extracting different
features of the music each time. In this way,
the system automatically adapts to different
types of instruments, instead of requiring man-
ual setting of parameters.

This approach has been applied successfully
in the frequency domain to provide automatic
tuning of the system. In current work, the
same approach is being used in the time do-
main to perform beat tracking. The next stage
of the system will apply dynamic modelling



to the amplitude envelopes and spectral en-
velopes of instruments, to achieve a greater
degree of discrimination of fundamentals from
harmonics and then also to perform part sep-
aration.

In this paper, we discuss dynamic modelling
as it applies to automatic tuning, tempo recog-
nition and synchronisation, analysis of spec-
tral envelopes (formants) and analysis of am-
plitude envelopes. For a fuller description of
the underlying system, readers are referred to
[Dixon, 1996].

2 Automatic Tuning

For the vast majority of people, music recogni-
tion relies almost entirely on the relationships
between frequencies of notes rather than the
precise frequencies themselves. For example,
a shift of several percent in all of the frequen-
cies in a piece of music does not produce a sig-
nificant change in the perception of the music,
whereas a similar change in a single note will
be immediately noticed as being out of tune.
Even for those who have absolute pitch, the
frequency offset may be noticed, but the re-
lationships between notes are still recognised
as being the same as they were without the
offset.

Computer implementations of frequency
tracking do mnot necessarily share the
same robustness. In a prototype system
[Dixon, 1996], it was found that the spec-
tral peak detection algorithm suffered a
considerable degradation in performance as
the relative tuning shifted by up to half a
semitone. This was due to the fact that
the system was tuned to recognise the even-
tempered semitones of western music, so that
frequencies were quantized to the nearest
semitone. The system lacked the human
ability to ”tune in” to the initial frequencies.

To create a model of the tuning of the
source, the first step was to select an initial
reference frequency (A4 = 440Hz), and con-
struct an even-tempered chromatic scale from
this reference. The next step was to measure
the deviation of the frequency of each note

from its expected value (the nearest note in
the chromatic scale), and then adjust the refer-
ence frequency towards reducing the error, and
reconstruct the chromatic scale. These steps
were iterated until the reference frequency
converged on a reasonably stable value.

More precisely, starting from the given
reference frequency, we construct an even-
tempered chromatic scale. Then for each spec-
tral peak, the precise frequency of the peak is
estimated by calculating the phase change in
the frequency bin over a single sample. (This
is the frequency estimation method of the
phase vocoder [Flanagan and Golden, 1966,
Dolson, 1986].) The frequency is then
matched to the nearest note in the chromatic
scale, and the deviation from the expected
value is calculated.

The average deviation could be used to gen-
erate a new reference frequency, but due to the
large variability in frequencies detected from
natural sounds, and the presence of many un-
wanted artefacts in the Fourier transform, the
algorithm is not stable if the new value is com-
puted in this way. Similarly, using the aver-
age deviation suffers too much influence from
outlying values, and the average does not con-
verge to a stable value. Thus any error close
to half a semitone is discarded, as it is not
possible to determine the direction of the er-
ror. Then, to reach a stable estimate for the
reference frequency, the previous reference fre-
quency is adjusted slightly by the error term,
by calculating a geometric mean of the pre-
vious and present estimates of the reference
frequency, heavily weighted towards the previ-
ous value. In this way, the effect of erroneous
values is greatly reduced, and the corrections
gradually bring the tuning in line with the cor-
rect value. Although the convergence is not
absolute (it continues to vary within a range
of about 0.5%, which is less than the variance
of the frequency estimates of individual notes),
it provides a sufficiently accurate reference for
spectral peak detection.

Having obtained the corrected reference fre-
quency, a new chromatic scale is generated,
and the process is iterated for the next sam-



ple. It is important not to use the same sample
for the iterations, as the notes within the sam-
ple may not be representative of the tuning
of the piece. This could occur, for example,
if the sample contained a transition between
two stable notes, or the onset of a note from a
percussive instrument such as a guitar or pi-
ano, which tends to be slightly sharper than
the same note as it decays.

The automatic tuning was tested on several
pieces of solo guitar music, and it was found
that the system converged on a value within
the first few seconds of music, even when the
initial error was maximal (half a semitone).
Faster convergence can be obtained if required,
but slower convergence is preferred, as it is
more robust in noisy data.

As it stands, the system calibrates itself at
the beginning of a piece, and then matches all
notes to this calibrated scale. This is sufficient
for music in which the tuning is stable over
the duration of the piece, but it is possible
that it may be necessary to recalibrate peri-
odically; for example, unaccompanied singing
may drift in pitch by a substantial amount
during a piece.

3 Spectral Envelopes and
Amplitude Envelopes

There is a considerable amount of informa-
tion available in musical data to disambiguate
the parts of music which appear to have more
than one possible transcription. For example,
the problem of recognising harmonics as be-
ing part of a complex tone, which are not no-
tated in the printed score, can be solved much
more accurately if the context of the surround-
ing notes is taken into account. The spec-
tral composition of other notes gives clues to
the resonances of the instrument and of the
room in which the recording was made, and if
these factors are modelled, it becomes possi-
ble to predict the spectral composition of other
notes, and thus differentiate between various
possible decompositions of chords containing
complex tones.

The approach suggested in
[Tanguiane, 1993] which reduces spectra
to boolean values (each component is either
present or absent) is naive, as it requires de-
tection thresholds to be sufficiently well-tuned
to give highly accurate spectra. Experiments
involving solo guitar music show that this is
not possible, and a range of acoustic clues
must be combined to verify or deny the
presence of a component. Clearly the diffi-
culty of this task is magnified with multiple
instruments, so it does not appear to be
realistic to obtain accurate boolean spectra.

Amplitude envelopes also give clues about
the decomposition of multiple notes, as
shown by research in auditory scene analy-
sis [Bregman, 1990, Brown and Cooke, 1994].
This work cites the Gestalt principle of com-
mon fate to suggest that if partials have a
similar amplitude envelope, such as beginning
and ending together, or having a similar and
parallel pattern of decay, then they may have
come from the same source. But partials do
not decay at the same rate, so the pattern of
change in the spectral envelope may in fact
be more useful in providing information about
the source of the sound.

The current system does not yet make use
of dynamic models in this area. The audi-
tory scene analysis principles provide a static
model which is used for matching of harmonics
to fundamentals.

4 Tempo Recognition and
Synchronisation

Another necessary constituent of an automatic
transcription system is a procedure which can
determine the underlying rhythmic structure
of a piece of music. Unlike commercial nota-
tion and sequencing software, which requires
the speed and time signature to be specified
explicitly, we assume that such information is
not available from the user and must be gen-
erated automatically.

A dynamic modelling approach can also be
used at this level to automatically extract such



features as the bar and phrase structure of mu-
sical pieces. This is the approach advocated
in [Rosenthal, 1992], and is similar to the one
proposed in [Tanguiane, 1993].

In the implementation, rhythm is detected
by a two-stage process. A small window size
is used to create a high-resolution time-line of
events. The current rhythm detection stage
relies on the sudden onset of percussive instru-
ments, and is not suitable for analysing music
containing other instruments. The percussive
onset gives a peak across a wide range of fre-
quencies, which is easily detected, and signals
the beginning of a note, which can then be
identified by examining the spectrum from a
large time window, which gives high resolution
in the frequency domain. This gives an accu-
rate mapping to a MIDI-like representation,
but lacks the underlying rhythmic structure.
To obtain this, statistical correlation methods
are used to determine the best estimation of a
beat, and to synchronise the beat to the sam-
ple counts.

5 Conclusions

The philosophy behind this project is to de-
velop an unsupervised transcription system,
that is, one which requires little or no ad-
justment of parameters or a priori informa-
tion about the piece of music being analysed.
Therefore, it is desirable to make as few as-
sumptions as possible about the nature of the
music and the instruments.

To achieve this aim, it is necessary to de-
velop models of the sound sources on the fly,
and then use these models to further analyse
the music. This iteration makes it difficult to
use the system for real-time analysis, but pro-
vides a degree of refinement which would not
otherwise be possible.

Although much of the work still remains to
be done, the initial results are encouraging,
and it is planned to continue this line of re-
search to the completion of an automatic mu-
sic transcription system.
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