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Abstract

We present a system which processes audio signals sampled from recordings of musical per-
formances, and estimates the tempo at each point throughout the piece. The system employs
a bottom-up approach to beat tracking from acoustic signals, assuming no a priori high-level
knowledge of the music such as the time signature or approximate tempo, but rather deriving
this information from the timing patterns of detected note onsets. Results from the beat
tracking of several popular songs are presented and discussed.

1 Introduction

Although most people can tap their foot in time with a piece of music, equivalent
performance on a computer has proved remarkably difficult to emulate. In this paper,
we present a system which processes audio signals sampled from recordings of musical
performances, and estimates the tempo at each point throughout the piece. The
system has been tested with various types of popular music, and produces tempo
estimates as accurately as the performers keep to the tempo.

We do not attempt to model or describe the cognitive mechanisms involved in hu-
man rhythm perception, but we do note certain features of perception which motivate
an ambitious unsupervised approach to the beat tracking problem. Firstly, human
rhythm perception sets its own parameters; the tempo and the metrical structure are
not specified explicitly at the beginning of a piece, and if they change suddenly during
the piece, the perceptual system is able to adjust itself within seconds to the new lis-
tening framework. Secondly, it copes well with “noise” in the input, that is, deviations
from precise timing are allowed, as are variations in tempo, without disturbing the
overall perception of the music. Thirdly, it is able to cope with syncopation, that is,
sections of music where more salient events occur between the beats and less salient
events (or perhaps no event at all) occur on the beat.

In contrast with these capabilities, computer music software does not cope well in
these situations. Commercial sequencing and transcription programs usually require



the beat to be declared explicitly before the music is processed, so that all data can
then be indexed relative to this given beat. Even many research systems are limited
by the fact that once they get out of synchronization with the music, it is very difficult
for them to recover and resume correct interpretation of the rhythmic structure [2].
The robustness of human perception is one feature which is extremely difficult to
reproduce in a computer system.

In this paper, we present a bottom-up approach to beat tracking from acoustic
signals. We assume no a priori high-level knowledge of the music such as the time
signature or approximate tempo, but attempt to derive this information from the
timing patterns of detected note onsets. We distinguish the tasks of beat induction,
which involves estimating the tempo and location of the main rhythmic pulse of a piece
of music, and beat tracking, which is the subsequent estimation of tempo fluctuations
in the light of previous tempo estimations.

We conclude this section with a brief outline of the paper: the following section
contains a review of related work; section 3 describes the lowest level details of the
system, detecting the onsets of musical events from the raw audio data; the theoretical
model of musical time is then briefly discussed in section 4, as are the assumptions
made about the musical data to be analyses; section 5 presents the beat induction
algorithm which creates classes of similar inter-onset intervals as a foundation for
estimating the inter-beat interval; then, in section 6, we present the results produced
by the system; the final section concludes the paper with a discussion of the results,
design issues and future research directions.

2 Related Work

A substantial amount of research has been performed in the area of rhythm recognition
by computer, including a demonstration of various beat tracking methods using a
computer attached to a shoe which tapped in time with the calculated beat of the
music [5]. Many of these methods cannot be compared quantitatively, as they process
different forms of input (MIDI vs audio), or make different assumptions about the
complexity or style of the music being analyses, or rely on user interaction.

Much of the work in machine perception of rhythm has used MIDI files as input [12,
3, 10], which contain control information for a synthesizer instead of audio data. MIDI
files consist of chronologically ordered sequences of events, such as the onsets and
offsets of notes (usually corresponding to pressing and releasing keys on a piano-style
keyboard), and timing information representing the time delays between successive
pairs of events. Type 1 MIDI files also allow for the encoding of structural information
such as the time signature and tempo, but most research in this area presumes that
this information is not available to the rhythm recognition program. The other types
of information present in MIDI files are not relevant to this work and shall not be
discussed here.

Using MIDI files, the input is usually interpreted as a series of inter-onset intervals,
ignoring the offset times, pitch, amplitude and chosen synthesizer voice. That is, each
note is treated purely as an uninterpreted event. It is assumed that the other param-



eters do not provide essential rhythmic information, which in many circumstances
is true. However, there is no doubt that these factors provide useful rhythmic cues,
as more salient events tend to occur on stronger beats. Another factor that is not
usually considered in this work is the possibility of separating parts using principles
of auditory streaming [1], which relies heavily on frequency and timbral information.

Although the use of MIDI input simplifies the task of rhythm recognition by
sidestepping the problem of onset detection, it is still valuable to examine these ap-
proaches, as they correspond to the subsequent stages of analysis after onset detection
has been performed.

Notable work using MIDI file input is the emulation of human rhythm percep-
tion by Rosenthal [12] which produces multiple hypotheses of possible hierarchical
structures in the timing, assigning a score to each hypothesis, corresponding to the
likelihood that a human listener would choose that interpretation of the rhythm. This
technique gives the system the ability to adjust to changes in tempo and meter, as well
as avoiding many of the implausible rhythmic interpretations produced by commercial
systems.

A similar approach is advocated by Tanguiane [16], who uses Kolmogorov com-
plexity as the measure of the likelihood of a particular interpretation, with the least
complex interpretations being favoured. He presents an information-theoretic account
of human perception, and argues that many of the “rules” of music composition and
perception can be explained in information-theoretic terms.

Desain [3] compares two different approaches to modeling rhythm perception, the
symbolic approach of Longuet-Higgins [11] and the connectionist approach of Desain
and Honing [4]. Although this work only models one aspect of rhythm perception,
the issue of quantization, and the results of the comparison do not provide a definitive
preference for one style over the other, it does highlight the need to model expectancy,
either explicitly or implicitly. Expectancy, as described in the work cited above, is
a type of predictive modeling which is particularly relevant to real-time processing
as it provides a contextual framework in which subsequent rhythmic patterns can be
interpreted with less ambiguity.

An alternative approach uses a nonlinear oscillator to model the expectation cre-
ated by detecting a regular pulse in the music [10]. A feedback loop controls the
frequency of the oscillator so that it can track variations in the rhythm. This system
performs quite robustly, but due to its intricate mathematics it does not correspond
to any intuitive notion of perception, and in this sense is very similar to connectionist
approaches.

One early project on rhythm using audio input was the percussion transcription
system of Schloss [13]. Onsets were detected as peaks in the slope of the amplitude
envelope, where the envelope was defined to equal the maximum amplitude in each
period of the sound, and the period defined as the inverse of the lowest frequency
expected to be present in the signal. The audio signal was high-pass filtered to
obtain more accurate onset times. The limitations of the system were that it required
parameters to be set interactively, and it was evaluated only by resynthesis of the
signal.

A more complete approach to beat tracking of acoustic signals was developed by



Goto and Muraoka [7, 8, 9]. They developed two systems for following the beat of
popular music in real time. The earlier system (BTS) used frequency histograms to
find significant peaks in the low frequency regions, corresponding to the frequencies of
the bass and snare drums, and then tracked these low frequency signals by matching
patterns of onset times to a set of pre-stored drum beat patterns. This method was
successful in tracking the beat of most of the popular songs on which it was tested. A
later system allowed music without drums to be tracked by recognizing chord changes,
assuming that significant harmonic changes occur at strong rhythmic positions.

Commercial transcription and sequencing programs do not address the issues cov-
ered by these research systems. It is generally assumed that the tempo and time
signature are explicitly specified before the music is played, and the system then
aligns each note with the nearest position on a metrical grid. Recent systems allow
parameterization of this grid in terms of a resolution limit (the shortest allowed note
length) and also various restrictions on the complexity of rhythm, such as the use of
tuplets, that can be produced by the system. Nevertheless, these systems still produce
implausible rhythmic interpretations, and cannot be used in an unsupervised manner
for anything but simple rhythms.

3 Processing of Audio Data

In this and the following sections, we describe the successive stages of processing
performed by the beat tracking system. The input to the system is a digitally sampled
acoustic signal, such as is found on audio compact discs. In this paper, the stereo
compact disc data was converted to a single channel format by averaging the left
and right channels, resulting in a single channel 16 bit linear pulse code modulated
(PCM) format, with a sampling rate of 44.1kHz. All of the software was written in
C++ and runs under Solaris and Linux. The complete processing of a song takes
about 20 seconds of CPU time on a current PC, so the system could be used for
real-time applications, but it is not currently built to be used in real-time.

The aim of the initial signal processing stage is to detect events in the audio data,
from which rhythmic information can be derived. For the purposes of this work,
events correspond to note onsets, that is, the beginnings of musical notes, including
percussive events. By ignoring note durations and offset times, we discard valuable
information, but our results justify the assumption that there is sufficient information
in note onset times to perform beat tracking.

In previous work [6] we used multi-resolution Fourier analysis to detect events.
In this work, a simpler time domain method is employed, based on [13], which gives
equally good results. This method involves passing the signal through a simple high-
pass filter, then calculating the absolute sum of small overlapping windows of the
signal, and finding peaks in the slope of these window sums using a 4 point linear
regression. Onset times are detected reliably and accurately with this method, which
is essential for the determination of tempo.



4 Modeling Musical Time

The formal model of musical time underlying this work, which will not be discussed
at length in this paper, defines the tempo of a performance as a piecewise constant
non-negative function of time (i.e. a step function), which has units of beats per
second, and is constrained to lie within some arbitrary bounds consistent with human
perception and standard musical notation. This model is not a cognitive or perceptual
model, but it is intended at least to be plausible from the cognitive perspective, as
well as from an information theoretic viewpoint.

The tempo function is restricted further in that it may only change value at a note
onset. This is justified on the basis that no information about tempo can be provided
between musical events. (It is possible that rhythmic information could be inferred
from data within a musical event, such as speed of vibrato, but this is considered to
be a secondary effect, not one that provides conclusive rhythmic information.) As
already noted, the durations of notes play a part in rhythm perception, but are not
used in this work.

It remains to define precisely how quickly the tempo can change — arbitrary leaps
at each function value weaken the perception of tempo, and do not provide sufficient
information for beat tracking to be meaningful. A solo piano piece played molto
rubato is a case in point: although there may be a beat notated in the score, it is
unlikely that a listener unfamiliar with the score would have sufficient information
from listening to a performance to reconstruct the score unambiguously.

In this work, it is assumed that the musical data has a recognizable and stable
tempo (as perceived by human listeners), as is true of most popular music and dance
music. It is planned to extend the software to perform automatic segmentation into
stable sections, but currently we do not allow for changes in meter or sudden large
changes in tempo; instead we require that such pieces be segmented into smaller units
which are processed separately.

The data was chosen from a range of modern popular musical styles (e.g. pop,
salsa, folk and jazz), all containing multiple instruments. We expect that beat tracking
the music of a solo performer would be more difficult, as solo performers do not need
to synchronize their playing with any other performers. In an ensemble situation,
it is necessary for the performers to give each other timing cues, which often come
through the performed music itself.

5 Beat Induction

The beat induction section of the system aims to develop a local model of the tempo,
and to use that to determine the local structure. As each local value is determined, it
can be compared with previous values and adjusted to satisfy a continuity constraint,
reflecting the assumption that the local tempo will not change significantly between
areas. This is more likely to be true where overlapping time windows are used, as in
this work.

Once the onsets have been detected, we analyze the elapsed time between the



onsets of near pairs of notes. These times are often called inter-onset intervals (or
I0I’s) in the literature, but usually only refer to the times between successive onsets.
In our work, we extend the term to include times between onsets of events that have
other event onsets occurring between them. It does not make sense to examine all
pairs of onset times, since even a small tempo variation will result in a significant
change in an inter-onset interval containing many beats. (We could also argue that
the limitations of human temporal memory imply that tempo information can only
be provided by local features of the music.) Therefore we set an upper bound on the
length of inter-onset intervals that we examine. In the algorithm below, the upper
bound is labelled TOI_Limit, which was set to 2.5 seconds in this work.

Results from psychoacoustic research suggest that there are limits on the accuracy
of production and perception of timing information in music which also may be used
to set parameters for beat tracking analysis. It is known that deviations of up to 40ms
from the timing indicated in the score are not uncommon in musical performances,
and often go unnoticed by listeners [15]. This allows us to group inter-onset intervals
into classes which are considered sufficiently similar to be perceived as the same
interval. These classes are characterized by the average size of their members, and
new members are added if their sizes are close enough to this average. Closeness is
defined in absolute terms by the constant Resolution in the algorithm below. If an
interval does not fit into any existing class, a new class is created for it.

Note that the process of adding an interval to a class automatically adjusts the
average of the members, so that the class boundaries are not rigid, but may drift
over a period of time. It is important that these classes are not constructed over too
long a time window, or else tempo variations may corrupt the accuracy of results.
This is a disadvantage of using averaging, which is intended to be outweighed by the
smoothing of random errors. In this work, time windows of 5-10 seconds were used.

An alternative to the current approach of limiting the time window in which
intervals are examined is to timestamp each of the intervals and delete them from the
classes once they reach an “expiry age”. This technique has yet to be tested.

The grouping algorithm as used in previous work [6] is shown below:

Algorithm: Generate_Classes

For each pair of onset times t1,ts (with ¢ < t2)
If to — t1 < IOI_Limit (maximum distance between intervals)
I:= tQ — t1
Find class C,, such that |Average(C,) — I| is minimum
If |Average(Cr) — I| < Resolution then
Cpn:=C,U{l}
Else
Create new class Cp, := {I}
End If
End If
End For



For each class generated, we calculate a score based on the number of intervals in
the class and the agreement of the lengths of the intervals. This gives a ranking of
classes, most of which are often integer multiples or sub-multiples of the beat. Each
score is adjusted to reflect the scores of other intervals which are related in this way,
and a final best estimate of the inter-beat interval is determined.

This technique gives a reasonably reliable estimate of the inter-beat interval, and
when combined with some continuity constraints, successfully calculated the beat on
all data tested (see the results section). But it does not calculate the location of
the beat. That is, by analogy with wave theory, it calculates the frequency but not
the phase of the beat. We use the term phase here, but note that we measure it
in fractions of beats rather than radians, so that integer values of phase correspond
precisely with beat times.

We present two methods of phase calculation, and then discuss their relative mer-
its. The first method divides the beat into a number of equal sized units, and counts
the number of onsets that occur within (or near) each of these units. The onset times
are normalized by the beat and then adjusted to a value between 0 and 1 by discard-
ing the integer portion of the normalized onset time, which gives a representation
of the onset position within the beat in which the onset occurs. The unit with the
maximum number of onsets is chosen to be the beat position, under the assumption
that the greatest number of events occur on the beat.

The second approach to phase calculation assumes only that at least one event
e lies on the beat, and calculates the “goodness” or “badness” for each other onset
time that results from choosing the onset of e as defining the beat position. To do
this, we must first choose values for each position within a beat, representing whether
events are expected or not expected to occur at that position, in order to define the
goodness and badness measures. The goodness measure rewards beat positions for
each event that occurs at that position, as well as for events occurring at half-beat
and other fractional beat positions. The badness measure penalizes positions for each
event which is not explainable as an onset time which is a simple fraction of a beat.

Neither of these techniques produce a sufficiently reliable estimate of phase. The
main difficulty with phase calculations is that they are extremely sensitive to errors
in the inter-beat interval, because they are measured in fractions of a beat, and the
tempo error is multiplied by the number of beats from the beginning of the window
to the event in question. Also, it is not possible to average phase values, as the actual
positions of events are unknown, and it is only meaningful to average the phases
of events in the same relative position within the beat. In current work, we are
developing a multiple-hypothesis extension to the second approach, which has proved
to be successful in tracking the beat throughout complete songs.

6 Results

One of the most difficult tasks in this work is to evaluate the results, as there is no
definitive meaning of beat for performed music. One could define the beat in relation
to the score, if scores were available for the music being tested. In the case of popular



music, complete scores are not generally available, but even for classical music and
synthesizer performances where the score is available, there is no formal model of
beat covering all possible musical scores. That is, given an accurate performance of
arbitrary score, it is not always clear what a beat tracking system should produce.
The reason for the problem is that there is no one-to-one mapping between scores
and performances; many different scores can produce the same performance, and vice
versa. Nevertheless, for a large amount of music, there is at least a socially agreed
definition of beat (consider dancing), and in this work we only consider music with
such an “agreed” beat.

To test the results of the beat tracking system, the inter-beat intervals were cal-
culated manually from the positions of salient events in the audio signal. That is,
the sound files were segmented at beat boundaries, and the length of each segment
was divided by the number of beats to give an average inter-beat interval for the
segment. We also calculated error margins for the inter-beat intervals by estimating
the error in determining the beat locations for segmentation. The error in locating
an event was estimated to be 10ms. This low error bound was made possible by only
performing segmentation where percussive events occurred on a beat. There was no
error in determining the number of beats in a segment; this was simply a matter of
counting. Having calculated the error in the inter-beat interval to be between 0.1%
and 0.2%, this error was ignored, as it was negligible compared to the variations in
tempo. By using smaller segments we could achieve smaller tempo variations at the
expense of greater error in the inter-beat interval and much more human effort, but
gaining maximal information from our results.

The following table shows the results for initial beat induction in 6 songs, where
the system is given a 10 second fragment of the song with no contextual information
(previous or subsequent beat computation). The errors refer to the difference between
the system’s value and the value derived manually for that section. The row labelled
Variation contains the range of variation in manually computed inter-beat intervals
between different segments of each song. Since the manually derived values are the
average values for each segment, the maximum deviation is likely to be larger than
the average. Also, because the exact values are not calculated for each 10 second
segment, one cannot expect precise agreement between the measured and calculated
values. Nevertheless, it is clear that within the range of measured deviation, the ini-
tial beat induction performed on any 10 second fragment of these songs is correct in
well over 90% of cases.

Errors Song 1 | Song 2 | Song 3 | Song 4 | Song 5 | Song 6
< 1% 60.4% | 32.3% | 67.7% | 30.5% | 20.5% | 80.4%
1% to 2% || 32.1% | 28.2% | 283% | 27.3% | 27.9% | 19.6%
2% to 3% 6.7% | 12.1% 4.0% | 18.8% | 27.4% 0.0%
3% to 5% 0.0% | 14.5% 0.0% | 22.7% | 16.7% 0.0%
> 5% 0.7% | 12.9% 0.0% 0.8% 7.4% 0.0%
Variation 2.2% 3.0% 1.9% 5.2% 6.5% 0.9%

Table 1: Beat induction results for 6 popular songs




When beat tracking is performed throughout a whole song, the contextual infor-
mation is sufficient to correct all of the errors. For all of the songs tested, there is
no more than one value with greater than 5% error in the first 30 values calculated,
so the system is able to lock in to the correct tempo and reject the incorrect values
almost immediately.

7 Discussion and Future Work

We have described a beat tracking system which analyses acoustic data, detects the
salient note onsets, and then discovers patterns in the intervals between the onsets,
from which the most likely inter-beat interval is induced. Errors in the inter-beat
interval estimates are corrected by comparison with previous values, under the as-
sumption of a slowly changing tempo. The system is successful in tracking the beat
in a number of popular songs.

There are many ways in which the system can be improved. The use of other data
apart from onset times would give the beat tracking system more information, which
would allow more intelligent processing of the data. Amplitude, pitch and duration
all give important rhythmic cues, which are currently not used by the system.

The design of the software is a modular design with a low degree of coupling
between modules, as recommended by software engineering principles. So the data
is processed in a bottom-up fashion, from raw audio to onset data to inter-beat
interval estimates, without any feedback from the higher levels to the lower levels of
abstraction. This simplifies the construction and maintenance of the software, but
denies the powerful processing achievable using multiple feedback paths, as exist in the
human brain. A strong argument for combining bottom-up and top-down processing
for this type of work is found in [14].

The use of manual beat tracking for evaluation of the system limits the amount of
testing that can be performed, but is necessary if we are to analyze performed music.
It would also be useful to perform a study of beat tracking in synthetically generated
music, where the variations in tempo and onset times can be controlled precisely.

The intended application for this work is as part of an automatic music tran-
scription system. In previous work [6], we discussed how subsequent processing can
generate structural information such as the time signature of the music, and also
began to address the issue of quantization. In further work, these issues will be re-
visited, and the system will also be extended to perform score extraction of classical
music performances. Other current work is focussed on the precise calculation of beat
location, that is, beat phase.
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