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tWe present a system whi
h pro
esses audio signals sampled from re
ordings of musi
al per-forman
es, and estimates the tempo at ea
h point throughout the pie
e. The system employsa bottom-up approa
h to beat tra
king from a
ousti
 signals, assuming no a priori high-levelknowledge of the musi
 su
h as the time signature or approximate tempo, but rather derivingthis information from the timing patterns of dete
ted note onsets. Results from the beattra
king of several popular songs are presented and dis
ussed.1 Introdu
tionAlthough most people 
an tap their foot in time with a pie
e of musi
, equivalentperforman
e on a 
omputer has proved remarkably diÆ
ult to emulate. In this paper,we present a system whi
h pro
esses audio signals sampled from re
ordings of musi
alperforman
es, and estimates the tempo at ea
h point throughout the pie
e. Thesystem has been tested with various types of popular musi
, and produ
es tempoestimates as a

urately as the performers keep to the tempo.We do not attempt to model or des
ribe the 
ognitive me
hanisms involved in hu-man rhythm per
eption, but we do note 
ertain features of per
eption whi
h motivatean ambitious unsupervised approa
h to the beat tra
king problem. Firstly, humanrhythm per
eption sets its own parameters; the tempo and the metri
al stru
ture arenot spe
i�ed expli
itly at the beginning of a pie
e, and if they 
hange suddenly duringthe pie
e, the per
eptual system is able to adjust itself within se
onds to the new lis-tening framework. Se
ondly, it 
opes well with \noise" in the input, that is, deviationsfrom pre
ise timing are allowed, as are variations in tempo, without disturbing theoverall per
eption of the musi
. Thirdly, it is able to 
ope with syn
opation, that is,se
tions of musi
 where more salient events o

ur between the beats and less salientevents (or perhaps no event at all) o

ur on the beat.In 
ontrast with these 
apabilities, 
omputer musi
 software does not 
ope well inthese situations. Commer
ial sequen
ing and trans
ription programs usually require



the beat to be de
lared expli
itly before the musi
 is pro
essed, so that all data 
anthen be indexed relative to this given beat. Even many resear
h systems are limitedby the fa
t that on
e they get out of syn
hronization with the musi
, it is very diÆ
ultfor them to re
over and resume 
orre
t interpretation of the rhythmi
 stru
ture [2℄.The robustness of human per
eption is one feature whi
h is extremely diÆ
ult toreprodu
e in a 
omputer system.In this paper, we present a bottom-up approa
h to beat tra
king from a
ousti
signals. We assume no a priori high-level knowledge of the musi
 su
h as the timesignature or approximate tempo, but attempt to derive this information from thetiming patterns of dete
ted note onsets. We distinguish the tasks of beat indu
tion,whi
h involves estimating the tempo and lo
ation of the main rhythmi
 pulse of a pie
eof musi
, and beat tra
king, whi
h is the subsequent estimation of tempo 
u
tuationsin the light of previous tempo estimations.We 
on
lude this se
tion with a brief outline of the paper: the following se
tion
ontains a review of related work; se
tion 3 des
ribes the lowest level details of thesystem, dete
ting the onsets of musi
al events from the raw audio data; the theoreti
almodel of musi
al time is then brie
y dis
ussed in se
tion 4, as are the assumptionsmade about the musi
al data to be analyses; se
tion 5 presents the beat indu
tionalgorithm whi
h 
reates 
lasses of similar inter-onset intervals as a foundation forestimating the inter-beat interval; then, in se
tion 6, we present the results produ
edby the system; the �nal se
tion 
on
ludes the paper with a dis
ussion of the results,design issues and future resear
h dire
tions.2 Related WorkA substantial amount of resear
h has been performed in the area of rhythm re
ognitionby 
omputer, in
luding a demonstration of various beat tra
king methods using a
omputer atta
hed to a shoe whi
h tapped in time with the 
al
ulated beat of themusi
 [5℄. Many of these methods 
annot be 
ompared quantitatively, as they pro
essdi�erent forms of input (MIDI vs audio), or make di�erent assumptions about the
omplexity or style of the musi
 being analyses, or rely on user intera
tion.Mu
h of the work in ma
hine per
eption of rhythm has used MIDI �les as input [12,3, 10℄, whi
h 
ontain 
ontrol information for a synthesizer instead of audio data. MIDI�les 
onsist of 
hronologi
ally ordered sequen
es of events, su
h as the onsets ando�sets of notes (usually 
orresponding to pressing and releasing keys on a piano-stylekeyboard), and timing information representing the time delays between su

essivepairs of events. Type 1 MIDI �les also allow for the en
oding of stru
tural informationsu
h as the time signature and tempo, but most resear
h in this area presumes thatthis information is not available to the rhythm re
ognition program. The other typesof information present in MIDI �les are not relevant to this work and shall not bedis
ussed here.Using MIDI �les, the input is usually interpreted as a series of inter-onset intervals,ignoring the o�set times, pit
h, amplitude and 
hosen synthesizer voi
e. That is, ea
hnote is treated purely as an uninterpreted event. It is assumed that the other param-



eters do not provide essential rhythmi
 information, whi
h in many 
ir
umstan
esis true. However, there is no doubt that these fa
tors provide useful rhythmi
 
ues,as more salient events tend to o

ur on stronger beats. Another fa
tor that is notusually 
onsidered in this work is the possibility of separating parts using prin
iplesof auditory streaming [1℄, whi
h relies heavily on frequen
y and timbral information.Although the use of MIDI input simpli�es the task of rhythm re
ognition bysidestepping the problem of onset dete
tion, it is still valuable to examine these ap-proa
hes, as they 
orrespond to the subsequent stages of analysis after onset dete
tionhas been performed.Notable work using MIDI �le input is the emulation of human rhythm per
ep-tion by Rosenthal [12℄ whi
h produ
es multiple hypotheses of possible hierar
hi
alstru
tures in the timing, assigning a s
ore to ea
h hypothesis, 
orresponding to thelikelihood that a human listener would 
hoose that interpretation of the rhythm. Thiste
hnique gives the system the ability to adjust to 
hanges in tempo and meter, as wellas avoiding many of the implausible rhythmi
 interpretations produ
ed by 
ommer
ialsystems.A similar approa
h is advo
ated by Tanguiane [16℄, who uses Kolmogorov 
om-plexity as the measure of the likelihood of a parti
ular interpretation, with the least
omplex interpretations being favoured. He presents an information-theoreti
 a

ountof human per
eption, and argues that many of the \rules" of musi
 
omposition andper
eption 
an be explained in information-theoreti
 terms.Desain [3℄ 
ompares two di�erent approa
hes to modeling rhythm per
eption, thesymboli
 approa
h of Longuet-Higgins [11℄ and the 
onne
tionist approa
h of Desainand Honing [4℄. Although this work only models one aspe
t of rhythm per
eption,the issue of quantization, and the results of the 
omparison do not provide a de�nitivepreferen
e for one style over the other, it does highlight the need to model expe
tan
y,either expli
itly or impli
itly. Expe
tan
y, as des
ribed in the work 
ited above, isa type of predi
tive modeling whi
h is parti
ularly relevant to real-time pro
essingas it provides a 
ontextual framework in whi
h subsequent rhythmi
 patterns 
an beinterpreted with less ambiguity.An alternative approa
h uses a nonlinear os
illator to model the expe
tation 
re-ated by dete
ting a regular pulse in the musi
 [10℄. A feedba
k loop 
ontrols thefrequen
y of the os
illator so that it 
an tra
k variations in the rhythm. This systemperforms quite robustly, but due to its intri
ate mathemati
s it does not 
orrespondto any intuitive notion of per
eption, and in this sense is very similar to 
onne
tionistapproa
hes.One early proje
t on rhythm using audio input was the per
ussion trans
riptionsystem of S
hloss [13℄. Onsets were dete
ted as peaks in the slope of the amplitudeenvelope, where the envelope was de�ned to equal the maximum amplitude in ea
hperiod of the sound, and the period de�ned as the inverse of the lowest frequen
yexpe
ted to be present in the signal. The audio signal was high-pass �ltered toobtain more a

urate onset times. The limitations of the system were that it requiredparameters to be set intera
tively, and it was evaluated only by resynthesis of thesignal.A more 
omplete approa
h to beat tra
king of a
ousti
 signals was developed by



Goto and Muraoka [7, 8, 9℄. They developed two systems for following the beat ofpopular musi
 in real time. The earlier system (BTS) used frequen
y histograms to�nd signi�
ant peaks in the low frequen
y regions, 
orresponding to the frequen
ies ofthe bass and snare drums, and then tra
ked these low frequen
y signals by mat
hingpatterns of onset times to a set of pre-stored drum beat patterns. This method wassu

essful in tra
king the beat of most of the popular songs on whi
h it was tested. Alater system allowed musi
 without drums to be tra
ked by re
ognizing 
hord 
hanges,assuming that signi�
ant harmoni
 
hanges o

ur at strong rhythmi
 positions.Commer
ial trans
ription and sequen
ing programs do not address the issues 
ov-ered by these resear
h systems. It is generally assumed that the tempo and timesignature are expli
itly spe
i�ed before the musi
 is played, and the system thenaligns ea
h note with the nearest position on a metri
al grid. Re
ent systems allowparameterization of this grid in terms of a resolution limit (the shortest allowed notelength) and also various restri
tions on the 
omplexity of rhythm, su
h as the use oftuplets, that 
an be produ
ed by the system. Nevertheless, these systems still produ
eimplausible rhythmi
 interpretations, and 
annot be used in an unsupervised mannerfor anything but simple rhythms.3 Pro
essing of Audio DataIn this and the following se
tions, we des
ribe the su

essive stages of pro
essingperformed by the beat tra
king system. The input to the system is a digitally sampleda
ousti
 signal, su
h as is found on audio 
ompa
t dis
s. In this paper, the stereo
ompa
t dis
 data was 
onverted to a single 
hannel format by averaging the leftand right 
hannels, resulting in a single 
hannel 16 bit linear pulse 
ode modulated(PCM) format, with a sampling rate of 44.1kHz. All of the software was written inC++ and runs under Solaris and Linux. The 
omplete pro
essing of a song takesabout 20 se
onds of CPU time on a 
urrent PC, so the system 
ould be used forreal-time appli
ations, but it is not 
urrently built to be used in real-time.The aim of the initial signal pro
essing stage is to dete
t events in the audio data,from whi
h rhythmi
 information 
an be derived. For the purposes of this work,events 
orrespond to note onsets, that is, the beginnings of musi
al notes, in
ludingper
ussive events. By ignoring note durations and o�set times, we dis
ard valuableinformation, but our results justify the assumption that there is suÆ
ient informationin note onset times to perform beat tra
king.In previous work [6℄ we used multi-resolution Fourier analysis to dete
t events.In this work, a simpler time domain method is employed, based on [13℄, whi
h givesequally good results. This method involves passing the signal through a simple high-pass �lter, then 
al
ulating the absolute sum of small overlapping windows of thesignal, and �nding peaks in the slope of these window sums using a 4 point linearregression. Onset times are dete
ted reliably and a

urately with this method, whi
his essential for the determination of tempo.



4 Modeling Musi
al TimeThe formal model of musi
al time underlying this work, whi
h will not be dis
ussedat length in this paper, de�nes the tempo of a performan
e as a pie
ewise 
onstantnon-negative fun
tion of time (i.e. a step fun
tion), whi
h has units of beats perse
ond, and is 
onstrained to lie within some arbitrary bounds 
onsistent with humanper
eption and standard musi
al notation. This model is not a 
ognitive or per
eptualmodel, but it is intended at least to be plausible from the 
ognitive perspe
tive, aswell as from an information theoreti
 viewpoint.The tempo fun
tion is restri
ted further in that it may only 
hange value at a noteonset. This is justi�ed on the basis that no information about tempo 
an be providedbetween musi
al events. (It is possible that rhythmi
 information 
ould be inferredfrom data within a musi
al event, su
h as speed of vibrato, but this is 
onsidered tobe a se
ondary e�e
t, not one that provides 
on
lusive rhythmi
 information.) Asalready noted, the durations of notes play a part in rhythm per
eption, but are notused in this work.It remains to de�ne pre
isely how qui
kly the tempo 
an 
hange { arbitrary leapsat ea
h fun
tion value weaken the per
eption of tempo, and do not provide suÆ
ientinformation for beat tra
king to be meaningful. A solo piano pie
e played moltorubato is a 
ase in point: although there may be a beat notated in the s
ore, it isunlikely that a listener unfamiliar with the s
ore would have suÆ
ient informationfrom listening to a performan
e to re
onstru
t the s
ore unambiguously.In this work, it is assumed that the musi
al data has a re
ognizable and stabletempo (as per
eived by human listeners), as is true of most popular musi
 and dan
emusi
. It is planned to extend the software to perform automati
 segmentation intostable se
tions, but 
urrently we do not allow for 
hanges in meter or sudden large
hanges in tempo; instead we require that su
h pie
es be segmented into smaller unitswhi
h are pro
essed separately.The data was 
hosen from a range of modern popular musi
al styles (e.g. pop,salsa, folk and jazz), all 
ontaining multiple instruments. We expe
t that beat tra
kingthe musi
 of a solo performer would be more diÆ
ult, as solo performers do not needto syn
hronize their playing with any other performers. In an ensemble situation,it is ne
essary for the performers to give ea
h other timing 
ues, whi
h often 
omethrough the performed musi
 itself.5 Beat Indu
tionThe beat indu
tion se
tion of the system aims to develop a lo
al model of the tempo,and to use that to determine the lo
al stru
ture. As ea
h lo
al value is determined, it
an be 
ompared with previous values and adjusted to satisfy a 
ontinuity 
onstraint,re
e
ting the assumption that the lo
al tempo will not 
hange signi�
antly betweenareas. This is more likely to be true where overlapping time windows are used, as inthis work.On
e the onsets have been dete
ted, we analyze the elapsed time between the



onsets of near pairs of notes. These times are often 
alled inter-onset intervals (orIOI's) in the literature, but usually only refer to the times between su

essive onsets.In our work, we extend the term to in
lude times between onsets of events that haveother event onsets o

urring between them. It does not make sense to examine allpairs of onset times, sin
e even a small tempo variation will result in a signi�
ant
hange in an inter-onset interval 
ontaining many beats. (We 
ould also argue thatthe limitations of human temporal memory imply that tempo information 
an onlybe provided by lo
al features of the musi
.) Therefore we set an upper bound on thelength of inter-onset intervals that we examine. In the algorithm below, the upperbound is labelled IOI Limit, whi
h was set to 2.5 se
onds in this work.Results from psy
hoa
ousti
 resear
h suggest that there are limits on the a

ura
yof produ
tion and per
eption of timing information in musi
 whi
h also may be usedto set parameters for beat tra
king analysis. It is known that deviations of up to 40msfrom the timing indi
ated in the s
ore are not un
ommon in musi
al performan
es,and often go unnoti
ed by listeners [15℄. This allows us to group inter-onset intervalsinto 
lasses whi
h are 
onsidered suÆ
iently similar to be per
eived as the sameinterval. These 
lasses are 
hara
terized by the average size of their members, andnew members are added if their sizes are 
lose enough to this average. Closeness isde�ned in absolute terms by the 
onstant Resolution in the algorithm below. If aninterval does not �t into any existing 
lass, a new 
lass is 
reated for it.Note that the pro
ess of adding an interval to a 
lass automati
ally adjusts theaverage of the members, so that the 
lass boundaries are not rigid, but may driftover a period of time. It is important that these 
lasses are not 
onstru
ted over toolong a time window, or else tempo variations may 
orrupt the a

ura
y of results.This is a disadvantage of using averaging, whi
h is intended to be outweighed by thesmoothing of random errors. In this work, time windows of 5-10 se
onds were used.An alternative to the 
urrent approa
h of limiting the time window in whi
hintervals are examined is to timestamp ea
h of the intervals and delete them from the
lasses on
e they rea
h an \expiry age". This te
hnique has yet to be tested.The grouping algorithm as used in previous work [6℄ is shown below:Algorithm: Generate ClassesFor ea
h pair of onset times t1; t2 (with t1 < t2)If t2 � t1 < IOI Limit (maximum distan
e between intervals)I := t2 � t1Find 
lass Cn su
h that jAverage(Cn)� I j is minimumIf jAverage(Cn)� I j < Resolution thenCn := Cn [ fIgElse Create new 
lass Cm := fIgEnd IfEnd IfEnd For



For ea
h 
lass generated, we 
al
ulate a s
ore based on the number of intervals inthe 
lass and the agreement of the lengths of the intervals. This gives a ranking of
lasses, most of whi
h are often integer multiples or sub-multiples of the beat. Ea
hs
ore is adjusted to re
e
t the s
ores of other intervals whi
h are related in this way,and a �nal best estimate of the inter-beat interval is determined.This te
hnique gives a reasonably reliable estimate of the inter-beat interval, andwhen 
ombined with some 
ontinuity 
onstraints, su

essfully 
al
ulated the beat onall data tested (see the results se
tion). But it does not 
al
ulate the lo
ation ofthe beat. That is, by analogy with wave theory, it 
al
ulates the frequen
y but notthe phase of the beat. We use the term phase here, but note that we measure itin fra
tions of beats rather than radians, so that integer values of phase 
orrespondpre
isely with beat times.We present two methods of phase 
al
ulation, and then dis
uss their relative mer-its. The �rst method divides the beat into a number of equal sized units, and 
ountsthe number of onsets that o

ur within (or near) ea
h of these units. The onset timesare normalized by the beat and then adjusted to a value between 0 and 1 by dis
ard-ing the integer portion of the normalized onset time, whi
h gives a representationof the onset position within the beat in whi
h the onset o

urs. The unit with themaximum number of onsets is 
hosen to be the beat position, under the assumptionthat the greatest number of events o

ur on the beat.The se
ond approa
h to phase 
al
ulation assumes only that at least one evente lies on the beat, and 
al
ulates the \goodness" or \badness" for ea
h other onsettime that results from 
hoosing the onset of e as de�ning the beat position. To dothis, we must �rst 
hoose values for ea
h position within a beat, representing whetherevents are expe
ted or not expe
ted to o

ur at that position, in order to de�ne thegoodness and badness measures. The goodness measure rewards beat positions forea
h event that o

urs at that position, as well as for events o

urring at half-beatand other fra
tional beat positions. The badness measure penalizes positions for ea
hevent whi
h is not explainable as an onset time whi
h is a simple fra
tion of a beat.Neither of these te
hniques produ
e a suÆ
iently reliable estimate of phase. Themain diÆ
ulty with phase 
al
ulations is that they are extremely sensitive to errorsin the inter-beat interval, be
ause they are measured in fra
tions of a beat, and thetempo error is multiplied by the number of beats from the beginning of the windowto the event in question. Also, it is not possible to average phase values, as the a
tualpositions of events are unknown, and it is only meaningful to average the phasesof events in the same relative position within the beat. In 
urrent work, we aredeveloping a multiple-hypothesis extension to the se
ond approa
h, whi
h has provedto be su

essful in tra
king the beat throughout 
omplete songs.6 ResultsOne of the most diÆ
ult tasks in this work is to evaluate the results, as there is node�nitive meaning of beat for performed musi
. One 
ould de�ne the beat in relationto the s
ore, if s
ores were available for the musi
 being tested. In the 
ase of popular



musi
, 
omplete s
ores are not generally available, but even for 
lassi
al musi
 andsynthesizer performan
es where the s
ore is available, there is no formal model ofbeat 
overing all possible musi
al s
ores. That is, given an a

urate performan
e ofarbitrary s
ore, it is not always 
lear what a beat tra
king system should produ
e.The reason for the problem is that there is no one-to-one mapping between s
oresand performan
es; many di�erent s
ores 
an produ
e the same performan
e, and vi
eversa. Nevertheless, for a large amount of musi
, there is at least a so
ially agreedde�nition of beat (
onsider dan
ing), and in this work we only 
onsider musi
 withsu
h an \agreed" beat.To test the results of the beat tra
king system, the inter-beat intervals were 
al-
ulated manually from the positions of salient events in the audio signal. That is,the sound �les were segmented at beat boundaries, and the length of ea
h segmentwas divided by the number of beats to give an average inter-beat interval for thesegment. We also 
al
ulated error margins for the inter-beat intervals by estimatingthe error in determining the beat lo
ations for segmentation. The error in lo
atingan event was estimated to be 10ms. This low error bound was made possible by onlyperforming segmentation where per
ussive events o

urred on a beat. There was noerror in determining the number of beats in a segment; this was simply a matter of
ounting. Having 
al
ulated the error in the inter-beat interval to be between 0.1%and 0.2%, this error was ignored, as it was negligible 
ompared to the variations intempo. By using smaller segments we 
ould a
hieve smaller tempo variations at theexpense of greater error in the inter-beat interval and mu
h more human e�ort, butgaining maximal information from our results.The following table shows the results for initial beat indu
tion in 6 songs, wherethe system is given a 10 se
ond fragment of the song with no 
ontextual information(previous or subsequent beat 
omputation). The errors refer to the di�eren
e betweenthe system's value and the value derived manually for that se
tion. The row labelledVariation 
ontains the range of variation in manually 
omputed inter-beat intervalsbetween di�erent segments of ea
h song. Sin
e the manually derived values are theaverage values for ea
h segment, the maximum deviation is likely to be larger thanthe average. Also, be
ause the exa
t values are not 
al
ulated for ea
h 10 se
ondsegment, one 
annot expe
t pre
ise agreement between the measured and 
al
ulatedvalues. Nevertheless, it is 
lear that within the range of measured deviation, the ini-tial beat indu
tion performed on any 10 se
ond fragment of these songs is 
orre
t inwell over 90% of 
ases.Errors Song 1 Song 2 Song 3 Song 4 Song 5 Song 6< 1% 60.4% 32.3% 67.7% 30.5% 20.5% 80.4%1% to 2% 32.1% 28.2% 28.3% 27.3% 27.9% 19.6%2% to 3% 6.7% 12.1% 4.0% 18.8% 27.4% 0.0%3% to 5% 0.0% 14.5% 0.0% 22.7% 16.7% 0.0%> 5% 0.7% 12.9% 0.0% 0.8% 7.4% 0.0%Variation 2.2% 3.0% 1.9% 5.2% 6.5% 0.9%Table 1: Beat indu
tion results for 6 popular songs



When beat tra
king is performed throughout a whole song, the 
ontextual infor-mation is suÆ
ient to 
orre
t all of the errors. For all of the songs tested, there isno more than one value with greater than 5% error in the �rst 30 values 
al
ulated,so the system is able to lo
k in to the 
orre
t tempo and reje
t the in
orre
t valuesalmost immediately.7 Dis
ussion and Future WorkWe have des
ribed a beat tra
king system whi
h analyses a
ousti
 data, dete
ts thesalient note onsets, and then dis
overs patterns in the intervals between the onsets,from whi
h the most likely inter-beat interval is indu
ed. Errors in the inter-beatinterval estimates are 
orre
ted by 
omparison with previous values, under the as-sumption of a slowly 
hanging tempo. The system is su

essful in tra
king the beatin a number of popular songs.There are many ways in whi
h the system 
an be improved. The use of other dataapart from onset times would give the beat tra
king system more information, whi
hwould allow more intelligent pro
essing of the data. Amplitude, pit
h and durationall give important rhythmi
 
ues, whi
h are 
urrently not used by the system.The design of the software is a modular design with a low degree of 
ouplingbetween modules, as re
ommended by software engineering prin
iples. So the datais pro
essed in a bottom-up fashion, from raw audio to onset data to inter-beatinterval estimates, without any feedba
k from the higher levels to the lower levels ofabstra
tion. This simpli�es the 
onstru
tion and maintenan
e of the software, butdenies the powerful pro
essing a
hievable using multiple feedba
k paths, as exist in thehuman brain. A strong argument for 
ombining bottom-up and top-down pro
essingfor this type of work is found in [14℄.The use of manual beat tra
king for evaluation of the system limits the amount oftesting that 
an be performed, but is ne
essary if we are to analyze performed musi
.It would also be useful to perform a study of beat tra
king in syntheti
ally generatedmusi
, where the variations in tempo and onset times 
an be 
ontrolled pre
isely.The intended appli
ation for this work is as part of an automati
 musi
 tran-s
ription system. In previous work [6℄, we dis
ussed how subsequent pro
essing 
angenerate stru
tural information su
h as the time signature of the musi
, and alsobegan to address the issue of quantization. In further work, these issues will be re-visited, and the system will also be extended to perform s
ore extra
tion of 
lassi
almusi
 performan
es. Other 
urrent work is fo
ussed on the pre
ise 
al
ulation of beatlo
ation, that is, beat phase.8 A
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