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Abstract

Beat tracking is what people do when they tap their
feet in time to music. We present a software system
which performs this task, processing music in a stan-
dard digital audio format and estimating the locations
of musical beats. A time-domain algorithm detects
salient acoustic events, and then a clustering algorithm
groups the time intervals between events to obtain hy-
potheses about the current tempo. Multiple competing
agents track these hypotheses throughout the music,
with further agents being created at decision points.
The output for each agent is a sequence of beat loca-
tions, which is evaluated for its closeness of fit to the
data. This approach to beat tracking assumes no previ-
ous knowledge of the music such as the style, time sig-
nature or approximate tempo; all required information
is derived from the audio data. The system has been
tested with various styles of music (popular, jazz, and
classical) and performs robustly, rarely making errors
in popular music, and recovering quickly from errors
in more complex styles of music, despite the fact that
no high level musical knowledge is encoded in the sys-
tem. We describe several applications, including musi-
cal score extraction and an automatic disc jockey that
performs beat mixing in real time.

Introduction

Although most people can tap their feet in time with
music, equivalent performance on a computer has
proved remarkably difficult to achieve. One reason for
this is that these systems have been based only on the
codification of high level metrical knowledge. We show
that such knowledge is secondary to the beat tracking
task. Just as people can follow the beat of music with-
out musical training and without previous knowledge
of the particular piece of music, so can a computer pro-
gram.

We do not attempt to model or describe the cog-
nitive mechanisms involved in human rhythm percep-
tion. However we do note certain features of perception
which motivate an ambitious unsupervised approach to
the beat tracking problem. Firstly, human rhythm per-
ception sets its own parameters; the tempo and the
metrical structure are not specified to a listener at the
beginning of a piece, and if they change suddenly during

the piece, the perceptual system adjusts within seconds
to the new listening framework. Secondly, it copes well
with “noise” in the input. That is, deviations from pre-
cise timing and variations in tempo do not destroy the
overall perception of the beat. Thirdly, human percep-
tion is able to cope with syncopation, that is, sections
of music where the more salient events are occurring
between the beats rather than on the beat.

In contrast with these capabilities, computer music
software does not normally cope well in these situa-
tions. Commercial sequencing and transcription pro-
grams usually require the beat to be declared explicitly
before music can be processed, so that all data can then
be indexed relative to this given beat. Even many re-
search systems are limited by the fact that once they get
out of synchronization with the music, it is very difficult
for them to recover and resume correct interpretation
of the rhythmic structure (Dannenberg 1991). The ro-
bustness of human perception is one feature which has
proved difficult to reproduce in a computer system.

In this paper, we present a system which processes
musical audio signals, estimating the tempo and deter-
mining the locations of musical beats. No specific as-
sumptions are made about the music being analyzed, so
the system performs robustly, recovering quickly from
tracking errors. The system has been tested on various
types of popular, jazz and classical music.

The subsequent sections of the paper contain a re-
view of related work, then a description of the under-
lying model of musical timing and the assumptions on
which the system is based. The next sections present
the algorithm for onset detection from raw audio data,
followed by the algorithm for tempo induction, defined
as the estimation of the time interval between succes-
sive occurrences of the main rhythmic pulse of the mu-
sic. We then describe the multi-agent approach to beat
tracking, which is the determination of beat locations
(and therefore tempo fluctuations) in the light of the
previous tempo estimations. The results from testing
the system with various types of music are then pre-
sented and discussed, and the paper concludes with a
description of applications of the beat tracking system.



Related Work

A substantial amount of research has been performed
in the area of rhythm recognition by computer, includ-
ing a demonstration of various beat tracking methods
using a computer to control a shoe which tapped in
time with the calculated beat of the music (Desain &
Honing 1994). These systems are difficult to compare
directly, as they make different assumptions about the
input format, style and complexity of the music.

Much of the work in machine perception of rhythm
has used MIDI files as input, which contain control
information for a synthesizer rather than audio data.
MIDI files consist of sequences of events, usually cor-
responding to pressing and releasing keys on a piano-
style keyboard, plus an encoding of the time duration
between successive events. Structural information such
as the time signature and tempo can also be stored in
MIDI files, but it is usually assumed that such informa-
tion is not available to rhythm recognition programs.

Using MIDI files, the input is usually interpreted as a
series of event times, ignoring the event duration, pitch,
amplitude and chosen synthesizer voice. That is, each
note is treated purely as an uninterpreted event. It
is assumed that the other parameters do not provide
essential rhythmic information, which in many circum-
stances is true. However, there is no doubt that these
factors provide useful rhythmic cues; for example, more
salient events tend to occur on stronger beats.

Notable work using MIDI file input is an emulation
of human rhythm perception (Rosenthal 1992), which
produces multiple hypotheses of possible hierarchical
structures in the timing, assigning a score to each hy-
pothesis, corresponding to the likelihood that a human
listener would choose that interpretation of the rhythm.
This technique gives the system the ability to adjust to
changes in tempo and meter, as well as avoiding many
of the implausible rhythmic interpretations produced
by commercial systems.

Allen and Dannenburg (1990) describe a beat track-
ing system that uses beam search to consider multiple
hypotheses of beat timing and placement. A heuristic
evaluation function directs the search, preferring inter-
pretations that have a “simple” musical structure and
make “musical sense”, although they do not define what
they mean by these terms. They also do not describe
the input format or any specific results.

One early project on rhythm using audio input was
the percussion transcription system of Schloss (1985).
Onsets were detected as peaks in the slope of the am-
plitude envelope, where the envelope was defined to be
equal to the maximum amplitude in each period of the
high-pass filtered signal, and the period defined as the
inverse of the lowest frequency expected to be present
in the signal. The system was limited in that it required
parameters to be set interactively, and it was evaluated
only by resynthesis of the signal.

A more complete approach to beat tracking of acous-
tic signals was developed by Goto and Muraoka (1995;
1997b; 1998). They developed two systems for follow-

ing the beat of popular music in real time. The earlier
system (BTS) used frequency histograms to find signif-
icant peaks in the low frequency regions, correspond-
ing to the frequencies of the bass and snare drums,
and then tracked these low frequency signals by match-
ing patterns of onset times to a set of pre-stored drum
beat patterns. This method was successful in tracking
the beat of most of the popular songs on which it was
tested. A later system allowed music without drums to
be tracked by recognizing chord changes, assuming that
significant harmonic changes occur at strong rhythmic
positions. These systems required a powerful parallel
computer in order to run in real time.

Commercial transcription and sequencing programs
do not address the issues covered by these research sys-
tems. They generally require that the tempo and time
signature are specified before the music is played, and
the system then aligns each note with the nearest po-
sition on a metrical grid. Recent systems allow param-
eterization of this grid in terms of its resolution (the
shortest allowed note length), and adjustment of restric-
tions on the complexity of rhythm that can be produced
by the system. These systems often produce implausi-
ble rhythmic interpretations, and cannot be used in an
unsupervised manner for anything but simple rhythms.

Musical Timing

Despite the large amount of research in time and
rhythm in music, the beat tracking problem remains
poorly defined. The reason is that the beat is a subjec-
tive property of performed music. Formal musical mod-
els tend to be based on the notational representation
rather than performance (Lerdahl & Jackendoff 1983;
Longuet-Higgins & Lee 1982), and those which address
performance timing do so from the point of view of gen-
eration and/or transformation of timing rather than ex-
traction or explanation of performance data (Desain &
Honing 1991). We follow (Goto & Muraoka 1997a) in
evaluating the correctness of the beat tracking system
relative to a subjective labelling of beat positions.

A theoretical definition of beat is a perceived pulse
marking off equal durational units; in practice, the du-
rational units marked off by the onsets of notes on
successive beats are only approximately equal. Perfor-
mance studies have shown that asynchronies of events
(with respect to notation and other events) are often in
the range of 20-50ms, in both ensemble situations (Keil
1995) and solo performances (Palmer 1996). In such
situations there can be more than one “correct” beat
location. However, for a large amount of music, the
subjective differences in perceived beat are minor, oth-
erwise human activities such as ensemble playing and
dancing would not be possible. In this study we restrict
our attention to music which has such an agreed beat,
and rely on the onset detection algorithm to choose the
more salient events as possible beat locations. Aural
testing confirms that this method is sufficient for the
types of music we are examining.



Audio Processing

In this and the following sections, we describe the stages
of processing performed by the beat tracking system.
All of the software is written in C++ and runs on a
Unix platform (Linux or Solaris). The complete pro-
cessing of a song takes about 10 seconds on a current
PC, making it viable for use in real time audio appli-
cations, although the software is not currently designed
for real time use. The input to the system is a digitally
sampled acoustic signal, such as is found on audio com-
pact discs. The stereo compact disc data is converted to
a single channel format by averaging the left and right
channels, resulting in a single channel 16 bit linear pulse
code modulated (PCM) format, with a sampling rate of
44.1kHz.

The aim of the initial signal processing stage is to
detect events in the audio data, from which rhythmic
information can be derived. For the purposes of this
work, events correspond to note onsets, that is, the be-
ginnings of musical notes, including percussive sounds.
By ignoring note durations and offset times, we discard
valuable information, but our results justify the present
assumption, that there is sufficient information in note
onsets to perform beat tracking.

A time-domain method similar to (Schloss 1985) is
employed for onset detection. This method involves
passing the signal through a simple high-pass filter, cal-
culating the absolute sum of small overlapping windows
of the signal, and then finding peaks in the slope of
these window sums using a 4 point linear regression.
Only the more salient event onsets are detected with
the method, which is ideal for the subsequent task of
tempo induction.

Tempo Induction

The tempo induction section of the system determines
a set of hypotheses about the tempo of a given section
of music, which may be expressed in beats per minute
(BPM) or in seconds, as the inter-beat interval (IBI).
The algorithm, described further in (Dixon 1997; 1999),
is based on clustering of inter-onset intervals (IOI’s).
In the literature, an I0I is defined as the time between
the onsets of two successive events, but we extend the
definition to include times between onsets of pairs of
events that are separated by intervening event onsets.
All possible pairs of onsets that occur within 2.5 seconds
of each other are grouped by the clustering algorithm.
Figure 1 shows clustering for five events (A, B, C, D, E)
into intervals of similar size. For example, cluster C1
contains the intervals AB, BC and DE, while cluster C2
contains AC and CD. Each cluster is identified by its
average interval size.

After grouping IOT’s into clusters, a score is calcu-
lated for each cluster, based on the number of IOT’s in
the cluster. The highly ranked clusters usually corre-
spond to the beat or small integer multiples or fractions
of the beat. For example, supposing that C2 represents
the IBI, then C1 represents half of the IBI and C4 rep-
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Figure 1: Clustering of inter-onset intervals

resents double the IBI. Each cluster’s score is increased
for each other cluster to which it is related by a small
integer ratio, and a final ranking of the inter-beat in-
terval hypotheses is determined.

In previous work, it was found that the correct tempo
can be induced from a 5-10 second excerpt of the music
with 90% reliability, and by using multiple (or longer)
excerpts, the reliability quickly approaches 100%. In
this work, it does not matter if the initial estimate is
correct, as multiple hypotheses are checked in the beat
tracking stage, so that an error in tempo induction can
be corrected at a later time.

Beat Tracking Agents

The tempo induction algorithm computes the inter-beat
interval, that is, the time between successive beats, but
does not calculate the location of the beat. In Figure
1, the clustering might determine that C2 represents
the inter-beat interval, but it does not reveal whether
events A, C and D are beat locations or whether B and
E are beat locations. By analogy with wave theory, we
could say that it calculates the frequency but not the
phase of the beat.

The techniques used in previous work did not pro-
duce a reliable estimate of phase. The main difficulty
with phase calculations is that they are extremely sen-
sitive to errors in the inter-beat interval, because they
are measured in fractions of a beat, so any tempo error
is multiplied by the number of beats between events be-
ing examined. Also, it is not possible to average phase
values, as the metrical positions of events are unknown
(in the absence of a musical score), and it would only be
meaningful to average the phases of events if they were
known to occur in the same relative position within the
beat.

The phase calculation problem was solved by em-
ploying an agent-based architecture to examine mul-
tiple hypotheses simultaneously throughout the music.
The agents are characterized by their state and history.
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Figure 2: Beat tracking agents (see text for details)

The state is the agent’s current hypothesis of the beat
frequency and phase, and the history is the sequence
of beat locations selected so far by the agent. Each
agent is evaluated on the basis of its history, with higher
scores being awarded for greater regularity in the spac-
ing between events, greater salience of chosen events,
and fewer gaps in the sequence.

Initially, a number of agents are created for each of
the tempo hypotheses from the tempo induction stage;
for each tempo, one agent is created for each of the first
few events in the piece, with its phase set to 0 at the
time of the event onset. A simplified example is shown
in Figure 2, where there are 2 tempo hypotheses, and
two starting locations. Agents 2 and 3 start with the
same tempo, but different phase, while Agent 1 has
a different tempo, but same initial phase as Agent 2.
Note there is no need to start an agent with the tempo
of Agent 1 and phase of Agent 3, since Agent 1 covers
the second event itself.

The main loop of the beat tracking section passes
each event to each agent, which compares the event’s
onset time with the predicted beat location. The agents
have two windows of tolerance, an inner window, within
which the agent is sure that the event corresponds to the
predicted beat location, and an outer window, within
which the agent is unsure if the event should be ac-
cepted as a beat location. If the event falls in the in-
ner window, it is added to the agent’s history, and the
agent’s tempo and phase hypotheses are updated. In
the case that the event falls in the outer window around
the predicted location, the agent creates a clone which
accepts the event as a beat location, while the current
agent rejects the event. In Figure 2, Agent 2 creates
Agent 2a when the 5th event falls in its outer window
of expected beat locations. This guards against the
current beat location being lost due to a rogue event,
whilst also allowing for moderate deviations in tempo
and phase to occur. When an accepted event is more
than one beat from the previous beat location deter-
mined by the agent, the missing beats are filled in by
interpolation (shown by hollow circles in the figure).

As the agents track the beats, a confidence value
is maintained for each agent. This value is increased
each time an event is accepted as a beat location. The
amount of increase depends on the salience of the event
and its proximity to the predicted beat location. The

salience is measured in terms of the amplitude of the
event onset, calculated on a logarithmic scale. The
value is then reduced according to the difference be-
tween the predicted and actual beat locations, and then
added to the agent’s confidence value. The final confi-
dence value for an agent is calculated by reducing the
confidence for each beat which had to be interpolated,
and normalizing the result so that the agents with a
faster tempo are not advantaged by their greater num-
ber of beats.

It often occurs that two or more agents come to
the same conclusion about the current tempo and beat
phase. Since these are the only variables that determine
the agent’s state (and therefore its future behavior), it
is computationally advantageous to remove all but one
of these agreeing agents, retaining only the agent with
the highest confidence (that is, with the best scoring
history). In Figure 2, Agent 3 is terminated when its
state coincides with that of Agent 2a, as indicated by
the arrow at the 5th event. Removal of duplicate agents
is performed after each event is processed. Agents are
also checked for currentness, and are removed if they are
unable to find any event corresponding to a predicted
beat for some fixed length of time.

After the last event is processed, the highest scoring
current agent is selected, and its history is output as the
beat tracking “solution”. It is also possible to view a
trace of the agents and their scores at each event during
processing. For aural testing (and demonstrations) of
the system, the music can also be played back or saved
to file with a click track added to it, that is, a percus-
sion track indicating the positions of beats as detected
by the system. In the following section, testing method-
ology is discussed, and the results of beat tracking with
various styles of music are presented.

Results and Discussion

Informal testing was performed by listening to the mu-
sic with synthesized percussion strokes (e.g. cow-bell)
played at the beat locations computed by the system.
With this method, it is easy to check that the tempo
estimation and tracking are approximately correct, but
it is not a very precise form of testing. It is also very
time-consuming if used repeatedly to test the effects of
small adjustments to the system. However, aural test-
ing provides intuition about the situations in which the
beat tracker fails, which is useful for determining which
aspects of the system require further work.

More precise testing was performed by comparison
of results with manually calculated beat positions. The
audio files were examined with standard digital audio
editing software (GoldWave) which permits viewing the
data at arbitrary resolution, and playing selections at
arbitrary speeds. Beat locations were determined for a
number of beats on which clear percussive events oc-
curred. These beat boundaries were then used to in-
terpolate the locations of the intervening beats. This
avoided the problem of determining beat locations in



Song Title Artist CD Code

Style Date | Tempo | Time Results
range sign. | Tempo Phase

IDon’t Remember | Paul Kelly and the | Mushroom CD 53248

A Thing Coloured Girls
Dumb Things 7 7 Mushroom CD 53248
Untouchable 7 7 Mushroom CD 53248
Superstition Stevie Wonder Motown37463-03192-9

You Are The Sun- | Stevie Wonder
shine of My Life
On A Night Like | Bob Dylan

This
Rosa Morena Jodo Gilberto Trio | Jazz Roots CD 56046
Michelle Béla Fleck and the | Warner 7599-26562-2

Flecktones
James Morrison

Jitterbug Waltz

Motown37463-03192-9

Columbia CD 32154

WEA 9031-71211-1

Pop/rock 1987 | 139-142 | 4/4 Yes Yes

Pop/rock 1987 | 151-154 | 4/4 Yes Yes
Pop/rock 1987 | 145-146 | 4/4 Yes Yes
Motown 1972 | 96-104 4/4 Yes Yes
Motown 1972 | 127-136 | 4/4 Yes Yes

Country 1974 | 136-140 | 4/4 Yes Part

Bossa nova | 1964 | 128-134 | 4/4 Yes Part

Jazz swing | 1991 | 180-193 | 3/4 Yes Part

Jazz waltz 1990

155-175 | 3/4 Yes Part

unclear passages, as discussed in the previous section
on musical timing.

We now discuss the results shown above. The two re-
sults columns on the right indicate whether the highest
scoring agent had the correct tempo, and whether its
beat locations agreed with those calculated manually
for all (Yes), part (Part) or none (No) of the song.

The first 3 songs are standard modern pop/rock,
characterized by very steady tempo, which is clearly
defined by simple and salient drum patterns, similar
to the data used in early audio beat tracking work of
(Goto & Muraoka 1995). In the production of this style
of music, it is common practice for each instrument to
be recorded separately, using a metronome track for
synchronization. In this case one expects the performed
beat to be very regular, with only small deviations from
mechanical regularity. The beat tracking system made
no errors on these songs.

The next style examined was Motown/Soul, charac-
terized by more syncopation, greater tempo fluctuations
(5-10% in these examples), and more freedom to antic-
ipate or lag behind the beat. Despite the greater diffi-
culty in beat tracking, the complete songs were tracked
correctly.

The Bob Dylan song was more difficult to track, be-
cause of his idiosyncratic style of singing and playing
against the rhythmic context. Although the beat is
reasonably clear to a human listener, the drums are
not prominent, and there is a much lower correlation
between the conceptual beat and the actual musical
events than in the other styles. The beat tracking sys-
tem tracked correctly up to the instrumental section af-
ter the final verse, in which it lost synchronization and
tracked the off-beats (i.e., it continued at the correct
tempo but half a beat out of phase).

The next test involved a live bossa nova performance
with syncopated guitar and very little percussion to in-
dicate beat positions. The song was tracked correctly
except in one passage where it went out of phase, but
the error was corrected within about 10 beats.

The two jazz pieces were chosen for their particu-
larly complex, syncopated rhythms, which are difficult
for humans to follow. These pieces also provided exam-

ples of a different time signature, swing eighth notes,
and greater tempo variation. In both cases, the highest
scoring agent was able to track the majority of the piece
correctly, but encountered phase errors in some parts.
(This was not the first time that phase errors were en-
countered. With the salience calculation removed, the
system tracks the whole of I Don’t Remember A Thing
at half a beat out of phase.) For rock music, the salience
of events differentiates the beat from the offbeat at most
points in the music. This is not true in jazz, where the
offbeat is often accentuated for long periods of time, so
the system requires an alternative way of choosing the
correct path through the data.

Finally, a classical piece was tested, the third move-
ment of Mozart’s Piano Sonata in C major (KV279).
The system lost synchronization several times, tracking
the off-beats rather than the beats, due to large tempo
variations and the system’s lack of musical knowledge
for distinguishing between beats and off-beats. Note
that the beat tracking system is not equipped with mu-
sical knowledge — no notion of off-beats or expected
rhythmic patterns has been programmed into it. Its
apparent musical intelligence comes from patterns in
the data, without any high-level knowledge or reason-
ing (Brooks 1991). Apart from the simplicity of this
approach, a great advantage is that the system is quite
robust, and generalizes well to different styles of music,
as long as there is a salient beat. In order to disam-
biguate complex or ambiguous rhythmic patterns, the
system will need sources of musical knowledge other
than timing of events; these are not presently available
toit. In current work, we are examining a specialization
of the system for solo piano music which will incorpo-
rate a level of musical and stylistic knowledge with the
aim of extracting the score from performance data.

Conclusion

We have described a beat tracking system which anal-
yses acoustic data, detects the salient note onsets, de-
termines possible inter-beat intervals and then employs
multiple agents to find a sequence of events which rep-
resents the beat of the music. The system successfully



tracks the beat in most popular music, but makes some
phase errors when presented with extremely complex
rhythms or music with large tempo deviations. Even in
these situations, the performance is quite robust, with
the system recovering from its errors and resuming cor-
rect tracking after a short period.

Unlike previous audio beat tracking systems which
required a large parallel computer (Goto & Muraoka
1998), our system has modest requirements, processing
a song in under 10 seconds on a current personal com-
puter, leaving sufficient resources for real time applica-
tions using the beat tracking system as one component.

One such application is an automatic disc jockey
(DJ), which plays a list of songs, cross-fading between
the songs so that the beats of successive songs are syn-
chronized (beat-mixing). Another application which is
currently being pursued is that of a score extraction
system. This application uses MIDI input rather than
audio, and the system’s job is to make “musical sense”
of the performed rhythm. The nature of this problem
is different, in that we seek a musical explanation for
every event, whereas the current system ignores events
which are determined not to lie on the beat. MIDI in-
put also facilitates the use of other knowledge from the
data, such as duration, pitch, repeated melodic patterns
and musical voice, as well as external musical knowledge
concerning, for example, the use of ornaments. It is still
an open problem how such details can be extracted re-
liably directly from audio data. A further application
of beat tracking, and one which requires reliable recog-
nition of pitch and duration of notes, is an automatic
music transcription system, that is, a system which pro-
duces musical scores directly from audio data.

The use of manual beat tracking for evaluation of
the system limits the amount of testing that can be
performed, but is necessary when analyzing performed
music. It would also be useful to perform a study of
beat tracking in synthetically generated music, where
the variations in tempo and onset times could be con-
trolled precisely, and performance could be evaluated
automatically.
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