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Abstract. When a person taps a foot in time with a piece of mu-
sic, they are performing beat tracking. Beat tracking is fundamental
to the understanding of musical structure, and therefore anessential
ability for any system which purports to exhibit musical intelligence
or understanding. We present an off-line multiple agent beat track-
ing system which estimates the locations of musical beats inMIDI
performance data. This approach to beat tracking requires no prior in-
formation about the input data, such as the tempo or time signature;
all required information is derived from the performance data. For
constant tempo performances, previous beat tracking systems have
proved successful; however, these systems fail when there are large
variations in tempo. We examine the role of musical knowledge in
guiding the beat tracking process, and show that a system equipped
with knowledge of musical salience is able to track the beat of music
even in the presence of large tempo variations. Results are presented
for a large corpus of expressively performed classical piano music
(13 complete sonatas), containing a full range of tempos andmuch
variability in tempo within sections. With the musical knowledge dis-
abled, the beats are tracked about 75% correctly; the inclusion of
musical knowledge raises this figure to over 90%.

1 Introduction

The termbeat refers to a regular pulse perceived when listening to
music – this is usually the temporal level at which listenerstap their
feet or clap their hands. The perception of the beat is fundamental to
the understanding of the timing structure of music, and therefore also
a necessary component of “musically intelligent” applications, such
as intelligent digital audio editors, music notation software, content-
based search engines and interactive musical performance systems.
The action of finding an appropriate beat rate (tempo) will bereferred
to asbeat induction, whereas the task of following the beat, that is,
finding the locations of beats, will be referred to asbeat tracking.
Ordinary human listeners are competent in performing thesetasks;
equivalent performance on a computer has proved remarkablyhard
to achieve, except for simple strict tempo cases.

One reason that computer systems are quite weak in emulating
human competency in rhythm understanding is that they oftendo
not have access to sufficient musical knowledge to guide the track-
ing process when significant local variations in the beat occur. Most
beat tracking and beat induction systems rely solely on the timing of
note onsets or equivalently the time spans between successive onsets
[2, 1, 16, 17, 5]. However, it has often been proposed in theoretical
work that finding the beat involves matching a regular grid tothe
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relativesalienceof musical events. Musical salience is determined by
a number of factors such as note duration, dynamics, pitch, harmony,
and cadences. For instance, longer notes and harmonically more sta-
ble notes are more salient. The assumption, borne out in traditional
Western music, is that beats tend to fall on more accented/salient
events. In this paper we show that the use of such musical knowl-
edge can enhance beat-processing applications significantly.

Firstly, we describe a multi-agent beat tracking system that in-
duces and tracks the beat using a multiple competing agent method-
ology. This system was previously used successfully on music with
a steady tempo (e.g. pop music) [5, 6], but it was found that itwas
not able to track the tempo variations that occur in expressive perfor-
mances of classical music. Byexpressiveperformance, we mean that
the performers intentionally vary the tempo of the music in order to
communicate emotive and structural aspects of the music.

We then describe the incorporation of musical knowledge into the
beat tracking system, and show that when musical salience istaken
into account, the ability of the system to track the beat of anexpres-
sive performance improves significantly. Musical knowledge is used
to enhance the system in two ways: firstly by detecting and filter-
ing out non-salient events, and secondly by attaching to each event
a salience value that depends on note duration, pitch and dynamics,
and guides the evaluation of the beat tracking agents.

Next we outline a series of experiments applying the beat tracking
system to expressive performance data stored in MIDI files, afor-
mat which contains explicit details of the onsets, offsets,pitch and
dynamics of all the performed notes. An evaluation methodology is
then described, whereby the correct beats indicated in the musical
score are automatically aligned with the beats tracked by the algo-
rithm and a ‘goodness of fit’ value is calculated. The final section
contains the presentation and discussion of results for a large data set
of Mozart piano sonatas performed by a professional pianist.

2 The Multi-Agent Beat Tracking System

In previous work [6], we described a multiple agent beat tracking
system which processed audio data and found the locations ofmusi-
cal beats, under the assumption of constant tempo. This system was
able to track music with minor tempo deviations, such as mostpop-
ular and dance music. In this section we describe the beat tracking
system as it has been adapted for expressively performed music, and
then in the following section we describe the incorporationof musi-
cal knowledge into the system.

The beat tracking system has two stages of processing. The first
stage is beat induction, in which the data is processed to extract the
locations of musical events, and then the intervals betweenevent lo-
cations are clustered to form initial hypotheses of the tempo. The
second stage of processing is beat tracking, in which the location of
each beat is determined, and thus tempo fluctuations are tracked.



2.1 Beat Induction

The beat induction algorithm is based on the clustering ofinter-
onset intervals(IOI’s). In the literature, an IOI is defined as the
time between the onsets of two successive events, but we extend the
definition to include times between onsets of pairs of eventsthat are
separated by intervening event onsets. An IOI object is created for
each pair of onsets that are separated in time by between 0.025 and
2.5 seconds, and each IOI object is then assigned to precisely one
cluster, according to the clustering algorithm shown below. When an
IOI object is created, the cluster with an average IOI closest to the
size of the new IOI is found, and if it is sufficiently close, the new
IOI is added to the cluster. The IOI is considered sufficiently close
if its value is withinDelta of the average IOI in the cluster, whereDelta is a constant, set to 25ms in this work. If no sufficiently close
cluster exists, a new cluster is created and the new IOI placed in it.
After all IOIs have been assigned to a cluster, any pair of clusters
whose average IOI value differs by less thanDelta is merged to
form a single cluster containing the IOIs from both clusters.

IOI Clustering Algorithm

For each pair of onset timesti; tj (with ti < tj)
If 0:025 < tj � ti < 2:5

Let I = tj � ti
Find clusterCk such thatjAverage(Ck)� Ij is minimum
If k exists andjAverage(Ck)� Ij < Delta thenCk := Ck [ fIg
Else

Create new clusterCm := fIg
End If

End If
End For
For each pair of clustersCs; Ct

If jAverage(Cs)�Average(Ct)j < DeltaCs = Cs [ Ct
Delete clusterCt

End If
End For

For example, Figure 1 shows clustering for five events (A, B, C,
D, E) into intervals of similar size. Cluster C1 contains theintervals
AB, BC and DE, while cluster C2 contains AC and CD. Each cluster
is identified by its average interval size.

After clustering is completed, a score is calculated for each cluster,
based on the number of IOIs in the cluster. The highly ranked clusters
usually correspond to either theinter-beat interval(IBI), that is, the
time between successive beats, or small integer multiples or fractions
of the IBI. For example, suppose that C2 represents the IBI; then C1
represents half the IBI and C4 represents double the IBI. Clusters
related in this way are awarded extra points, and the IOI hypotheses
are sorted into their final ranked order.

In previous work [4, 5], it was found that for pop music, the correct
tempo can be induced from a 5-10 second excerpt of the music with
90% reliability, and by using multiple (or longer) excerpts, the relia-
bility quickly approaches 100%. In this work, we rely on the multiple
agent architecture described in the following subsection to examine
the multiple hypotheses generated by the clustering algorithm and
choose the most likely candidate at that time. In other words, it is not
necessary to commit to a particular tempo hypothesis at thisstage of
processing.
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Figure 1. Clustering of inter-onset intervals

2.2 Beat Tracking

The beat induction algorithm computes hypotheses concerning the
inter-beat interval, but does not calculate the location ofthe beat for
these hypotheses. In Figure 1, one hypothesis might be that C2 rep-
resents the inter-beat interval, but this does not determine whether
events A, C and D are beat locations or whether B and E are beat lo-
cations. By analogy with wave theory, we say that the beat induction
hypotheses concern thefrequencybut not thephaseof the beat.

The beat locations are determined by an agent-based architecture
which simultaneously examines multiple hypotheses about the fre-
quency and phase of the beat throughout the music. The agentsare
characterized by theirstateandhistory. The state is the agent’s cur-
rent hypothesis of the beat frequency and phase, and the history is the
sequence of beat locations selected so far by the agent. Eachagent is
evaluated on the basis of its history, with higher scores being awarded
for greater regularity in the spacing between events, greater salience
of chosen events, and fewer gaps in the sequence.

Initially, a number of agents are created for each of the hypotheses
from the beat induction stage; for each tempo, one agent is created
for each of the first few events in the piece, with its phase setto 0
at the time of the event onset. A simple example is shown in Figure
2, where there are two tempo hypotheses, and two starting locations,
events A and B. Agents 1 and 2 start with the same phase, but dif-
ferent tempo, while Agent 3 starts with a different phase, but same
tempo as Agent 2. Note that there is no need to start an agent with the
tempo of Agent 1 and phase of Agent 3, since Agent 1 covers event
B itself.

Time
Events

A B C D E F

Agent1

Agent2

Agent2a

Agent3

Figure 2. Beat tracking agents (see text for details)



The main loop of the beat tracking section passes each event to
each agent, which compares the event’s onset time with the predicted
beat location. The agents have two windows of tolerance (shown in
Figure 3): an inner window, within which the agent is sure that the
event corresponds to the predicted beat location, and an outer win-
dow, within which the agent is unsure if the event should be accepted
as a beat location. The inner window is symmetrical and has a fixed
size of 70ms, the outer window is asymmetrical and its size varies
with the IBI. If the event falls in the inner window, it is added to
the agent’s history, and the agent’s tempo and phase hypotheses are
updated. If the event falls in the outer window around the predicted
location, the agent creates a clone which accepts the event as a beat
location, while the current agent rejects the event. In Figure 2, Agent
2 creates Agent 2a when event E falls in its outer window of ex-
pected beat locations. This guards against the current beatlocation
being lost due to a rogue event, whilst also allowing for moderate
deviations in tempo and phase to occur. When an accepted event is
more than one beat from the previous beat location determined by
the agent, the missing beats are filled in by interpolation (shown by
hollow circles in Figure 2).
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Figure 3. Beat prediction windows for a single agent: A and B are reported
beat positions; C and D are the next two predicted beat locations

As the agents track the beats, a confidence value is maintained for
each agent. This value is increased each time an event is accepted as
a beat location. The amount of increase depends on the salience of
the event (described in section 3) and its proximity to the predicted
beat location. The event salience value is multiplied by a number
between 0 and 1 representing the distance between the predicted and
actual beat locations relative to the prediction window, and this value
is added to the agent’s confidence value.

It often occurs that two or more agents come to the same conclu-
sion about the current tempo and beat phase. Since these are the only
variables that determine the agent’s state (and therefore its future be-
havior), it is computationally advantageous to remove all but one of
these agreeing agents, retaining only the agent with the highest con-
fidence (that is, with the best scoring history). In Figure 2,Agent 3
is terminated when its state coincides with that of Agent 2a,as indi-
cated by the arrow at event E.

After the last event is processed, the highest scoring current agent
is selected, and its history is output as the beat tracking “solution”. It
is also possible to view a trace of the agents and their scoresat each
event during processing. For aural testing and demonstrations of the
system, the music can also be played back or saved to file with aclick
track added to it, that is, a percussion track indicating thepositions
of beats as reported by the beat tracking agent.

3 Musical Knowledge: Salience Calculation

In the previous system, under the assumption of an almost constant
tempo, it was sufficient to evaluate the beat tracking agentson the
basis of their ability to find a sequence of regularly spaced events
with few gaps and little variation in the spacing. The level of musical
knowledge possessed by the agents in this system was extremely lim-
ited, but it was sufficient for relatively constant tempo performances.

One of the keys to the success of the system was that it used audio
input, for which the onset detection algorithm was only ableto detect
someof the musical events, which tended to be the more salient ones,
in the sense of having a sharp increase in amplitude at the note onset.
In other words, the onset detection algorithm effectively filtered the
events, implicitly selecting only those which were more salient. Ac-
cording to music theory, the more salient events are also more likely
to occur in rhythmically strong positions, such as on beat locations.
It was found that the inclusion of less salient events actually hinders
the performance of the beat tracking system, as it greatly enlarges
the search space without adding more correct solutions. In this work,
we use MIDI input, which represents all events explicitly, including
many non-salient events, so the system must choose explicitly be-
tween the many extra possible solutions.

We claim that the system requires some form of musical knowl-
edge to guide its selection of alternative possible solutions. It is ex-
pected that among the many beat tracking agents the one that detects
the largest number of salient events is most likely to be correct. We
now define musicaleventsand describe how musical knowledge can
be used to generate a salience value for each musical event.

In the context of these experiments, musical events are taken to be
either individual notes or chords (synchronous collections of notes).
Empirical research has shown that two tones are heard as being syn-
chronous if their onset times differ by less than roughly 40ms; for
more than two tones this threshold is up to 70ms [11]. We have used
the threshold of 70ms to convert the MIDI data into musical events
(notes and chords).

At the next stage, a salience strength is calculated for eachmusi-
cal event. In these experiments the following three salience factors
have been taken into account: the duration of notes in each event, the
dynamic value (MIDI velocity) and the pitch value (MIDI notenum-
ber). According to music theory, notes with longer durations, higher
dynamic values or lower pitches are considered to be more salient
for communicating the rhythmic structure of the music. The salience
value for a chord is calculated using the longest duration, the sum of
the dynamic values and the lowest pitch of all the notes in thechord.

Although the qualitative effect of each of these parameterson mu-
sical salience is known, no quantitative measure has been proposed
by which the three factors can be combined into a single salience
value for each event. Two types of salience functions were tested, an
additive functionsadd(d; p; v), which uses a linear combination of
the parameters, and a multiplicative functionsmul(d; p; v) which is
non-linear. A threshold function is used to restrict the range of the
pitch parameter, and constants are used to set the relative weights
of the three parameters, with the sign of the constants determining
whether the relationship is direct or inverse.sadd(d; p; v) = 
1:d+ 
2:p[pmin; pmax℄ + 
3:vsmul(d; p; v) = d:(
4 � p[pmin; pmax℄):log(v)
where: 
1; 
2; 
3 and
4 are constants,d is duration in seconds,p is pitch (MIDI number),v is dynamic value (MIDI velocity), andp[pmin; pmax℄ = 8><>:pmin; p � pminp; pmin < p < pmaxpmax; pmax � p



After a little experimentation, we chose the following values:
1 = 300; 
2 = �4; 
3 = 1; 
4 = 84; pmin = 48; pmax = 72. The
parameters were set to make the duration of notes the most signifi-
cant factor in the salience calculation, with the dynamics and pitch
factors becoming more influential when notes have relatively similar
durations. The precise values of parameters do not make a large over-
all difference to the results across the entire data set, butcan have a
significant effect on particular examples. A more thorough investiga-
tion of parameter values is a subject for further research.

4 Beat Tracking Experiments

We now describe the various beat tracking experiments performed.
The results are presented in section 6.

4.1 Experiment 1: Constant Salience

The beat-tracking algorithm was applied on the untreated MIDI files
taking into account only the event onset times. Each event was as-
signed a constant salience value for use in the agents’ evaluation
function. As expected, this experiment did not produce particularly
good results, as the agents have many equal-strength event options
from which to choose possible beat locations. This experiment set
the base level from which we were able to measure the performance
gain obtained by the application of musical knowledge in thebeat
tracking system, as described in the following two experiments.

4.2 Experiment 2: Filtered MIDI files

In this second experiment, MIDI files were pre-processed to discard
non-salient events. This was achieved by keeping only events with an
additive salience exceeding a certain threshold, and applying the beat
tracking algorithm to the remaining events, using a constant salience
value as in experiment 1. For this experiment, the thresholdwas set to
an intuitively meaningful value, that is, the additive salience value of
a note of average pitch, average velocity and duration 200ms, which
is just below half of the modal inter-beat interval.

4.3 Experiment 3: Agents with Salience Functions

In the previous experiment, we used a binary notion of salience: an
event is either salient and is thus preserved, or non-salient and thus
omitted. In the final experiments, we allowed multi-valued salience
strengths to be incorporated in the beat-tracking process for the selec-
tion of the best agent. Instead of counting the number of events that
an agent has traced, which is approximately what occurs whena con-
stant salience function is used, a progressive confidence score (sum
of adjusted salience values for all the events traced by an agent) was
computed for each agent and used to select the final solution.Two
experiments were performed: experiment 3a used the multiplicative
salience functionsmul(d; p; v) and experiment 3b used the additive
salience functionsadd(d; p; v), defined in section 3. Before present-
ing the results of the experiments in section 6, we briefly describe
our approach to evaluation.

5 Evaluation

Much work on beat tracking has worked from notated music rather
than performance data [14, 15, 3], and those using performance data
have often used simple pieces such as nursery rhymes [12] or short
excerpts of the melody lines of pieces [16], with the exception of

Goto [7, 9, 8, 10], who used audio CD’s of popular music. Apartfrom
the difficulty of beat tracking the tempo variations in performed mu-
sic, a further problem with using performance data is that the results
must be evaluated by the subjective location of beat positions [8, 6].

A great advantage with the current work is that the evaluation of
results is not based on a subjective measure of beat locations, since
a large corpus of performance data together with the corresponding
musical notation is available. This enables the direct evaluation of the
system by comparing the beat tracking results (the reportedbeats)
with the beat specified in the musical score (the notated beats). The
testing is in fact performed automatically, since the musical scores
are available in a symbolic format.

To evaluate the beat tracking of a section of music, we first match
the reported beat locations with the musical score data. Each re-
ported beat is matched with the nearest notated beat, unlessthe gap
is greater than a fixed tolerance value, in which case the beats are left
unmatched. This creates three result categories: matched pairs of re-
ported and notated beats, unmatched reported beats (false positives)
and unmatched notated beats (false negatives). These are combined
using the following formula:Evaluation = nn+ F+ + F�
wheren is the number of matched pairs,F+ is the number of false
positives, andF� is the number of false negatives. In this work, the
tolerance window for matching beats was chosen to match the win-
dow for determining when notes are simultaneous, that is, 70ms. A
less strict correctness requirement would allow the matching of pairs
over a larger time window, with partial scores being awardedto “near
misses”, and the numerator of the equation being replaced bythe sum
of these partial scores.

The evaluation function yields a value between 0 and 1, whichwe
express as a percentage. The values are intuitively meaningful: if the
only errors are false positives, the value is the percentageof reported
beats which are matched with notated beats; if the only errors are
false negatives, the value is the percentage of notated beats which
were reported.

One aspect of evaluation which has yet to be addressed in this
work is the problem that it is possible to track beats at more than one
level. For example, in a piece that has a very slow tempo, it might be
natural to track the beat at double the rate indicated by the notation
[3]. The perceived beat and notated beat are not necessarilythe same.
The formula shown above gives meaningful results only when the
rhythmic level of beat tracking coincides with the notated beat.

6 Results and Discussion

The beat tracking system was tested on 13 complete piano sonatas
by Mozart (KV279-KV284, KV330-KV333, KV457, KV475 and
KV533), played by a professional pianist. This totals several hours
of music, and over 100000 notes. The files were divided into sections
as notated in the music, and beat tracking was performed separately
on each file (222 files in all). The software is written in C++ and runs
on a Linux system, taking under 5 minutes to process all 13 sonatas.

The first set of results shows the rhythmic level chosen by thehigh-
est scoring agent relative to the musical score. For almost all sections,
a musically plausible rhythmic level was chosen, with slightly worse
performance in experiment 1 where no musical knowledge was used.
Table 1 shows the number of sections which were tracked at each
rhythmic level (expressed as a multiple of the tempo). The rows la-
belledotherandfail represent the cases where a musically unrelated



rhythmic level was chosen, and when beat tracking failed to produce
a solution at all, respectively. The majority of pieces weretracked at
the notated level, with others being tracked at double, fourtimes or
half the notated level, as would often be done by human listeners.

Table 1. Rhythmic levels of beat tracking solutions

Rhythmic Number of sections
level Exp1 Exp2 Exp3a Exp3b

1 121 143 146 137
2 40 40 41 42
3 4 3 3 4
4 23 23 20 22

0.5 10 9 10 10
1.5 16 0 1 5

other 8 2 1 2
fail 0 2 0 0

Table 2 shows the results of evaluating the beat tracking of the
sections tracked at the notated rhythmic level, using the evaluation
formula from section 5. For each experiment we show the number
of sections (n) and the percentage of sections which achieved vari-
ous minimum scores. Experiment 1 provides the base level perfor-
mance of the system without musical knowledge. Experiment 2gave
mixed results, since the removal of events which were deemedto
be non-salient also removed many events which occurred on beats,
making it impossible for the beat tracking system to determine beat
positions. Nevertheless, the net result of this experimentwas posi-
tive. The third experiment shows a significant improvement in per-
formance due to the use of salience in the beat tracking process, with
the additive salience functionsadd(d; p; v) performing slightly better
than the multiplicative functionsmul(d; p; v).

Table 2. Evaluation of beat tracking at rhythmic level 1

Result Exp. 1 Exp. 2 Exp. 3a Exp. 3b
Range n % n % n % n %
100% 42 34.7 17 11.9 54 37.0 59 43.1� 95% 46 38.0 50 35.0 71 48.6 82 59.9� 90% 57 47.1 87 60.8 99 67.8 105 76.6� 85% 63 52.1 105 73.4 116 79.5 118 86.1� 80% 68 56.2 115 80.4 130 89.0 127 92.7� 70% 81 66.9 127 88.8 137 93.8 130 94.9� 50% 100 82.6 136 95.1 143 97.9 136 99.3� 0% 121 100.0 143 100.0 146 100.0 137 100.0

Average 75.4% 85.0% 88.5% 91.1%

At the bottom of Table 2 we show as a summary of the beat track-
ing experiments, the weighted average of the beat tracking evaluation
results (weighted by the number of beats in each section). This gives
a clear measure of the performance gain from the inclusion ofmusi-
cal knowledge (in the form of salience values) into the system.

We have endeavoured to keep the system as general as possible,
by not encoding specific details of the musical style of the test data.
The parameter values and knowledge used in the system are quite
low-level, derived mostly from the human perception literature. We
expect the system to perform equally well with other musicalstyles,
but we do not have the test data needed to verify this claim. A version
of the system that uses audio input performs very well with various
styles of pop music [6]. Not a great deal of effort was spent in‘tweak-
ing’ parameters; the overall performance of the system is stable with
respect to small changes in parameter values. Further improvement
in the system by adjustment of parameters would probably only tune

the system to the test data set.
Listening to the performance of the beat tracking system demon-

strates that it tracks tempo variations in a way that could bedescribed
as ‘musically intelligent’. The system is not perfect, but ascore of
100% is not possible, as some parts of the music are played in free
time, without any notion of beat. It would be interesting, but is be-
yond the scope of this project, to perform beat tracking experiments
with human listeners to compare the results of these experiments with
human beat tracking ability.
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