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Abstract. When a person taps a foot in time with a piece of mu-
sic, they are performing beat tracking. Beat tracking isihmental
to the understanding of musical structure, and thereforesaantial
ability for any system which purports to exhibit musicalkifigence
or understanding. We present an off-line multiple agent braak-
ing system which estimates the locations of musical beakd|ibi
performance data. This approach to beat tracking requiresior in-
formation about the input data, such as the tempo or timeasige;
all required information is derived from the performanceaddor
constant tempo performances, previous beat trackingmgshave
proved successful; however, these systems fail when theria@e
variations in tempo. We examine the role of musical knowéedy
guiding the beat tracking process, and show that a systeippgu
with knowledge of musical salience is able to track the béatusic
even in the presence of large tempo variations. Resultsrasepted
for a large corpus of expressively performed classical pisrusic
(13 complete sonatas), containing a full range of temposnainch
variability in tempo within sections. With the musical knedge dis-
abled, the beats are tracked about 75% correctly; the iocliusf
musical knowledge raises this figure to over 90%.

1 Introduction

The termbeatrefers to a regular pulse perceived when listening to
music — this is usually the temporal level at which listertapstheir
feet or clap their hands. The perception of the beat is fureddah to
the understanding of the timing structure of music, andetfoee also

a necessary component of “musically intelligent” appli@as, such
as intelligent digital audio editors, music notation seafte; content-
based search engines and interactive musical performgstenss.
The action of finding an appropriate beat rate (tempo) witidferred

to asbeat induction whereas the task of following the beat, that is,
finding the locations of beats, will be referred totz=at tracking
Ordinary human listeners are competent in performing thesies;
equivalent performance on a computer has proved remarkesoty
to achieve, except for simple strict tempo cases.
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relativesalienceof musical events. Musical salience is determined by
a number of factors such as note duration, dynamics, pierimony,
and cadences. For instance, longer notes and harmonicaily sta-
ble notes are more salient. The assumption, borne out iititnaal
Western music, is that beats tend to fall on more accentestisa
events. In this paper we show that the use of such musical lknow
edge can enhance beat-processing applications significant

Firstly, we describe a multi-agent beat tracking systent ia
duces and tracks the beat using a multiple competing agetiohe
ology. This system was previously used successfully on enuigh
a steady tempo (e.g. pop music) [5, 6], but it was found thats
not able to track the tempo variations that occur in expvegsérfor-
mances of classical music. Bxpressiv@erformance, we mean that
the performers intentionally vary the tempo of the musicriten to
communicate emotive and structural aspects of the music.

We then describe the incorporation of musical knowledge tiné
beat tracking system, and show that when musical salientzdeés
into account, the ability of the system to track the beat ofxqres-
sive performance improves significantly. Musical knowledgused
to enhance the system in two ways: firstly by detecting anerfilt
ing out non-salient events, and secondly by attaching tb esent
a salience value that depends on note duration, pitch anahaigs,
and guides the evaluation of the beat tracking agents.

Next we outline a series of experiments applying the beaking
system to expressive performance data stored in MIDI fildera
mat which contains explicit details of the onsets, offsptsh and
dynamics of all the performed notes. An evaluation methogipis
then described, whereby the correct beats indicated in tscad
score are automatically aligned with the beats tracked byatho-
rithm and a ‘goodness of fit'’ value is calculated. The finaltisec
contains the presentation and discussion of results foge Bata set
of Mozart piano sonatas performed by a professional pianist

2 The Multi-Agent Beat Tracking System

In previous work [6], we described a multiple agent beatkirag

One reason that computer systems are quite weak in emulatingystem which processed audio data and found the locatiomsisit

human competency in rhythm understanding is that they adten
not have access to sufficient musical knowledge to guiderduk-t
ing process when significant local variations in the beatinddost
beat tracking and beat induction systems rely solely onithi@g of
note onsets or equivalently the time spans between suceassets
[2, 1, 16, 17, 5]. However, it has often been proposed in etexal
work that finding the beat involves matching a regular gridhe
accentstructure of a musical work [13]. Musical accents indicate t
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cal beats, under the assumption of constant tempo. Thieraysts
able to track music with minor tempo deviations, such as rpopt
ular and dance music. In this section we describe the bezkihig
system as it has been adapted for expressively performeid,rans
then in the following section we describe the incorporattbmusi-
cal knowledge into the system.

The beat tracking system has two stages of processing. The fir
stage is beat induction, in which the data is processed taaxthe
locations of musical events, and then the intervals betwegent lo-
cations are clustered to form initial hypotheses of the w@nihe
second stage of processing is beat tracking, in which tretitot of
each beat is determined, and thus tempo fluctuations alesttac
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The beat induction algorithm is based on the clusteringnter- 1 C1 |

onset intervals(IOI's). In the literature, an 10l is defined as the c '

time between the onsets of two successive events, but wedettie | 2} | | |
definition to include times between onsets of pairs of evdrasare Cc3
separated by intervening event onsets. An 10l object istedefor | [€ }
each pair of onsets that are separated in time by betweeb arg® C3

2.5 seconds, and each IOl object is then assigned to predsel | | ' ' '
cluster, according to the clustering algorithm shown beltiien an | | C4
IOl object is created, the cluster with an average |0l closeshe ! ! ! | I
size of the new IOl is found, and if it is sufficiently closeethew | | L C4 L \ |
10l is added to the cluster. The 10l is considered sufficientbse
if its value is within Delta of the average 10l in the cluster, where | ] y G5 ] |
Delta is a constant, set to 25ms in this work. If no sufficiently elos
cluster exists, a new cluster is created and the new 10l glacé.
After all IOIs have been assigned to a cluster, any pair aftehs
whose average IOl value differs by less thBalta is merged to
form a single cluster containing the 10Is from both clusters

N

Figure 1. Clustering of inter-onset intervals

2.2 Beat Tracking
101 Clustering Algorithm
For each pair of onset times, ¢; (with ¢; < ¢;)
If 0.025 < tj —t; <25
Let] = t]‘ —t;
Find clusterCy, such thaj Average(Cy) — I| is minimum
If k exists and Average(Cy) — I| < Delta then

The beat induction algorithm computes hypotheses conugrthie
inter-beat interval, but does not calculate the locatiothefbeat for
these hypotheses. In Figure 1, one hypothesis might be thags
resents the inter-beat interval, but this does not determihether
events A, C and D are beat locations or whether B and E aredeat |
cations. By analogy with wave theory, we say that the beatdtidn

E|Scek = Ok UL hypotheses concern tmequencybgt not thephaseof the beat. .
Create new clustef,, = {I} The peat locations are de.termlned .by an agent-based artcinie
End If which simultaneously examines multiple hypothesgs aboeitre-
End If quency and phase of the beat 'throughout the music. The aaents
End For characterized by thestateandhistory. The state is the agent's cur-

rent hypothesis of the beat frequency and phase, and tlogyhisthe
sequence of beat locations selected so far by the agentagachis
evaluated on the basis of its history, with higher scoresdaivarded

For each pair of clusterS;, C;
If |Average(Cs) — Average(C)| < Delta

gs I= Cslu th for greater regularity in the spacing between events, greatience
E delfete cluster; of chosen events, and fewer gaps in the sequence.
End rl]:or Initially, a number of agents are created for each of the thgmes

from the beat induction stage; for each tempo, one agentaten
) ) ] for each of the first few events in the piece, with its phasesé
For example, Figure 1 shows clustering for five events (A, B, C at the time of the event onset. A simple example is shown inrgig
D, E) into intervals of similar size. Cluster C1 contains thiervals 2 where there are two tempo hypotheses, and two startiagjdos,
AB, BC and DE, while cluster C2 contains AC and CD. Each cluste events A and B. Agents 1 and 2 start with the same phase, but dif
is identified by its average interval size. ferent tempo, while Agent 3 starts with a different phase,dame
After clustering is completed, a score is calculated fohedster,  tempo as Agent 2. Note that there is no need to start an agénthei

based on the number of IOls in the cluster. The highly rankesters  tempo of Agent 1 and phase of Agent 3, since Agent 1 coversteven
usually correspond to either tliater-beat interval(IBl), that is, the B jiself.

time between successive beats, or small integer multiplractions
of the IBI. For example, suppose that C2 represents the tigh C1 A B c D E F Time
represents half the 1Bl and C4 represents double the IBIst€is Events | | | | | |

related in this way are awarded extra points, and the 10l thgses
are sorted into their final ranked order. Agent1 6—6—0—6—0—'—0—6—0—6| -—--
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In previous work [4, 5], it was found that for pop music, thereat
tempo can be induced from a 5-10 second excerpt of the mugic wi
90% reliability, and by using multiple (or longer) excergtse relia- Agent2a
bility quickly approaches 100%. In this work, we rely on theltiple I
agent architecture described in the following subsectivexamine ~ Agent3 |
the multiple hypotheses generated by the clustering algorand I
choose the most likely candidate at that time. In other watdsnot Figure 2. Beat tracking agents (see text for details)
necessary to commit to a particular tempo hypothesis asthge of
processing.
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The main loop of the beat tracking section passes each event ©One of the keys to the success of the system was that it uséa aud

each agent, which compares the event’s onset time with dubqted
beat location. The agents have two windows of tolerancex(sthin
Figure 3): an inner window, within which the agent is sure the
event corresponds to the predicted beat location, and ar win-
dow, within which the agent is unsure if the event should lepted
as a beat location. The inner window is symmetrical and hased fi
size of 70ms, the outer window is asymmetrical and its sizeesa
with the IBI. If the event falls in the inner window, it is adtiéo
the agent’s history, and the agent’'s tempo and phase hygestteze
updated. If the event falls in the outer window around theljoted
location, the agent creates a clone which accepts the esenbaat
location, while the current agent rejects the event. In g Agent

input, for which the onset detection algorithm was only dbldetect
someof the musical events, which tended to be the more salierst,one
in the sense of having a sharp increase in amplitude at tlesomsiet.
In other words, the onset detection algorithm effectivdtefed the
events, implicitly selecting only those which were moreesal Ac-
cording to music theory, the more salient events are alse tilaly
to occur in rhythmically strong positions, such as on beeations.
It was found that the inclusion of less salient events abtimhders
the performance of the beat tracking system, as it greatrges
the search space without adding more correct solutionfigmiork,
we use MIDI input, which represents all events explicithgluding
many non-salient events, so the system must choose elpheit

2 creates Agent 2a when event E falls in its outer window of ex-tween the many extra possible solutions.

pected beat locations. This guards against the currentlbeation
being lost due to a rogue event, whilst also allowing for nratke

We claim that the system requires some form of musical knowl-
edge to guide its selection of alternative possible sahgtidt is ex-

deviations in tempo and phase to occur. When an accepted isven pected that among the many beat tracking agents the onectteat sl

more than one beat from the previous beat location detedriige
the agent, the missing beats are filled in by interpolatitio\ish by
hollow circles in Figure 2).

A B C D Time
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Outer windows:

Figure 3. Beat prediction windows for a single agent: A and B are reggbrt
beat positions; C and D are the next two predicted beat mtsti

As the agents track the beats, a confidence value is maidtine
each agent. This value is increased each time an event istadcaes
a beat location. The amount of increase depends on the cal@n
the event (described in section 3) and its proximity to thedjoted
beat location. The event salience value is multiplied by mler
between 0 and 1 representing the distance between the fectdied
actual beat locations relative to the prediction windovd #ris value
is added to the agent’s confidence value.

It often occurs that two or more agents come to the same concl

sion about the current tempo and beat phase. Since thedweanely
variables that determine the agent’s state (and thereffeture be-
havior), it is computationally advantageous to remove atldne of
these agreeing agents, retaining only the agent with theekigcon-
fidence (that is, with the best scoring history). In Figurégent 3
is terminated when its state coincides with that of Agentaandi-
cated by the arrow at event E.

After the last event is processed, the highest scoring cuagent
is selected, and its history is output as the beat trackiaolytion”. It
is also possible to view a trace of the agents and their sedregch
event during processing. For aural testing and demorstisatf the
system, the music can also be played back or saved to file wittlka
track added to it, that is, a percussion track indicatingpbsitions
of beats as reported by the beat tracking agent.

3 Musical Knowledge: Salience Calculation

In the previous system, under the assumption of an almostaon
tempo, it was sufficient to evaluate the beat tracking agentthe
basis of their ability to find a sequence of regularly spacezhts
with few gaps and little variation in the spacing. The leviaiusical
knowledge possessed by the agents in this system was ektieme
ited, but it was sufficient for relatively constant tempofpemnances.

the largest number of salient events is most likely to beemirive
now define musicatventsand describe how musical knowledge can
be used to generate a salience value for each musical event.

In the context of these experiments, musical events are takee
either individual notes or chords (synchronous collediohnotes).
Empirical research has shown that two tones are heard ag &@in
chronous if their onset times differ by less than roughly 40for
more than two tones this threshold is up to 70ms [11]. We haed u
the threshold of 70ms to convert the MIDI data into musicargs
(notes and chords).

At the next stage, a salience strength is calculated for racdi-
cal event. In these experiments the following three sadidactors
have been taken into account: the duration of notes in easft,ahe
dynamic value (MIDI velocity) and the pitch value (MIDI natem-
ber). According to music theory, notes with longer duragidmgher
dynamic values or lower pitches are considered to be morensal
for communicating the rhythmic structure of the music. Takesfice
value for a chord is calculated using the longest duratio®sum of
the dynamic values and the lowest pitch of all the notes irchoed.

Although the qualitative effect of each of these parameiamu-
sical salience is known, no quantitative measure has bemoged

Uby which the three factors can be combined into a single rezgie

value for each event. Two types of salience functions westede an
additive functionsqqq(d, p,v), which uses a linear combination of
the parameters, and a multiplicative function..(d, p, v) which is
non-linear. A threshold function is used to restrict thegeuwof the
pitch parameter, and constants are used to set the relasights
of the three parameters, with the sign of the constants ety
whether the relationship is direct or inverse.

Sadd(d7p’ ’L)) =c1.d+c2 -p[pmin,pmaz] + c3.v
Smul(d,p, ’L)) = d.(C4 - p[pmin,pmaz})-log(v)
where:

c1, ca, c3 andey are constants,

d is duration in seconds,

p is pitch (MIDI number),

v is dynamic value (MIDI velocity), and

p[pmin;pmaz] =38D Pmin <P < Pmaz
Pmaz, Pmaz <P



After a little experimentation, we chose the following vedu
c1 = 300;¢c2 = —4;¢3 = 1;¢4 = 84; pmin = 48; Pmax = 72. The
parameters were set to make the duration of notes the mastisig
cant factor in the salience calculation, with the dynamied pitch
factors becoming more influential when notes have relatisihilar
durations. The precise values of parameters do not makgedaer-
all difference to the results across the entire data setduthave a
significant effect on particular examples. A more thorouglestiga-
tion of parameter values is a subject for further research.

4 Beat Tracking Experiments

We now describe the various beat tracking experiments pagd.
The results are presented in section 6.

4.1 Experiment 1: Constant Salience

The beat-tracking algorithm was applied on the untreateiNles
taking into account only the event onset times. Each evestaga
signed a constant salience value for use in the agents’ ai@tu
function. As expected, this experiment did not produceiqagrly
good results, as the agents have many equal-strength gvéon
from which to choose possible beat locations. This experirset
the base level from which we were able to measure the perfarena
gain obtained by the application of musical knowledge in likat
tracking system, as described in the following two expenitse

4.2 Experiment 2: Filtered MIDI files

In this second experiment, MIDI files were pre-processeddcand
non-salient events. This was achieved by keeping only sweitih an
additive salience exceeding a certain threshold, and aqgptiie beat
tracking algorithm to the remaining events, using a corigalience
value as in experiment 1. For this experiment, the threshakiset to
an intuitively meaningful value, that is, the additive salie value of
a note of average pitch, average velocity and duration 20@nish
is just below half of the modal inter-beat interval.

4.3 Experiment 3: Agents with Salience Functions

In the previous experiment, we used a binary notion of seéiean
event is either salient and is thus preserved, or non-saith thus
omitted. In the final experiments, we allowed multi-valuetience
strengths to be incorporated in the beat-tracking proceshé selec-
tion of the best agent. Instead of counting the number oftevidiat
an agent has traced, which is approximately what occurs alven-
stant salience function is used, a progressive confiderare ¢sum
of adjusted salience values for all the events traced by antagas
computed for each agent and used to select the final solfieon.
experiments were performed: experiment 3a used the niadtiple
salience functions,,;(d, p, v) and experiment 3b used the additive
salience functiors,.q4(d, p, v), defined in section 3. Before present-
ing the results of the experiments in section 6, we brieflycdbe
our approach to evaluation.

5 Evaluation

Much work on beat tracking has worked from notated musicerath
than performance data [14, 15, 3], and those using perfarendata
have often used simple pieces such as nursery rhymes [1Bpar s
excerpts of the melody lines of pieces [16], with the exaeptf

Goto[7,9, 8, 10], who used audio CD’s of popular music. Afrarn
the difficulty of beat tracking the tempo variations in penfied mu-
sic, a further problem with using performance data is thatrésults
must be evaluated by the subjective location of beat positj8, 6].

A great advantage with the current work is that the evalnatidb
results is not based on a subjective measure of beat losasorce
a large corpus of performance data together with the casretipg
musical notation is available. This enables the directatadn of the
system by comparing the beat tracking results (the repdréeds)
with the beat specified in the musical score (the notatecspeBie
testing is in fact performed automatically, since the maisscores
are available in a symbolic format.

To evaluate the beat tracking of a section of music, we firdtima
the reported beat locations with the musical score datah Eac
ported beat is matched with the nearest notated beat, uhkeggap
is greater than a fixed tolerance value, in which case the lagateft
unmatched. This creates three result categories: matctiexqas re-
ported and notated beats, unmatched reported beats (talgivgs)
and unmatched notated beats (false negatives). These rateneal
using the following formula:

n

Ewvaluation = m

wheren is the number of matched paitB;" is the number of false
positives, andF'~ is the number of false negatives. In this work, the
tolerance window for matching beats was chosen to match e w
dow for determining when notes are simultaneous, that is1s7@\
less strict correctness requirement would allow the matchf pairs
over a larger time window, with partial scores being awartdedear
misses”, and the numerator of the equation being replacéu=sum

of these partial scores.

The evaluation function yields a value between 0 and 1, wivieh
express as a percentage. The values are intuitively meahiifghe
only errors are false positives, the value is the percerthgeported
beats which are matched with notated beats; if the only £rmoe
false negatives, the value is the percentage of notated bdath
were reported.

One aspect of evaluation which has yet to be addressed in this
work is the problem that it is possible to track beats at mioa@ bne
level. For example, in a piece that has a very slow tempo,ghirtie
natural to track the beat at double the rate indicated by ttation
[3]. The perceived beat and notated beat are not necestaridame.
The formula shown above gives meaningful results only whnen t
rhythmic level of beat tracking coincides with the notateat

6 Results and Discussion

The beat tracking system was tested on 13 complete piandasona

by Mozart (KV279-KV284, KV330-KV333, KV457, KV475 and

KV533), played by a professional pianist. This totals savlpurs

of music, and over 100000 notes. The files were divided intteres

as notated in the music, and beat tracking was performedatepa

on each file (222 files in all). The software is written in C+tanns

on a Linux system, taking under 5 minutes to process all 1atssn
The first set of results shows the rhythmic level chosen bitte-

est scoring agent relative to the musical score. For alniastctions,

a musically plausible rhythmic level was chosen, with dligtvorse

performance in experiment 1 where no musical knowledge w@d.u

Table 1 shows the number of sections which were tracked &t eac

rhythmic level (expressed as a multiple of the tempo). Thesria-

belledotherandfail represent the cases where a musically unrelated



rhythmic level was chosen, and when beat tracking failedadyce
a solution at all, respectively. The majority of pieces weeaeked at
the notated level, with others being tracked at double, fooes or
half the notated level, as would often be done by human ksten

Table 1. Rhythmic levels of beat tracking solutions

Rhythmic Number of sections
level Expl | Exp2 | Exp3a| Exp3b
1 121 143 146 137
2 40 40 41 42
3 4 3 3 4
4 23 23 20 22
0.5 10 9 10 10
15 16 0 1 5
other 8 2 1 2
fail 0 2 0 0

Table 2 shows the results of evaluating the beat trackindhef t
sections tracked at the notated rhythmic level, using tleduation

the system to the test data set.

Listening to the performance of the beat tracking systematem
strates that it tracks tempo variations in a way that coulddseribed
as ‘musically intelligent’. The system is not perfect, buscore of
100% is not possible, as some parts of the music are playaéeén f
time, without any notion of beat. It would be interestingt ube-
yond the scope of this project, to perform beat tracking erpents
with human listeners to compare the results of these expatswith
human beat tracking ability.
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