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Abstract are loosely based on the STFT and the tracking phase
vocoder. The phase information obtained from adjacent
We present a system for the automatic extraction of musi- FFT windows is used to resolve the ambiguity in the low
cal content from audio signals containing polyphonic mu- end of the frequency spectrum, so that smaller windows
sic. The system works off-line, taking data from audio can be used and a correspondingly better time resolution
files and producing MIDI output, representing the pitch, obtained. The input to the system is digital audio, taken
timing and volume of the musical notes. The initial signal from CD’s or synthesised by a high quality software syn-
processing stage is based on a STFT enhanced by a trackhesizer. The output is a symbolic representation of the
ing phase vocoder, which interprets stable frequency com-music, in MIDI (musical instrument digital interface) for-
ponents as partials of musical notes. Heuristic methodsmat, which is an event-based representation correspond-
combine these partials, using a generic instrument model,ing to synthesizer control information. Apart from its cur-
to produce note estimates. The system is tested on a largeent use in performance analysis, the system could func-
corpus of professionally performed music from the stan- tion as a front end for an automatic transcription system

dard classical piano repertoire. or for content-based indexing and retrieval.
In section 2, we briefly review the relevant literature,
and then in section 3 describe the system itself. The fol-
1 INTRODUCTION Y

lowing section outlines the testing methodology and pre-
liminary results, and we conclude with a discussion of the

With the recent advances in multimedia capabilities of results and further work.

computers, the need for intelligent processing of multi-
media content has risen greatly. Most work in this area
has focussed on video and speech; relatively little has? RELATED WORK
been achieved in the area of non-speech audio, such as
music. This paper addresses the problem of extractingMost related work consists of various attempts at auto-
musical content from audio data. More specifically, we matic transcription in some limited domain [7, 8, 1, 6, 11,
consider the task of ascertaining performance parameterg2, 3, 9, 5, 4]. The current state of the art is that pitch and
from polyphonic music, that is, calculating which notes timing for a known instrument playing one note at a time
were playedgitch), when they were playedifing), and  can be detected quite reliably, and is commercially avail-
how loud they were played/élocity’). For piano music,  able in hardware and software realisations. Polyphonic
these parameters almost completely characterize the pertranscription has only been performed successfully with
former’s contribution to the performance. Other factors severely restrictive conditions on the input data. Space
such as instrument and room acoustics are not consideredoes not permit reference to more than a small number of
in this paper. the approaches used (see [4] for a more complete review).
A natural application of this work is to the problem of The pioneering work of Moorer [7] used comb filters
automatic transcription, that is, generating a representa and autocorrelation to perform transcription of very re-
tion in common music notation of the musical content of stricted duets. The input data was allowed to contain no
an audio signal. Although this is similar to the task per- more than two notes sounding simultaneously, and note
formed in this work, we do not address the additional is- combinations which shared common frequency compo-
sues of rhythm understanding, quantization, key finding, nents (e.g. octaves) were not allowed, so that the com-
note naming and page layout, which would be required ponents could be interpreted unambiguously. The range
for a transcription system. Instead, we focus on more pre-of notes was restricted to two octaves. Schloss [11] devel-
cise determination of performance parameters in order tooped useful time domain techniques for accurate estima-
use the resulting output in studies of musical expression. tion of onset times in his work on transcription of untuned
The signal processing techniques employed in this work percussion, but did not address pitch extraction. Martin
[5] allowed up to 4 voices in the input data, but it was
restricted to the chorale style of J.S. Bach, with all parts

1we will use MIDI terminology throughout this paper



played by synthesised piano. Furthermore, octave inter-

vals were not allowed, and the note range was restricted to Downsampled Audio
under 2 octavesffy = 123—440Hz). Klapuri [4] allowed a

5 octave fundamental frequency range (65—-2093Hz), but l
required example notes covering the complete range of Windowed Audio
each instrument in order to train the system. Good results

were achieved for the stated test examples; it is not clear

how the system would perform on more complex musi- !

cal examples. The only work explicitly concerned with Power Spectrum Phase Spectrum
extraction of performance parameters is that of Scheirer : I : I

[9, 10], who required that the musical score be provided - _ - _
to guide his system. The problem with most of these sys- Spectral Peaks | Frequency Estimate
tems is lack of extensibility, due to overly restrictive as-

sumptions made about the input data. Therefore, each new j —— 7L

attempt starts from zero, rather than building on previous
work.
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3 SYSTEM DESCRIPTION

The basic design philosophy was to create an open sys- l
tem, avoiding design decisions which would commit the
system to specific musical assumptions, such as the num- Musical Notes

ber of simultaneous notes, the frequency range or the in-
struments used. The generic system can then be special-
ized if necessary to take advantage of known features of Figure 1: Data flow through the system
particular input data. The modularity of the design also

facilitates the replacement of system components with al- , i
ternative implementations. The code is written in C++, Usually stable across a number of frequency bins. Fig-
and runs on Unix platforms (Linux and Solaris). ure 3 shows the relationship between bin centre frequency

Figure 1 illustrates the stages of processing performedanCI rate of phase change (top), with the magnit_ude Spec-
by the system. After low-pass filtering and down- trum shown for reference at the bottom of the figure. A

sampling the signal to a 12kHz sampling rate, the signal is clear correspondence occurs between spectral peaks and

windowed and converted to a frequency domain represen-orizontal segments in the graph, where the power from a

tation using a short-time Fourier transform. The specific Singl€ frequency component s spread across a number of
parameter values (all adjustable from the command line) FFT Pins. _
were a window size of 4096 samples (341ms), containing The peaks in the power spectrum and the frequency esti-

230ms of signal shaped with a Hamming window and zero mates from the rate of phase change calculation are com-
padded to fill the window, and hop size of 20ms. bined to give atoms of energy localised in time and fre-

The complex frequency domain data is then converted 9UeNcy. Atoms with significant energy are then traced in
into magnitude squared (power) and phase values. Aptime, giving frequency tracks which represent partials or
adaptive peak-picking algorithm finds spectral peaks, harmonics of the m_u5|cal notes. The frequency tracks are
which give an initial estimate of the significant frequency updated by a few S|mpl_e rules, for example to remove the
components in each window of the signal. tracks caused by transients at note onsets, whlch occur as

Figure 2 shows the trade-off between time and fre- frquency tracks with very shortdurauon;. The final step
quency resolution inherent to Fourier analysis: the high IS t0 interpretthe frequency tracks as musical notes, which
frequencies are clearly resolved, but the lower frequecies'® do_ne by finding a set of fL_mdamentaI frequencies which
are blurred by the use of a short time window and logarith- provides the best e>_<p|ane_at|on for_the observed fr_eque_ncy
mic frequency scale. A longer time window would help to data, relative to an implicit generic model of musical in-
solve this problem, but only at the expense of creating an Strument tones.
alternative problem of insufficient resolution in time.

We use a method based on the phase vocoder [2] in o4 EVALUATION AND RESULTS

der to obtain greater frequency resolution at low frequen-
cies. Rather than using the centre frequency of FFT bins, gyajyation of audio content analysis is hindered by a lack
a more accurate estimate of frequency is obtained by ex-q¢ gyjitable test data. In the field of speech recognition the

amining the rate of change of phase in each bin. In the g 4ijapility of large corpora of tagged speech data enables
bins surrounding a spectral peak, the rate of phase changggih |arge scale testing and the use of statistical, machine

corresponds with the true frequency in the signal, and is |earning and iterative improvement algorithms. There are
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Figure 2: Power spectrogram from STFT with Gaussian windbawing poor resolution at low frequencies. The excerpt
is 7.5 seconds of solo electric guitar music.

1400 ‘ ‘ ‘ ‘ ‘ ‘ parison of pairs of MIDI files — the input files from which
1200 1 the audio data was generated, and the output files of notes
detected by the system.

A matching algorithm is used to pair corresponding
events in the input and output MIDI files. Events are
judged to correspond if they have the same pitch and on-
set times differing by no more than a small error margin
(70ms). The results are evaluated in terms of the number
of paired notes ), the number of false positived'(P
g (o) = the number of notes reported by the system that were

i not played) and the number of false negativesV(= the

‘ ‘ ‘ ‘ ‘ ‘ number of notes played that were not reported by the sys-
0 200 400 600 800 1000 1200 1400 . . . N

Frequency (Hz) tem). An incorrectly identified note (e.g. wrong pitch)

) . ~is counted as both a false positive (the wrongly reported
Figure 3: Rate of change of phase in FFT frequency bins note) and a false negative (the note that should have been
(signal magnitude is shown below for reference) reported), which makes the evaluation metric relatively
harsh on this type of error. The three figures are combined
with the following formula into a single score (expressed
as a percentage):
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no similar large corpora of musical data, so we chose to
synthesize test data from MIDI representations of profes-
sional performances. Note that although the musical score N
pro_\/lqles sufﬂmen? information for_the evaluation (_)f a t-ran_ Score = FP+FNIN
scription system, it does not provide the expressive dgetail
of timing and dynamics which we require for testing our ~ To test the system with various instrument sounds, we
system. These are rarely, if ever, available in conjunction selected several representative synthesizer voices frem t
with audio recordings, but are represented in MIDI data. General MIDI Specification. The results are shown in Fig-
In order to ensure that the system was tested with a wideure 4. A default set of parameters were used for all voices
range of musical situations, a data set of 13 Mozart piano except acpiano*, where the amplitude threshold parame-
sonatas (4 hours of music; over 100000 notes) was ob-ters were adjusted to show the sensitivity of the system
tained in MIDI format, and audio data was generated from to instrument amplitude. Clearly the variation in results
MIDI files using high quality software synthesis. The ac- shows also that the system is very sensitivity to instru-
curacy of the note recognition system was tested by com-mental timbre.



acpiano | 95443| 32053| 11016| 68.9%
acpiano*| 95914 | 21433| 10545| 75.0% [1
britepno | 87331 | 18185| 19128 | 70.1%
honky 93777 8227 | 12682 | 81.8%
hrpschrd| 93134 | 41136| 13325| 63.1%
marimba| 92128| 11306| 14331| 78.2%
violin 74528 | 146299| 31931 | 29.5%

flute 89882 | 12109| 16577 | 75.8% [2

Figure 4: Preliminary Results 3

5 DISCUSSION

Many aspects of the system are yet to be implemented,
most notably the calculation of suitable thresholds and pa-
rameters. Nevertheless, the preliminary results are posi-
tive. The system currently uses no knowledge of the sound
sources, being based on a very generic instrument model,
which assumes only that notes are harmonic with most of
the energy at the lower partials. Accurate sound source g
modelling will improve the system’s performance consid-
erably, as has been shown by [4].

Although synthetic data was used, its quality is suffi-
ciently high that it is unlikely to affect results signifidin
when data from natural instruments is used. Other authors
have used synthetic data even for small-scale tests [5]. [6

Planned extensions of the work are to develop instru-
mental models dynamically, so that the system tunes it-
self to the instruments and acoustic conditions, much as a
human listener does. A specific "hard-coded" system for
acoustic piano is also under development, for use in the
study of musical expression. Also planned for this study,
where score information is often available, is an investi-
gation of the incorporation of score knowledge into the g
system, as performed by [10]. The matching algorithm
also needs further development, so that instead of using
a fixed time tolerance with binary acceptance, a more
graded evaluation function should be used which evalu- [9
ates the extent of timing errors. Also, incorrectly iden-
tified notes should be classified into common error types
(e.g. octave errors); these and other perceptually reason-
able errors, such as those due to masking, should be penak—
ized less harshly than they are currently. In further work
we will also assess the accuracy of the dynamics and off-
set times reported by the system, which are more difficult
problems, but perhaps less critical in their accuracy.
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