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Abstract. Beat tracking is what people do when they tap their feet
in time to music. We present a software system which performs this
task, processing music in a standard digital audio format and estimating
the locations of musical beats. A time-domain algorithm detects salient
acoustic events, and then a clustering algorithm groups the time intervals
between events to obtain hypotheses about the current tempo. Multiple
competing agents track these hypotheses throughout the music, with
further agents being created at decision points. The output for each agent
is a sequence of beat locations, which is evaluated for its closeness of fit to
the data. This approach to beat tracking assumes no previous knowledge
of the music such as the style, time signature or approximate tempo;
all required information is derived from the audio data. The system has
been tested with various styles of music (popular, jazz, and classical) and
performs robustly, rarely making errors in popular music, and recovering
quickly from errors in more complex styles of music, despite the fact that
no high level musical knowledge is encoded in the system.

1 Introduction

Although most people can tap their feet in time with music, equivalent perfor-
mance on a computer has proved remarkably difficult to achieve. One reason
for this is that these systems have been based only on the codification of high
level metrical knowledge. We show that such knowledge is secondary to the beat
tracking task. Just as people can follow the beat of music without musical train-
ing and without previous knowledge of the particular piece of music, so can a
computer program.

In this paper, we present a system which processes musical audio signals,
estimating the tempo and determining the locations of musical beats. No spe-
cific assumptions are made about the music being analyzed, but the system
performs robustly on various types of popular, jazz and classical music. We do
not attempt to model or describe the cognitive mechanisms involved in human
rhythm perception. However we do note certain features of human perception
which motivate an ambitious unsupervised approach to the beat tracking prob-
lem, namely, that human rhythm perception is self-calibrating and copes well
with both syncopation and noise in the input.



The subsequent sections of the paper contain a review of related work, then
a description of the musical assumptions made in this work. The next sections
present, the algorithm for onset detection from raw audio data, followed by the
algorithm for tempo induction, defined as the estimation of the time interval
between successive occurrences of the main rhythmic pulse of the music. We
then describe the multi-agent approach to beat tracking, which is the determi-
nation of beat locations (and therefore tempo fluctuations) in the light of the
previous tempo estimations. The results from testing the system with various
types of music are then presented and discussed, and the paper concludes with
a description of applications of the beat tracking system.

2 Related Work

A substantial amount of research has been performed in the area of rhythm
recognition by computer, including a demonstration of various beat tracking
methods using a computer to control a shoe which tapped in time with the
calculated beat of the music [5]. These systems are difficult to compare directly,
as they make different assumptions about the input format, style and complexity
of the music.

Much of the work in machine perception of rhythm has used MIDI files as
input [18,2, 14], which contain control information for a synthesizer rather than
audio data. MIDI files consist of sequences of events, usually corresponding to
pressing and releasing keys on a piano-style keyboard, plus an encoding of the
time duration between successive events. Structural information such as the time
signature and tempo can also be stored in MIDI files, but it is usually assumed
that such information is not available to rhythm recognition programs.

Using MIDI files, the input is usually interpreted as a series of event times,
ignoring the event duration, pitch, amplitude and chosen synthesizer voice. That
is, each note is treated purely as an uninterpreted event. It is assumed that the
other parameters do not provide essential rhythmic information, which in many
circumstances is true. However, there is no doubt that these factors provide
useful rhythmic cues; for example, more salient events tend to occur on stronger
beats.

Notable work using MIDI file input is an emulation of human rhythm percep-
tion [18], which produces multiple hypotheses of possible hierarchical structures
in the timing, assigning a score to each hypothesis, corresponding to the likeli-
hood that a human listener would choose that interpretation of the rhythm. This
technique gives the system the ability to adjust to changes in tempo and meter,
as well as avoiding many of the implausible rhythmic interpretations produced
by commercial systems.

Desain [2] compares two different approaches to modeling rhythm perception,
the symbolic approach of Longuet-Higgins [16] and the connectionist approach
of Desain and Honing [3]. Although this work only models one aspect of rhythm
perception, the issue of quantization, and the results of the comparison are in-
conclusive, it does highlight the need to model expectancy, either explicitly or



implicitly. Expectancy is a type of predictive modeling, particularly relevant to
real time processing, as it provides a contextual framework in which subsequent
rhythmic patterns can be interpreted with less ambiguity.

Allen and Dannenburg [1] describe a beat tracking system that uses beam
search to consider multiple hypotheses of beat timing and placement. A heuristic
evaluation function directs the search, preferring interpretations that have a
“simple” musical structure and make “musical sense”, although they do not
define what they mean by these terms. They also do not describe the input
format or any specific results.

An alternative approach uses a nonlinear oscillator to model the expectation
created by detecting a regular pulse in the music [14]. A feedback loop controls
the frequency of the oscillator so that it can track variations in the rhythm.
This system performs quite robustly, but, like connectionist approaches, does
not provide any intuition about the beat tracking process, and therefore would
be difficult to extend using high level knowledge.

There has been only a small amount of rhythm research using audio input,
beginning with the percussion transcription system of Schloss [19]. Onsets were
detected as peaks in the slope of the amplitude envelope, where the envelope
was defined to be equal to the maximum amplitude in each period of the high-
pass filtered signal, and the period defined as the inverse of the lowest frequency
expected to be present in the signal. The system was limited in that it required
parameters to be set interactively, and it was evaluated only by resynthesis of
the signal.

A more complete approach to beat tracking of acoustic signals was developed
by Goto and Muraoka [10,12,13]. They developed two systems for following the
beat of popular music in real time. The earlier system (BTS) used frequency
histograms to find significant peaks in the low frequency regions, corresponding
to the frequencies of the bass and snare drums, and then tracked these low
frequency signals by matching patterns of onset times to a set of pre-stored
drum beat patterns. This method was successful in tracking the beat of most of
the popular songs on which it was tested. A later system allowed music without
drums to be tracked by recognizing chord changes, assuming that significant
harmonic changes occur at strong rhythmic positions. These systems required a
powerful parallel computer in order to run in real time.

Commercial transcription and sequencing programs do not address the issues
covered by these research systems. They generally require that the tempo and
time signature are specified before the music is played, and the system then
aligns each note with the nearest position on a metrical grid. Recent systems
allow parameterization of this grid in terms of its resolution (the shortest allowed
note length), and adjustment of restrictions on the complexity of rhythm that can
be produced by the system. These systems often produce implausible rhythmic
interpretations, and cannot be used in an unsupervised manner for anything but
simple rhythms.



3 Musical Assumptions

Despite the large amount of research in time and rhythm in music, the beat
tracking problem remains poorly defined. The reason is that the beat is a sub-
jective property of performed music. Formal musical models tend to be based on
the notational representation rather than performance [15,17], and those which
address performance timing do so from the point of view of generation and/or
transformation of timing rather than extraction or explanation of performance
data [4]. We follow [11] in evaluating the correctness of the beat tracking system
relative to a subjective labelling of beat positions.

A theoretical definition of beat is “a perceived pulse marking off equal du-
rational units” [9]; in practice, the durational units marked off by the onsets
of notes on successive beats are only approximately equal. However, for a large
amount of music, the subjective differences in perceived beat are minor, other-
wise human activities such as ensemble playing and dancing would not be pos-
sible. In this study we restrict our attention to music which has such an agreed
beat, and rely on the onset detection algorithm to choose the more salient events
as possible beat locations.

4 Awudio Processing

In this and the following sections, we describe the stages of processing performed
by the beat tracking system. All of the software is written in C++ and runs on
a Unix platform (Linux or Solaris). The complete processing of a song takes
about 10 seconds on a current PC, making it viable for use in real time audio
applications, although the software is not currently designed for real time use.
The input to the system is a digitally sampled acoustic signal, such as is found
on audio compact discs. The stereo compact disc data is converted to a single
channel format by averaging the left and right channels, resulting in a single
channel 16 bit linear pulse code modulated (PCM) format, with a sampling rate
of 44.1kHz.

The aim of the initial signal processing stage is to detect events in the audio
data, from which rhythmic information can be derived. For the purposes of this
work, events correspond to note onsets, that is, the beginnings of musical notes,
including percussive sounds. By ignoring note durations and offset times, we
discard valuable information, but our results justify the present assumption,
that there is sufficient information in note onsets to perform beat tracking.

A time-domain method similar to that of Schloss [19] is employed for onset
detection. This method involves passing the signal through a simple high-pass
filter, calculating the absolute sum of small overlapping windows of the signal,
and then finding peaks in the slope of these window sums using a 4 point linear
regression. Only the more salient event onsets are detected with the method,
which is ideal for the subsequent task of tempo induction.



5 Tempo Induction

The tempo induction section of the system determines a set of hypotheses about
the tempo of a given section of music, which may be expressed in beats per
minute (BPM) or in seconds, as the inter-beat interval (IBI). The algorithm, de-
scribed further in [6, 7], is based on clustering of inter-onset intervals (I0T’s). In
the literature, an IOI is defined as the time between the onsets of two successive
events, but we extend the definition to include times between onsets of pairs
of events that are separated by intervening event onsets. All possible pairs of
onsets that occur within 2.5 seconds of each other are grouped by the clustering
algorithm. Figure 1 shows clustering for five events (A, B, C, D, E) into intervals
of similar size. For example, cluster C1 contains the intervals AB, BC and DE,
while cluster C2 contains AC and CD. Each cluster is identified by its average
interval size.
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Fig. 1. Clustering of inter-onset intervals

After grouping IOT’s into clusters, a score is calculated for each cluster, based
on the number of IOI’s in the cluster. The highly ranked clusters usually corre-
spond to the beat or small integer multiples or fractions of the beat. For example,
supposing that C2 represents the IBI, then C1 represents half of the IBI and C4
represents double the IBI. Each cluster’s score is increased for each other cluster
to which it is related by a small integer ratio, and a final ranking of the inter-beat
interval hypotheses is determined.

In previous work [7], it was found that the correct tempo can be induced from
a 5-10 second excerpt of the music with 90% reliability, and by using multiple (or
longer) excerpts, the reliability quickly approaches 100%. In this work, it does
not matter if the initial estimate is correct, as multiple hypotheses are checked
in the beat tracking stage, so that an error in tempo induction can be corrected
at a later time.



6 Beat Tracking Agents

The tempo induction algorithm computes the inter-beat interval, that is, the
time between successive beats, but does not calculate the location of the beat.
In Figure 1, the clustering might determine that C2 represents the inter-beat
interval, but it does not reveal whether events A, C and D are beat locations or
whether B and E are beat locations. By analogy with wave theory, we could say
that it calculates the frequency but not the phase of the beat.

The phase is calculated by employing an agent-based architecture to examine
multiple hypotheses simultaneously throughout the music. The agents are char-
acterized by their state and history. The state is the agent’s current hypothesis of
the beat frequency and phase, and the history is the sequence of beat locations
selected so far by the agent. Each agent is evaluated on the basis of its history,
with higher scores being awarded for greater regularity in the spacing between
events, greater salience of chosen events, and fewer gaps in the sequence.
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Fig. 2. Beat tracking agents (see text for details)

Initially, a number of agents are created for each of the tempo hypotheses
from the tempo induction stage; for each tempo, one agent is created for each
of the first few events in the piece, with its phase set to 0 at the time of the
event onset. A simplified example is shown in Figure 2, where there are 2 tempo
hypotheses, and two starting locations, events A and B. Agents 1 and 2 start
with the same phase, but different tempo, while Agent 3 starts with a different
phase, but the same initial tempo as Agent 2. Note there is no need to start an
agent with the tempo of Agent 1 and phase of Agent 3, since Agent 1 covers
event B itself.

The main loop of the beat tracking section passes each event to each agent,
which compares the event’s onset time with the predicted beat location. The
agents have two windows of tolerance, an inner window, within which the agent
is sure that the event corresponds to the predicted beat location, and an outer
window, within which the agent is unsure if the event should be accepted as a
beat location. If the event falls in the inner window, it is added to the agent’s
history, and the agent’s tempo and phase hypotheses are updated. In the case



that the event falls in the outer window around the predicted location, the agent
creates a clone which accepts the event as a beat location, while the current
agent rejects the event. In Figure 2, Agent 2 creates Agent 2a when event E falls
in its outer window of expected beat locations. This guards against the current
beat location being lost due to a rogue event, whilst also allowing for moderate
deviations in tempo and phase to occur. When an accepted event is more than
one beat from the previous beat location determined by the agent, the missing
beats are filled in by interpolation (shown by hollow circles in the figure).

As the agents track the beats, a confidence value is maintained for each agent.
This value is increased each time an event is accepted as a beat location. The
amount of increase depends on the salience of the event and its proximity to
the predicted beat location. The salience is measured in terms of the amplitude
of the event onset, calculated on a logarithmic scale. The value is then reduced
according to the difference between the predicted and actual beat locations, and
then added to the agent’s confidence value. The final confidence value for an
agent is calculated by reducing the confidence for each beat which had to be
interpolated, and normalizing the result so that the agents with a faster tempo
are not advantaged by their greater number of beats.

It often occurs that two or more agents come to the same conclusion about
the current tempo and beat phase. Since these are the only variables that deter-
mine the agent’s state (and therefore its future behavior), it is computationally
advantageous to remove all but one of these agreeing agents, retaining only the
agent with the highest confidence (that is, with the best scoring history). In
Figure 2, Agent 3 is terminated when its state coincides with that of Agent 2a,
as indicated by the arrow at event E. Removal of duplicate agents is performed
after each event is processed. Agents are also checked for currentness, and are
removed if they are unable to find any event corresponding to a predicted beat
for some fixed length of time.

After the last event is processed, the highest scoring current agent is selected,
and its history is output as the beat tracking “solution”. It is also possible to
view a trace of the agents and their scores at each event during processing. For
aural testing (and demonstrations) of the system, the music can also be played
back or saved to file with a click track added to it, that is, a percussion track
indicating the positions of beats as detected by the system. In the following
section, testing methodology is discussed, and the results of beat tracking with
various styles of music are presented.

7 Results and Discussion

Informal testing was performed by listening to the music with synthesized per-
cussion strokes (e.g. cow-bell) played at the beat locations computed by the
system. With this method, it is easy to check that the tempo estimation and
tracking are approximately correct, but it is not a very precise form of testing.
It is also very time-consuming if used repeatedly to test the effects of small
adjustments to the system. However, aural testing provides intuition about the



situations in which the beat tracker fails, which is useful for determining which
aspects of the system require further work.

Fig. 3. Beat tracking test details and results

Song Title Artist Style Date| Tempo |Time|Tracking
range |sign.| Results

I Don’t Remember|Paul Kelly and the|Pop/rock [1987(139-142| 4/4 | 100%
A Thing Coloured Girls

Dumb Things 7 ”  |Pop/rock |[1987(151-154| 4/4 | 100%
Untouchable K 7 |Pop/rock [1987(145-146| 4/4 | 100%
Superstition Stevie Wonder Motown  [1972(96-104 | 4/4 | 96%

You Are The Sun-|Stevie Wonder Motown  [1972(127-136| 4/4 | 92%
shine of My Life

On A Night Like|Bob Dylan Country [1974(136-140( 4/4 | 79%
This
Rosa Morefia Jodo Gilberto Trio |Bossa nova|1964|128-134| 4/4 | 95%
Michelle Béla Fleck and the|Jazz swing {1991|180-193| 3/4 | 92%
Flecktones

Jitterbug Waltz James Morrison  |Jazz waltz {1990|155-175| 3/4 | 77%

Piano Sonata in C|Wolfgang Mozart |Classical [1775]|120-150{ 2/4 | 90%
3rd movt. 1st sect

In Figure 3, we present the results for beat tracking of songs representing
various styles of music. The rightmost column of the table indicates the per-
centage of beat positions which were calculated correctly by the beat tracking
system, a measure of the performance of the system. This does not indicate the
nature of the errors made during beat tracking. For each of the songs listed, the
tempo was estimated correctly. Therefore the results column can be considered
to be the percentage of the song for which the phase was tracked correctly.

More precise testing was performed by comparison of results with manually
calculated beat positions. The audio files were examined with standard digital
audio editing software (GoldWave), and beat locations were determined for a
number of beats on which clear percussive events occurred. These locations were
then used to interpolate the locations of the intervening beats.

The first 3 songs are standard modern pop/rock, characterized by a very
steady tempo, which is clearly defined by simple and salient drum patterns,
similar to the data used in the early audio beat tracking work of Goto [10]. In
the production of this style of music, it is common practice for each instrument to
be recorded separately, using a metronome track for synchronization. In this case
one expects the performed beat to be very regular, with only small deviations
from mechanical regularity. The beat tracking system made no errors on these
songs.



The next style examined was Motown/Soul, characterized by more syncopa-
tion, greater tempo fluctuations (5-10% in these examples), and more freedom
to anticipate or lag behind the beat. This created a greater difficulty for the
beat tracking system, which made errors of phase several times, but recovered
quickly to track almost all of each song correctly.

The Bob Dylan song was more difficult again, because of his idiosyncratic
style of singing and playing against the rhythmic context. Although the beat is
reasonably clear to a human listener, the drums are not prominent, and there
is a much lower correlation between the conceptual beat and the actual musical
events than in the other styles. There were two main sections in which the beat
tracking system lost synchronization and tracked the off-beats (i.e., it continued
at the correct tempo but half a beat out of phase), but again the system recovered
to the correct phase.

The next test involved a live bossa nova performance with syncopated guitar
and vocals, and very little percussion to indicate beat positions. The song was
tracked correctly except in few passages where it went out of phase, but the error
was corrected within a few beats.

The two jazz pieces were chosen for their particularly complex, syncopated
rhythms, which are difficult for humans to follow. These pieces also provided
examples of a different time signature, swing eighth notes, and greater tempo
variation. In both cases, the highest scoring agent was able to track the majority
of the piece correctly, but encountered phase errors in some parts.

Finally, a classical piece was tested, the first section of the third movement
of Mozart’s Piano Sonata in C major (KV279). The system lost synchronization
several times, tracking the off-beats rather than the beats, due to large tempo
variations and the system’s lack of musical knowledge for distinguishing between
beats and off-beats.

It is interesting to note that phase errors were also encountered for simple pop
music in an earlier version of the system. With the salience calculation removed,
the system tracks the whole of I Don’t Remember A Thing at half a beat out
of phase. For pop music, the salience of events differentiates the beat from the
offbeat at most points in the music. This may not be true in jazz, where the
offbeat is often accentuated for long periods of time, so the system requires an
alternative way of choosing the correct path through the data.

Note that the beat tracking system is not equipped with musical knowledge
— no notion of off-beats or expected rhythmic patterns has been programmed
into it. Its apparent musical intelligence comes from patterns in the data, without
any high-level knowledge or reasoning. Apart from the advantage of simplicity, a
further advantage is that the system is quite robust, and generalizes well to dif-
ferent styles of music, as long as there is a salient beat. In order to disambiguate
complex or ambiguous rhythmic patterns, the system will need sources of musi-
cal knowledge other than timing of events; these are not presently available to
it. In current work [8], we are examining a specialization of the system for solo
piano music which incorporates a level of musical and stylistic knowledge with
the aim of extracting the score from performance data.



8 Conclusion

We have described a beat tracking system which analyses acoustic data, detects
the salient note onsets, determines possible inter-beat intervals and then employs
multiple agents to find a sequence of events which represents the beat of the
music. The system successfully tracks the beat in most popular music, but makes
some phase errors, mainly when presented with extremely complex rhythms or
music with large tempo deviations. Even in these situations, the performance is
quite robust, with the system recovering from its errors and resuming correct
tracking after a short period.

Unlike previous audio beat tracking systems which required a large parallel
computer [13], our system has modest requirements, processing an average length
song in about 10 seconds on a current personal computer, leaving sufficient
resources for real time applications based on the beat tracking system.

One such application is an automatic disc jockey (DJ), which plays a list
of songs, cross-fading between the songs so that the beats of successive songs
are synchronized (beat-mixing). This has been implemented as part of the beat
tracking system. Another application is that of a score extraction system. This
application uses MIDI input rather than audio, and the system’s job is to make
“musical sense” of the performed rhythm. The nature of this problem is differ-
ent, in that we seek a musical explanation for every event, whereas the current
system ignores events which are determined not to lie on the beat. MIDI input
also facilitates the use of other knowledge from the data, such as duration, pitch,
repeated melodic patterns and musical voice. In recent work, such information
has proved useful in calculating a more detailed salience value for musical events
[8]. Tt is still an open problem how such details can be extracted reliably directly
from audio data. A further application of beat tracking, and one which requires
reliable recognition of pitch and duration of notes, is an automatic music tran-
scription system, that is, a system which produces musical scores directly from
audio data. Such a system requires a beat tracker as one component.

The use of manual beat tracking for evaluation of the system limits the
amount of testing that can be performed, but is necessary when analyzing per-
formed music. Unlike speech-related research, music recognition research cur-
rently has no large corpora of tagged data for thorough testing and comparison
of results (or, for that matter, the use of probabilistic search techniques). In fur-
ther work we plan to perform a study of beat tracking in synthetically generated
music, where the variations in tempo and onset times can be controlled precisely,
and performance can be evaluated automatically.
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