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.atAbstra
t. Beat tra
king is what people do when they tap their feetin time to musi
. We present a software system whi
h performs thistask, pro
essing musi
 in a standard digital audio format and estimatingthe lo
ations of musi
al beats. A time-domain algorithm dete
ts salienta
ousti
 events, and then a 
lustering algorithm groups the time intervalsbetween events to obtain hypotheses about the 
urrent tempo. Multiple
ompeting agents tra
k these hypotheses throughout the musi
, withfurther agents being 
reated at de
ision points. The output for ea
h agentis a sequen
e of beat lo
ations, whi
h is evaluated for its 
loseness of �t tothe data. This approa
h to beat tra
king assumes no previous knowledgeof the musi
 su
h as the style, time signature or approximate tempo;all required information is derived from the audio data. The system hasbeen tested with various styles of musi
 (popular, jazz, and 
lassi
al) andperforms robustly, rarely making errors in popular musi
, and re
overingqui
kly from errors in more 
omplex styles of musi
, despite the fa
t thatno high level musi
al knowledge is en
oded in the system.1 Introdu
tionAlthough most people 
an tap their feet in time with musi
, equivalent perfor-man
e on a 
omputer has proved remarkably diÆ
ult to a
hieve. One reasonfor this is that these systems have been based only on the 
odi�
ation of highlevel metri
al knowledge. We show that su
h knowledge is se
ondary to the beattra
king task. Just as people 
an follow the beat of musi
 without musi
al train-ing and without previous knowledge of the parti
ular pie
e of musi
, so 
an a
omputer program.In this paper, we present a system whi
h pro
esses musi
al audio signals,estimating the tempo and determining the lo
ations of musi
al beats. No spe-
i�
 assumptions are made about the musi
 being analyzed, but the systemperforms robustly on various types of popular, jazz and 
lassi
al musi
. We donot attempt to model or des
ribe the 
ognitive me
hanisms involved in humanrhythm per
eption. However we do note 
ertain features of human per
eptionwhi
h motivate an ambitious unsupervised approa
h to the beat tra
king prob-lem, namely, that human rhythm per
eption is self-
alibrating and 
opes wellwith both syn
opation and noise in the input.



The subsequent se
tions of the paper 
ontain a review of related work, thena des
ription of the musi
al assumptions made in this work. The next se
tionspresent the algorithm for onset dete
tion from raw audio data, followed by thealgorithm for tempo indu
tion, de�ned as the estimation of the time intervalbetween su

essive o

urren
es of the main rhythmi
 pulse of the musi
. Wethen des
ribe the multi-agent approa
h to beat tra
king, whi
h is the determi-nation of beat lo
ations (and therefore tempo 
u
tuations) in the light of theprevious tempo estimations. The results from testing the system with varioustypes of musi
 are then presented and dis
ussed, and the paper 
on
ludes witha des
ription of appli
ations of the beat tra
king system.2 Related WorkA substantial amount of resear
h has been performed in the area of rhythmre
ognition by 
omputer, in
luding a demonstration of various beat tra
kingmethods using a 
omputer to 
ontrol a shoe whi
h tapped in time with the
al
ulated beat of the musi
 [5℄. These systems are diÆ
ult to 
ompare dire
tly,as they make di�erent assumptions about the input format, style and 
omplexityof the musi
.Mu
h of the work in ma
hine per
eption of rhythm has used MIDI �les asinput [18, 2, 14℄, whi
h 
ontain 
ontrol information for a synthesizer rather thanaudio data. MIDI �les 
onsist of sequen
es of events, usually 
orresponding topressing and releasing keys on a piano-style keyboard, plus an en
oding of thetime duration between su

essive events. Stru
tural information su
h as the timesignature and tempo 
an also be stored in MIDI �les, but it is usually assumedthat su
h information is not available to rhythm re
ognition programs.Using MIDI �les, the input is usually interpreted as a series of event times,ignoring the event duration, pit
h, amplitude and 
hosen synthesizer voi
e. Thatis, ea
h note is treated purely as an uninterpreted event. It is assumed that theother parameters do not provide essential rhythmi
 information, whi
h in many
ir
umstan
es is true. However, there is no doubt that these fa
tors provideuseful rhythmi
 
ues; for example, more salient events tend to o

ur on strongerbeats.Notable work using MIDI �le input is an emulation of human rhythm per
ep-tion [18℄, whi
h produ
es multiple hypotheses of possible hierar
hi
al stru
turesin the timing, assigning a s
ore to ea
h hypothesis, 
orresponding to the likeli-hood that a human listener would 
hoose that interpretation of the rhythm. Thiste
hnique gives the system the ability to adjust to 
hanges in tempo and meter,as well as avoiding many of the implausible rhythmi
 interpretations produ
edby 
ommer
ial systems.Desain [2℄ 
ompares two di�erent approa
hes to modeling rhythm per
eption,the symboli
 approa
h of Longuet-Higgins [16℄ and the 
onne
tionist approa
hof Desain and Honing [3℄. Although this work only models one aspe
t of rhythmper
eption, the issue of quantization, and the results of the 
omparison are in-
on
lusive, it does highlight the need to model expe
tan
y, either expli
itly or



impli
itly. Expe
tan
y is a type of predi
tive modeling, parti
ularly relevant toreal time pro
essing, as it provides a 
ontextual framework in whi
h subsequentrhythmi
 patterns 
an be interpreted with less ambiguity.Allen and Dannenburg [1℄ des
ribe a beat tra
king system that uses beamsear
h to 
onsider multiple hypotheses of beat timing and pla
ement. A heuristi
evaluation fun
tion dire
ts the sear
h, preferring interpretations that have a\simple" musi
al stru
ture and make \musi
al sense", although they do notde�ne what they mean by these terms. They also do not des
ribe the inputformat or any spe
i�
 results.An alternative approa
h uses a nonlinear os
illator to model the expe
tation
reated by dete
ting a regular pulse in the musi
 [14℄. A feedba
k loop 
ontrolsthe frequen
y of the os
illator so that it 
an tra
k variations in the rhythm.This system performs quite robustly, but, like 
onne
tionist approa
hes, doesnot provide any intuition about the beat tra
king pro
ess, and therefore wouldbe diÆ
ult to extend using high level knowledge.There has been only a small amount of rhythm resear
h using audio input,beginning with the per
ussion trans
ription system of S
hloss [19℄. Onsets weredete
ted as peaks in the slope of the amplitude envelope, where the envelopewas de�ned to be equal to the maximum amplitude in ea
h period of the high-pass �ltered signal, and the period de�ned as the inverse of the lowest frequen
yexpe
ted to be present in the signal. The system was limited in that it requiredparameters to be set intera
tively, and it was evaluated only by resynthesis ofthe signal.A more 
omplete approa
h to beat tra
king of a
ousti
 signals was developedby Goto and Muraoka [10, 12, 13℄. They developed two systems for following thebeat of popular musi
 in real time. The earlier system (BTS) used frequen
yhistograms to �nd signi�
ant peaks in the low frequen
y regions, 
orrespondingto the frequen
ies of the bass and snare drums, and then tra
ked these lowfrequen
y signals by mat
hing patterns of onset times to a set of pre-storeddrum beat patterns. This method was su

essful in tra
king the beat of most ofthe popular songs on whi
h it was tested. A later system allowed musi
 withoutdrums to be tra
ked by re
ognizing 
hord 
hanges, assuming that signi�
antharmoni
 
hanges o

ur at strong rhythmi
 positions. These systems required apowerful parallel 
omputer in order to run in real time.Commer
ial trans
ription and sequen
ing programs do not address the issues
overed by these resear
h systems. They generally require that the tempo andtime signature are spe
i�ed before the musi
 is played, and the system thenaligns ea
h note with the nearest position on a metri
al grid. Re
ent systemsallow parameterization of this grid in terms of its resolution (the shortest allowednote length), and adjustment of restri
tions on the 
omplexity of rhythm that 
anbe produ
ed by the system. These systems often produ
e implausible rhythmi
interpretations, and 
annot be used in an unsupervised manner for anything butsimple rhythms.



3 Musi
al AssumptionsDespite the large amount of resear
h in time and rhythm in musi
, the beattra
king problem remains poorly de�ned. The reason is that the beat is a sub-je
tive property of performed musi
. Formal musi
al models tend to be based onthe notational representation rather than performan
e [15, 17℄, and those whi
haddress performan
e timing do so from the point of view of generation and/ortransformation of timing rather than extra
tion or explanation of performan
edata [4℄. We follow [11℄ in evaluating the 
orre
tness of the beat tra
king systemrelative to a subje
tive labelling of beat positions.A theoreti
al de�nition of beat is \a per
eived pulse marking o� equal du-rational units" [9℄; in pra
ti
e, the durational units marked o� by the onsetsof notes on su

essive beats are only approximately equal. However, for a largeamount of musi
, the subje
tive di�eren
es in per
eived beat are minor, other-wise human a
tivities su
h as ensemble playing and dan
ing would not be pos-sible. In this study we restri
t our attention to musi
 whi
h has su
h an agreedbeat, and rely on the onset dete
tion algorithm to 
hoose the more salient eventsas possible beat lo
ations.4 Audio Pro
essingIn this and the following se
tions, we des
ribe the stages of pro
essing performedby the beat tra
king system. All of the software is written in C++ and runs ona Unix platform (Linux or Solaris). The 
omplete pro
essing of a song takesabout 10 se
onds on a 
urrent PC, making it viable for use in real time audioappli
ations, although the software is not 
urrently designed for real time use.The input to the system is a digitally sampled a
ousti
 signal, su
h as is foundon audio 
ompa
t dis
s. The stereo 
ompa
t dis
 data is 
onverted to a single
hannel format by averaging the left and right 
hannels, resulting in a single
hannel 16 bit linear pulse 
ode modulated (PCM) format, with a sampling rateof 44.1kHz.The aim of the initial signal pro
essing stage is to dete
t events in the audiodata, from whi
h rhythmi
 information 
an be derived. For the purposes of thiswork, events 
orrespond to note onsets, that is, the beginnings of musi
al notes,in
luding per
ussive sounds. By ignoring note durations and o�set times, wedis
ard valuable information, but our results justify the present assumption,that there is suÆ
ient information in note onsets to perform beat tra
king.A time-domain method similar to that of S
hloss [19℄ is employed for onsetdete
tion. This method involves passing the signal through a simple high-pass�lter, 
al
ulating the absolute sum of small overlapping windows of the signal,and then �nding peaks in the slope of these window sums using a 4 point linearregression. Only the more salient event onsets are dete
ted with the method,whi
h is ideal for the subsequent task of tempo indu
tion.



5 Tempo Indu
tionThe tempo indu
tion se
tion of the system determines a set of hypotheses aboutthe tempo of a given se
tion of musi
, whi
h may be expressed in beats perminute (BPM) or in se
onds, as the inter-beat interval (IBI). The algorithm, de-s
ribed further in [6, 7℄, is based on 
lustering of inter-onset intervals (IOI's). Inthe literature, an IOI is de�ned as the time between the onsets of two su

essiveevents, but we extend the de�nition to in
lude times between onsets of pairsof events that are separated by intervening event onsets. All possible pairs ofonsets that o

ur within 2.5 se
onds of ea
h other are grouped by the 
lusteringalgorithm. Figure 1 shows 
lustering for �ve events (A, B, C, D, E) into intervalsof similar size. For example, 
luster C1 
ontains the intervals AB, BC and DE,while 
luster C2 
ontains AC and CD. Ea
h 
luster is identi�ed by its averageinterval size.
TimeA B C D E

C1 C1 C2 C1

C2

C3

C3

C4

C4

C5Fig. 1. Clustering of inter-onset intervalsAfter grouping IOI's into 
lusters, a s
ore is 
al
ulated for ea
h 
luster, basedon the number of IOI's in the 
luster. The highly ranked 
lusters usually 
orre-spond to the beat or small integer multiples or fra
tions of the beat. For example,supposing that C2 represents the IBI, then C1 represents half of the IBI and C4represents double the IBI. Ea
h 
luster's s
ore is in
reased for ea
h other 
lusterto whi
h it is related by a small integer ratio, and a �nal ranking of the inter-beatinterval hypotheses is determined.In previous work [7℄, it was found that the 
orre
t tempo 
an be indu
ed froma 5-10 se
ond ex
erpt of the musi
 with 90% reliability, and by using multiple (orlonger) ex
erpts, the reliability qui
kly approa
hes 100%. In this work, it doesnot matter if the initial estimate is 
orre
t, as multiple hypotheses are 
he
kedin the beat tra
king stage, so that an error in tempo indu
tion 
an be 
orre
tedat a later time.



6 Beat Tra
king AgentsThe tempo indu
tion algorithm 
omputes the inter-beat interval, that is, thetime between su

essive beats, but does not 
al
ulate the lo
ation of the beat.In Figure 1, the 
lustering might determine that C2 represents the inter-beatinterval, but it does not reveal whether events A, C and D are beat lo
ations orwhether B and E are beat lo
ations. By analogy with wave theory, we 
ould saythat it 
al
ulates the frequen
y but not the phase of the beat.The phase is 
al
ulated by employing an agent-based ar
hite
ture to examinemultiple hypotheses simultaneously throughout the musi
. The agents are 
har-a
terized by their state and history. The state is the agent's 
urrent hypothesis ofthe beat frequen
y and phase, and the history is the sequen
e of beat lo
ationssele
ted so far by the agent. Ea
h agent is evaluated on the basis of its history,with higher s
ores being awarded for greater regularity in the spa
ing betweenevents, greater salien
e of 
hosen events, and fewer gaps in the sequen
e.
Time

Events
A B C D E F

Agent1

Agent2

Agent2a

Agent3Fig. 2. Beat tra
king agents (see text for details)Initially, a number of agents are 
reated for ea
h of the tempo hypothesesfrom the tempo indu
tion stage; for ea
h tempo, one agent is 
reated for ea
hof the �rst few events in the pie
e, with its phase set to 0 at the time of theevent onset. A simpli�ed example is shown in Figure 2, where there are 2 tempohypotheses, and two starting lo
ations, events A and B. Agents 1 and 2 startwith the same phase, but di�erent tempo, while Agent 3 starts with a di�erentphase, but the same initial tempo as Agent 2. Note there is no need to start anagent with the tempo of Agent 1 and phase of Agent 3, sin
e Agent 1 
oversevent B itself.The main loop of the beat tra
king se
tion passes ea
h event to ea
h agent,whi
h 
ompares the event's onset time with the predi
ted beat lo
ation. Theagents have two windows of toleran
e, an inner window, within whi
h the agentis sure that the event 
orresponds to the predi
ted beat lo
ation, and an outerwindow, within whi
h the agent is unsure if the event should be a

epted as abeat lo
ation. If the event falls in the inner window, it is added to the agent'shistory, and the agent's tempo and phase hypotheses are updated. In the 
ase



that the event falls in the outer window around the predi
ted lo
ation, the agent
reates a 
lone whi
h a

epts the event as a beat lo
ation, while the 
urrentagent reje
ts the event. In Figure 2, Agent 2 
reates Agent 2a when event E fallsin its outer window of expe
ted beat lo
ations. This guards against the 
urrentbeat lo
ation being lost due to a rogue event, whilst also allowing for moderatedeviations in tempo and phase to o

ur. When an a

epted event is more thanone beat from the previous beat lo
ation determined by the agent, the missingbeats are �lled in by interpolation (shown by hollow 
ir
les in the �gure).As the agents tra
k the beats, a 
on�den
e value is maintained for ea
h agent.This value is in
reased ea
h time an event is a

epted as a beat lo
ation. Theamount of in
rease depends on the salien
e of the event and its proximity tothe predi
ted beat lo
ation. The salien
e is measured in terms of the amplitudeof the event onset, 
al
ulated on a logarithmi
 s
ale. The value is then redu
eda

ording to the di�eren
e between the predi
ted and a
tual beat lo
ations, andthen added to the agent's 
on�den
e value. The �nal 
on�den
e value for anagent is 
al
ulated by redu
ing the 
on�den
e for ea
h beat whi
h had to beinterpolated, and normalizing the result so that the agents with a faster tempoare not advantaged by their greater number of beats.It often o

urs that two or more agents 
ome to the same 
on
lusion aboutthe 
urrent tempo and beat phase. Sin
e these are the only variables that deter-mine the agent's state (and therefore its future behavior), it is 
omputationallyadvantageous to remove all but one of these agreeing agents, retaining only theagent with the highest 
on�den
e (that is, with the best s
oring history). InFigure 2, Agent 3 is terminated when its state 
oin
ides with that of Agent 2a,as indi
ated by the arrow at event E. Removal of dupli
ate agents is performedafter ea
h event is pro
essed. Agents are also 
he
ked for 
urrentness, and areremoved if they are unable to �nd any event 
orresponding to a predi
ted beatfor some �xed length of time.After the last event is pro
essed, the highest s
oring 
urrent agent is sele
ted,and its history is output as the beat tra
king \solution". It is also possible toview a tra
e of the agents and their s
ores at ea
h event during pro
essing. Foraural testing (and demonstrations) of the system, the musi
 
an also be playedba
k or saved to �le with a 
li
k tra
k added to it, that is, a per
ussion tra
kindi
ating the positions of beats as dete
ted by the system. In the followingse
tion, testing methodology is dis
ussed, and the results of beat tra
king withvarious styles of musi
 are presented.7 Results and Dis
ussionInformal testing was performed by listening to the musi
 with synthesized per-
ussion strokes (e.g. 
ow-bell) played at the beat lo
ations 
omputed by thesystem. With this method, it is easy to 
he
k that the tempo estimation andtra
king are approximately 
orre
t, but it is not a very pre
ise form of testing.It is also very time-
onsuming if used repeatedly to test the e�e
ts of smalladjustments to the system. However, aural testing provides intuition about the



situations in whi
h the beat tra
ker fails, whi
h is useful for determining whi
haspe
ts of the system require further work.Fig. 3. Beat tra
king test details and resultsSong Title Artist Style Date Tempo Time Tra
kingrange sign. ResultsI Don't RememberA Thing Paul Kelly and theColoured Girls Pop/ro
k 1987 139-142 4/4 100%Dumb Things " " Pop/ro
k 1987 151-154 4/4 100%Untou
hable " " Pop/ro
k 1987 145-146 4/4 100%Superstition Stevie Wonder Motown 1972 96-104 4/4 96%You Are The Sun-shine of My Life Stevie Wonder Motown 1972 127-136 4/4 92%On A Night LikeThis Bob Dylan Country 1974 136-140 4/4 79%Rosa More~na Jo~ao Gilberto Trio Bossa nova 1964 128-134 4/4 95%Mi
helle B�ela Fle
k and theFle
ktones Jazz swing 1991 180-193 3/4 92%Jitterbug Waltz James Morrison Jazz waltz 1990 155-175 3/4 77%Piano Sonata in C3rd movt. 1st se
t.Wolfgang Mozart Classi
al 1775 120-150 2/4 90%In Figure 3, we present the results for beat tra
king of songs representingvarious styles of musi
. The rightmost 
olumn of the table indi
ates the per-
entage of beat positions whi
h were 
al
ulated 
orre
tly by the beat tra
kingsystem, a measure of the performan
e of the system. This does not indi
ate thenature of the errors made during beat tra
king. For ea
h of the songs listed, thetempo was estimated 
orre
tly. Therefore the results 
olumn 
an be 
onsideredto be the per
entage of the song for whi
h the phase was tra
ked 
orre
tly.More pre
ise testing was performed by 
omparison of results with manually
al
ulated beat positions. The audio �les were examined with standard digitalaudio editing software (GoldWave), and beat lo
ations were determined for anumber of beats on whi
h 
lear per
ussive events o

urred. These lo
ations werethen used to interpolate the lo
ations of the intervening beats.The �rst 3 songs are standard modern pop/ro
k, 
hara
terized by a verysteady tempo, whi
h is 
learly de�ned by simple and salient drum patterns,similar to the data used in the early audio beat tra
king work of Goto [10℄. Inthe produ
tion of this style of musi
, it is 
ommon pra
ti
e for ea
h instrument tobe re
orded separately, using a metronome tra
k for syn
hronization. In this 
aseone expe
ts the performed beat to be very regular, with only small deviationsfrom me
hani
al regularity. The beat tra
king system made no errors on thesesongs.



The next style examined was Motown/Soul, 
hara
terized by more syn
opa-tion, greater tempo 
u
tuations (5-10% in these examples), and more freedomto anti
ipate or lag behind the beat. This 
reated a greater diÆ
ulty for thebeat tra
king system, whi
h made errors of phase several times, but re
overedqui
kly to tra
k almost all of ea
h song 
orre
tly.The Bob Dylan song was more diÆ
ult again, be
ause of his idiosyn
rati
style of singing and playing against the rhythmi
 
ontext. Although the beat isreasonably 
lear to a human listener, the drums are not prominent, and thereis a mu
h lower 
orrelation between the 
on
eptual beat and the a
tual musi
alevents than in the other styles. There were two main se
tions in whi
h the beattra
king system lost syn
hronization and tra
ked the o�-beats (i.e., it 
ontinuedat the 
orre
t tempo but half a beat out of phase), but again the system re
overedto the 
orre
t phase.The next test involved a live bossa nova performan
e with syn
opated guitarand vo
als, and very little per
ussion to indi
ate beat positions. The song wastra
ked 
orre
tly ex
ept in few passages where it went out of phase, but the errorwas 
orre
ted within a few beats.The two jazz pie
es were 
hosen for their parti
ularly 
omplex, syn
opatedrhythms, whi
h are diÆ
ult for humans to follow. These pie
es also providedexamples of a di�erent time signature, swing eighth notes, and greater tempovariation. In both 
ases, the highest s
oring agent was able to tra
k the majorityof the pie
e 
orre
tly, but en
ountered phase errors in some parts.Finally, a 
lassi
al pie
e was tested, the �rst se
tion of the third movementof Mozart's Piano Sonata in C major (KV279). The system lost syn
hronizationseveral times, tra
king the o�-beats rather than the beats, due to large tempovariations and the system's la
k of musi
al knowledge for distinguishing betweenbeats and o�-beats.It is interesting to note that phase errors were also en
ountered for simple popmusi
 in an earlier version of the system. With the salien
e 
al
ulation removed,the system tra
ks the whole of I Don't Remember A Thing at half a beat outof phase. For pop musi
, the salien
e of events di�erentiates the beat from theo�beat at most points in the musi
. This may not be true in jazz, where theo�beat is often a

entuated for long periods of time, so the system requires analternative way of 
hoosing the 
orre
t path through the data.Note that the beat tra
king system is not equipped with musi
al knowledge| no notion of o�-beats or expe
ted rhythmi
 patterns has been programmedinto it. Its apparent musi
al intelligen
e 
omes from patterns in the data, withoutany high-level knowledge or reasoning. Apart from the advantage of simpli
ity, afurther advantage is that the system is quite robust, and generalizes well to dif-ferent styles of musi
, as long as there is a salient beat. In order to disambiguate
omplex or ambiguous rhythmi
 patterns, the system will need sour
es of musi-
al knowledge other than timing of events; these are not presently available toit. In 
urrent work [8℄, we are examining a spe
ialization of the system for solopiano musi
 whi
h in
orporates a level of musi
al and stylisti
 knowledge withthe aim of extra
ting the s
ore from performan
e data.



8 Con
lusionWe have des
ribed a beat tra
king system whi
h analyses a
ousti
 data, dete
tsthe salient note onsets, determines possible inter-beat intervals and then employsmultiple agents to �nd a sequen
e of events whi
h represents the beat of themusi
. The system su

essfully tra
ks the beat in most popular musi
, but makessome phase errors, mainly when presented with extremely 
omplex rhythms ormusi
 with large tempo deviations. Even in these situations, the performan
e isquite robust, with the system re
overing from its errors and resuming 
orre
ttra
king after a short period.Unlike previous audio beat tra
king systems whi
h required a large parallel
omputer [13℄, our system has modest requirements, pro
essing an average lengthsong in about 10 se
onds on a 
urrent personal 
omputer, leaving suÆ
ientresour
es for real time appli
ations based on the beat tra
king system.One su
h appli
ation is an automati
 dis
 jo
key (DJ), whi
h plays a listof songs, 
ross-fading between the songs so that the beats of su

essive songsare syn
hronized (beat-mixing). This has been implemented as part of the beattra
king system. Another appli
ation is that of a s
ore extra
tion system. Thisappli
ation uses MIDI input rather than audio, and the system's job is to make\musi
al sense" of the performed rhythm. The nature of this problem is di�er-ent, in that we seek a musi
al explanation for every event, whereas the 
urrentsystem ignores events whi
h are determined not to lie on the beat. MIDI inputalso fa
ilitates the use of other knowledge from the data, su
h as duration, pit
h,repeated melodi
 patterns and musi
al voi
e. In re
ent work, su
h informationhas proved useful in 
al
ulating a more detailed salien
e value for musi
al events[8℄. It is still an open problem how su
h details 
an be extra
ted reliably dire
tlyfrom audio data. A further appli
ation of beat tra
king, and one whi
h requiresreliable re
ognition of pit
h and duration of notes, is an automati
 musi
 tran-s
ription system, that is, a system whi
h produ
es musi
al s
ores dire
tly fromaudio data. Su
h a system requires a beat tra
ker as one 
omponent.The use of manual beat tra
king for evaluation of the system limits theamount of testing that 
an be performed, but is ne
essary when analyzing per-formed musi
. Unlike spee
h-related resear
h, musi
 re
ognition resear
h 
ur-rently has no large 
orpora of tagged data for thorough testing and 
omparisonof results (or, for that matter, the use of probabilisti
 sear
h te
hniques). In fur-ther work we plan to perform a study of beat tra
king in syntheti
ally generatedmusi
, where the variations in tempo and onset times 
an be 
ontrolled pre
isely,and performan
e 
an be evaluated automati
ally.9 A
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