Proc. of the 7™ Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

AN OPEN SOURCE TOOL FOR SEMI-AUTOMATIC RHYTHMIC ANNOTATION

Fabien Gouyon, Nicolas Wack

Universitat Pompeu Fabra
Music Technology Group

f gouyon, nwack@ ua. upf . es

ABSTRACT

We present a plugin implementation for the multi-platform Wave-
Surfer sound editor. Added functionalities are the semi-automatic
extraction of beats at diverse levels of the metrical hierarchy as
well as uploading and downloading functionalities to a music meta-
data database. It is built upon existing open source (GPL-licenced)
audio processing tools, namely WaveSurfer, BeatRoot and CLAM,
in the intent to expand the scope of those softwares. It is therefore
also provided as GPL code with the explicit goal that researchers
in the audio processing community can freely use and improve it.

We provide technical details of the implementation as well as
practical use cases. We also motivate the use of rhythmic metadata
in Music Information Retrieval scenarios.

1. INTRODUCTION

Rhythm is a fundamental musical feature. Anyone perceives rhy-
thm while enjoying music listening. One can represent rhythm
explicitly (i.e. write it down) in many ways, with diverse degrees
of detail [1] and by different means, manually or automatically.
For instance, a trained listener can transcribe a musical piece into
score notation while listening repeatedly to it. He can also assign
a single value for the basic tempo (in BPM). The level of detail in
the representation depends on the purpose of annotation. That is,
different applications require different representations [1].

In any case, it is clear that the task of associating such meta-
data to musical pieces would be eased by the use of additional
software tools. For instance, a simple sound editor plotting wave-
form and spectrogram would be highly informative to a potential
user. Also, a system that would compute automatically the desired
metadata would obviously be relevant. However, in this case, sub-
sequent human corrections are a must. Further, as it is clear that
no automatic rhythm description system is perfect, nor human an-
notations are error-free, interactive systems are highly desirable.
In such systems, either the user or an algorithm does a first rough
analysis of (part of) the data, then the other uses the results of this
analysis to orient its own analysis; the process can be iterated sev-
eral times.

Very few beat annotation systems exist. In [2], Goto refers to
a “beat-position editor.” This is a manual beat annotation tool that
provides waveform visualisation and, for accurate annotations, au-
dio feedback in the form of short bursts of noise added at beat
times. To our knowledge, the only publically available (and open-
source) beat annotation software is BeatRoot [3]. To lower the an-
notation effort, an automatic beat tracking algorithm is available.
Interactivity resides in that the user’s corrections to the algorithm
output (the beat times) are fed back as inputs to the very algorithm.

Smon Dixon

Austrian Research Institute for
Acrtificial Intelligence
si non@ef ai . at

In this paper, we report on a system built upon BeatRoot as
well as other open source audio processing tools, namely Wave-
Surfer [4] and CLAM (both part of the AGNULA GPL distribution
of Linux sound software). The intent is to “take the best of sev-
eral worlds”, that is, group useful functionalities of those different
softwares in a single application as well as expand their scope and
capabilities.

We focus on a particular kind of rhythmic annotations, the
metrical structure, as it has been formalised by Lerdahl and Jack-
endoff in the Generative Theory of Tonal Music [5]. That is, the
metadata we propose to associate to musical signals are particular
time points: the beats, at several metrical levels.

Annotations can be stored locally and, when correct, they can
easily be uploaded to a distant repository, e.g. a structured musical
metadata database such as the MTG database [6], via the SOAP
protocol.

2. APPLICATIONS

The knowledge of beats at different levels of the metrical hierarchy
can be useful in many applications.

In Music Information Retrieval research, metadata associated
to musical data are very useful. First of all because a database
of “ground truth” metadata greatly facilitates the design of auto-
matic algorithms for audio content description. In addition, some
recent work in this field includes rhythmic information as input to
systems that compute other types of metadata. For instance, beats
at a metrical level can be used to determine other metrical levels
[71, [8], [9]- They can also be useful as audio segment bound-
aries for instrument classification, such as percussion [10], [11],
[12]. Other examples are the use of the metrical structure for long-
term segmentations and rhythmic complexity computation. How-
ever, reliable determination of such information from automatic
systems is itself a challenge. It is therefore clear that in this type
of research, semi-automatic systems would be desirable.

Performers’ choices in tempo and expressive timing with re-
spect to position in the metrical structure are very relevant to Musi-
cal Performance research. Software tools that ease the annotation
of the whole metrical structure, and that generate tempo or timing
deviation curves are clearly useful in this field [13].

Finally, other applications are the synchronisation or the se-
quencing of several musical excerpts, the determination of “loop-
ing points” for cut-and-paste operations, the application of tempo-
synchronous audio effects (or visual animations), music identifica-
tion, rhythmic expressiveness transformations.

DAFX-1

Proc. of the 7™ Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

WaveSurfer 1.6.1

File Edit Transform Yiew Help
Dl SR 2R &] k| wom
v

dB
B0 _|

40
20

HPFIE® X

Beats at 3

e[| beas| beat| besc| best| beas| bear|

beat.l beat.l beat‘ beat‘ be;bl beat‘ beat.l beat.l beat.l beat.l

metrical levels e] oeet] oeet] oeet]

{ T O] V)))) V)] O D O])) D) O S S)) OO D

e i)] b beat]

5 | . [§ bR |) ‘ |
“ b " ‘ b § *E.-E&“E“'i ‘ TR ok | [dh 8
& L j EL.....% N T T T, i.’l&l.m.m....‘nm....‘,n SR L o

Figure 1: Screenshot of metrical level annotations associated to common WaveSurfer functionalities (power plot, spectrogram, waveform,

timeline, etc.). This annotation took less than one minute.

3. ANNOTATING METRICAL LEVELS
SEMI-AUTOMATICALLY

This section details in diverse use cases the diverse functionalities
offered by the system. Some functionalities are available in Wave-
Surfer (common sound editing) and others have been added (beat
tracking and database connections). Figure 1 gives an illustration
of one possible configuration for the system and the result of the
annotation of three metrical levels.

3.1. WaveSurfer functionalities

WaveSurfer [4] was initially developed as an open source software
for speech research at the Department of Speech, Music and Hear-
ing at the Royal Institute of Technology in Sweden.! We found
diverse reasons to build a rhythmic annotation system on top of it.

First of all, WaveSurfer’s typical applications are sound analy-
sis and annotation/transcription. It therefore offers many useful
functionalities such as visualisation of waveform, spectrogram,
power plots, pitch contour, formant plots, etc. Panes (for tran-
scription, data visualisation, etc.) can be dynamically added or
removed, they are all time-aligned and display a running cursor
while playing. Collection of panes can be saved as a configuration,
that can be applied later to any other sound. This allows users to
easily customize the interface. The complete sound waveform is
displayed at the bottom while (optionally) a separate pane displays
solely part of the waveform with additional zooming functionali-
ties. This greatly simplifies working with large sound files. Data

Thttp://www.speech.kth.se/WaveSurfer/

plots are also available, opening the way to easily visualise any
relevant data, e.g. tempo curves, deviation curves. WaveSurfer
has been designed in agreement with common user interface stan-
dards and it also provides intuitive keyboard shortcuts for playing,
stopping, selecting regions, looping them etc. It is also possible to
easily customise the look-and-feel to personal tastes.

Then, importantly, this is a multi-platform software and it han-
dles many standard audio file formats. Last, but obviously not
least, it is extensible through a simple plug-in architecture (note
that it is widely used and diverse functionalities are regularly added
by researchers in the audio processing community).

3.2. Diverse annotation modes
3.2.1. Manual annotations

The user can set manually the time indexes of every beat by simple
left-clicks on the computer mouse. However this task is very time-
consuming and error-prone. Therefore we added the possibility
to specify beat times in real time while listening to the sound by
simply tapping any of the keyboard’s key.

Individual beats can be subsequently adjusted with the help of
the computer mouse by selecting and finely shifting them.

3.2.2. Interactive annotations

The system presents several menus in addition to WaveSurfer’s
usual ones as found in transcription panes:

e ‘Compute beats’
e ‘Erase beats from cursor’

DAFX-2

Proc. of the 7™ Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

e ‘Retrack beats’

e ‘Play clicks on beats’

e ‘Download tempo and compute beats’
e ‘Upload beats to MTGDB’

e ‘Download beats from MTGDB’

Those menus enable interactions between the user and the
beat-tracking algorithm. The user can run the algorithm “from
scratch” and check its output (i.e. finely adjust the position of each
beat). Another option is to “give an orientation” to the automatic
computation of beats by providing few, very reliable, information,
typically a couple of beats. The user can specify those few initial
beats manually, or he can select them among the output of a first
run of the algorithm. This is very useful to correct phase errors?
and confusions between metrical levels.

The possibility to keep beats up to a certain point and discard
the following ones is especially useful in the case of excerpts with
strong tempo changes.

In case the excerpt at hand has been downloaded from the
MTG database, it might have a tempo value (in BPM) associated to
it (some assets in the current repository are already characterised
by an approximate value for the tempo). This metadata is clearly
a very useful input to the algorithm.

Asin [2] and [3], short audio signals can be added at beat times
for useful audio feedback, for instance noise bursts, closed hi-hat
or cowbell samples.

3.3. Annotating several metrical levels

Several metrical levels coexist in music, from low levels (small
time divisions) to high levels (longer time divisions). And a beat
at a high level must also be a beat at each lower level [5].

Therefore, provided that a metrical level has already been an-
notated, the process of specifying the beats of the next higher met-
rical level is simple: create a new transcription pane and copy al-
ready annotated beats (i.e. the lower level), select a few beats that
determine the next level and discard the others.

When determining a low level from a higher one, the same
process applies, but instead of discarding beats, the user can spec-
ify whether a duple or a triple subdivision should be performed.
Alternatively, it is possible to add a few beats in between succes-
sive beats, the data can then be retracked with this newly defined
metrical level.

3.4. Differenceswith BeatRoot

The graphical interface shows important differences with Beat-
Root. For instance, it is our belief that WaveSurfer’s built-in vi-
sualisation functionalities (e.g. running cursor and scrolling panes
synchronized with audio playback), and its intuitive keyboard short-
cuts and general look-and-feel are an enhancement of BeatRoot’s
interface. Also, an important point is that graphical configurations
can be defined by the user. Other relevant differentiating features
are the capture of keyboard messages while listening to the audio,
as well as database connection facilities, multi-platform support®
and the possibility to instantiate diverse transcription panes in or-
der to annotate several metrical levels. However, it must be noted

2j.e. when the tempo is correctly computed but the computed beats are
all a constant away from their correct positions
3i.e. Debian Linux and Windows XP at proceedings publishing date

that BeatRoot also permits to annotate beats of MIDI data, which
the system reported here does not permit.

4. IMPLEMENTATION

4.1. General architecture

WaveSurfer is built using Snack, a sound manipulation extension
to the Tcl/Tk scripting language. Snack can be used as a scripting
language, from a command prompt, WaveSurfer offers a graphical
interface to it. See [4] for details. The important point here is that
functionalities can be added to WaveSurfer by creating new Snack
(or Tcl) commands and calling them through plugins.

In order to add beat tracking functionalities to WaveSurfer,
two components are needed: an external library embedding those
functionalities (with an appropriate C interface)* and a plugin script
to call them from WaveSurfer.

The plugin script is written in Snack and logically accounts for

a command that loads the library, typically:
‘load C:/.WaveSurfer/1.6/plugins/libBeatSnack.dll’ (in Windows).
Additional commands (calling library functions) are directly ac-
cessible from WaveSurfer transcription panes, as e.g. ‘Compute
beats’, ‘Retrack’, ‘Erase beats from cursor’, etc.

On the other hand, the external library is written in C and C++
(see Figure 2). A first part of the library creates the actual Snack
function called in the plugin e.g. from the command ‘Compute
beats’. This part is written in C. The second part, the core beat
tracking algorithm, is written in standard C++ and CLAM.

As shown in Figure 2, Interface2CLAM.h is the interface be-
tween these two parts of the library. This interface is a simple
function whose input parameters are the sound samples and op-
tionally a list of beats. Its output is a beat list (and optionally an
onset list). The function definition is written in Interface2CLAM.h
while its implementation is in Interface2BeatRoot.cxx.

-

BeatsSnack.c

Creates a
function that can
be called from
Snack (and
Wavesurfer)

-C ComputeBeats.h
-Snack & TCL
C libraries .

ComputeBeats_Implemenation.c

c {
...... S PP
Implements beat
Interface2BeatRoot.*xx tracking

functionalities
BeatRoot classes

l Interface2CLAM.h |

- General C++
- CLAM (C++)

Figure 2: External library architecture.

4.2. Beat tracking algorithm

The automatic algorithm at the core of the system is the association
of the transient detection and tempo induction algorithms already
present in the CLAM library and BeatRoot’s beat tracking method
[3].5 This part of BeatRoot has been ported to the CLAM frame-
work, and in the current version, the tracking part is intended not

4see http://www.speech.kth.se/snack/modex.html
Shttp://www.oefai.at/“simon/beatroot/index.html

DAFX-3

Proc. of the 7™ Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

to present differences with the public version of BeatRoot (the set
of default parameter may differ though).

In order to account for the diverse usage modes specified above,
the input to the beat tracking algorithm can be the following:

e Case 1: The sound samples.
e Case 2: The samples and some (correct) beat times.
e Case 3: The samples and a (correct) tempo value

In all cases, outputs are beat times of the whole audio.

4.3. Database connection

In case the audio signal under annotation is part of the MTG repos-
itory (see [6]), interesting functionalities are provided.

The audio repository can be browsed from any remote web
browser. It is possible to launch WaveSurfer directly from the web
interface. The audio is loaded automatically together with annota-
tions that may be available on the repository. There is a connec-
tion to the MTG database server via web services (SOAP) which
allows to upload new segmentations. SOAPS is a lightweight pro-
tocol based on XML-RPC calls. The Service interface is described
ina WSDL file (a superset of XML) indicating methods calls, ob-
jects, and exceptions that will be sent across the net. As all the
exchange of information is made with XML (both data and con-
trol messages), SOAP allows the interaction between programs on
different platforms or in different languages running anywhere on
the Internet.

5. SUMMARY

In this paper, we presented a multi-platform software for semi-
automatic beat annotation of audio signals. Being open source,
it can be used and modified at will. It has been implemented
as a plugin for the WaveSurfer sound editor and, in addition to
this software’s functionality, it embeds useful functionalities from
CLAM and BeatRoot. Source code and binaries are available at
http://www.iua.upf.es/"fgouyon/BeatTrackingPlugin.html

Applications for this software are manifold. Particularly in the
field of Music Information Retrieval.

At the time of writing, additional functionalities are being added
to this software. For instance the handling of diverse audio file for-
mat (WaveSurfer can handle many standard format (WAV, AIFF,
MP3, etc.), so does CLAM, however, we still did not add this
functionality to the beat tracking algorithm). We are also working
on the integration of the free “aubio” library developped by Paul
Brossier at the Queen Mary University of London,® this library
provides a C implementation of powerful and fast onset detection
algorithms [14]. Visualization and interactive onset detection will
also be a useful feature. Finally, we are working on the addition of
diverse data plots such as tempo curves.

6. ACKNOWLEDGMENTS

This work reported in this paper was partially funded by the EU-
FP6-1ST-507142 project SIMAC (Semantic Interaction with Mu-
sic Audio Contents). More information can be found at the project
website http://www.semanticaudio.org. Thanks to Miguel Ramirez

Shttp://www.w3.0rg/ TR/soap/
http:/Avww.w3.0rg/ TR/wsdl
8http://piem.homeip.net/“piem/aubio

and David Garcia for support in dynamic library implementation
within CLAM. Thanks also to Georgios Emmanouil, Giinter Gei-
ger, Pedro Cano, Jose Pedro Garcia, Vadim Tarasov, Markus Kop-
penberger, Paul Brossier and the SIMAC team in the MTG.

7. REFERENCES

[1] Fabien Gouyon and Benoit Meudic, “Towards Rhythmic
Content Processing of Musical Signals: Fostering Comple-
mentary Approaches,” Journal of New Music Research, vol.
32, no. 1, 2003.

[2] Masataka Goto and Yoichi Muraoka, “Issues in evaluating
beat tracking systems,” in Proc. International Joint Confer-
ence on Artificial Intelligence, 1997.

[3] Simon Dixon, “An interactive beat tracking and visualisation
system,” in Proc. International Computer Music Conference,
2001.

[4] Kére Sj6lander and Jonas Beskow, “WaveSurfer - An open
source speech tool,” in Proc. International Conference on
Spoken Language Processing, 2000.

[5] Fred Lerdahl and Ray Jackendoff, Eds., A generative theory
of tonal music, MIT Press, Cambridge MA, 1983.

[6] Pedro Cano, Markus Koppenberger, Sira Ferradans, Alvaro
Martinez, Fabien Gouyon, Vegard Sandvold, Vadim Tarasov,
and Nicolas Wack, “MTG-DB: A Test Environment for Mu-
sic Audio Processing,” in Proc. International Conference on
Web Delivering of Music, 2004.

[7]1 Masataka Goto and Yoichi Muraoka, “Real-time Beat Track-
ing for Drumless Audio Signals: Chord Change Detection
for Musical Decisions,” Speech Communication, vol. 27, no.
3, 1999.

[8] Fabien Gouyon and Perfecto Herrera, “A beat induction
method for musical audio signals,” in Proc. WIAMIS Special
session on Audio Segmentation and Digital Music, 2003.

[9] Anssi Klapuri, “Musical meter estimation and music tran-
scription,” in Proc. Cambridge Music Processing Collo-
quium, 2003.

[10] Fabien Gouyon and Perfecto Herrera, “Exploration of tech-
niques for automatic labeling of audio drum tracks instru-
ments,” in Proc. MOSART Workshop on Current Research
Directions in Computer Music, 2001.

[11] Jouni Paulus and Anssi Klapuri, “Model-based Event La-
beling in the Transcription of Percussive Audio Signals,”
in Proc. International Conference on Digital Audio Effects,
2003.

[12] Christian Uhle and Christian Dittmar, “Generation of Musi-
cal Scores of Percussive Unpitched Instruments from Auto-
matically Detected Events,” in Proc. 116th AES Convention,
2004.

[13] Simon Dixon, Werner Goebl, and Gerhard Widmer, “Real
Time Tracking and Visualisation of Musical Expression,” in
Proc. International Conference on Music and Artificial Intel-
ligence, 2002.

[14] J.P Bello, C. Duxbury, M. E. Davies, , and M. Sandler, “On
the use of phase and energy for musical onset detection in the
complex domain,” IEEE Signal Processing Letters, 2004.

DAFX-4

