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Technological advances with respect to Internet
bandwidth and storage media have made large mu-
sic collections prevalent. Exploration of such col-
lections is usually either limited to listings
returned from, for example, artist-based queries, or
it requires additional information not readily avail-
able to the public, such as customer pro� les from
electronic-music distributors. In particular,
content-based browsing of music according to over-
all sound similarity has remained an unsolved
problem, although recent work seems very promis-
ing (e.g., Tzanetakis and Cook 2001; Aucouturier
and Pachet 2002b; Cano et al. 2002; Pampalk et al.
2002a). The main dif� culty lies in estimating per-
ceived similarity given solely an audio signal.

Music similarity as such might appear to be a
rather simple concept. For example, it is easy to
distinguish classical music from heavy metal.
However, there are several aspects of similarity to
consider. Some aspects have a very high level of de-
tail, such as the difference between Vladimir Horo-
witz’s and Daniel Barenboim’s interpretation of a
Mozart piano sonata. Other aspects are more appar-
ent, such as the noise level. It is questionable
whether it will ever be possible to automatically
analyze all aspects of similarity directly from au-
dio. But within limits, it is possible to analyze sim-
ilarity in terms of, for example, rhythm (Foote et al.
2002; Paulus and Klapuri 2002; Dixon et al. 2003)
or timbre (Logan and Salomon 2001; Aucouturier
and Pachet 2002b).

In this article, we present a new approach to
combining information extracted from audio with
meta-information such as artist or genre. In partic-
ular, we extract spectrum and periodicity histo-

grams to roughly describe timbre and rhythm,
respectively. For each of these aspects of similarity,
the collection is organized using a self-organizing
map (SOM; Kohonen 1982, 2001). The SOM ar-
ranges the pieces of music on a map such that
similar pieces are located near each other. We use
smoothed data histograms to visualize the cluster
structure and to create an ‘‘islands of music’’ meta-
phor where groups of similar pieces are visualized
as islands (Pampalk et al. 2002a).

Furthermore, we integrate a third type of organi-
zation that is not derived from audio analysis. This
could be based on meta-data such as artist or genre
information, or it could be any arbitrary user-
de� ned organization. We align these three different
views and interpolate between them using Aligned
SOMs (Pampalk et al. 2003b). The user is able to
browse the collection and interactively explore dif-
ferent aspects by gradually changing focus from one
view to another. This is similar to the idea pre-
sented by Aucouturier and Pachet (2002b) who use
an ‘‘Aha-Slider’’ to control the combination of
meta-information with information derived from
audio analysis. We demonstrate our approach on a
small music collection.

In this article, we � rst present the spectrum and
periodicity histograms used to calculate similari-
ties from the respective viewpoints. This is fol-
lowed by a review of the SOM and Aligned SOMs.
Finally, we demonstrate our approach and discuss
various shortcomings and more recent work.

Similarity Measures

In general, it is not predictable when a human lis-
tener will consider pieces to be similar. Pieces
might be deemed similar depending on the lyrics,
instrumentation, melody, rhythm, artists, or
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vaguely by the emotions they invoke. However,
even relatively simple similarity measures can aid
in handling large music collections more ef� -
ciently. For example, Logan (2002) uses a spectrum-
based similarity measure to automatically create
playlists of similar pieces. Aucouturier and Pachet
(2002b) use a similar spectrum-based measure to
� nd unexpected similarities, e.g., similarities be-
tween pieces from different genres. A rather differ-
ent approach based on the psychoacoustic model of
� uctuation strength was presented by Pampalk et
al. (2002a) to organize and visualize music collec-
tions.

Unlike previous approaches, we do not try to
model the overall perceived similarity, but rather
we focus on different aspects and allow the user to
interactively decide which combination of these as-
pects is the most interesting. Speci� cally, we de-
� ne two similarity measures, one based on
rhythmic aspects (periodicity histograms), the other
on timbre (spectrum histograms). To explain these,
we � rst review the psychoacoustic preprocessing
we apply.

Psychoacoustic Preprocessing

The objective of the psychoacoustic preprocessing
is to remove information in the audio signal that is
not critical to our hearing sensation while retaining
the important parts. After the preprocessing, each
piece of music is described in dimensions of time
(Fs 4 86 Hz), frequency (20 critical bands in units
of Bark), and loudness (measured in sones). Similar
preprocessing for instrument similarity and music
similarity has been used, for example, by Feiten
and Günzel (1994) and Pampalk et al. (2002a). Simi-
lar approaches form the core of perceptual audio
quality measures (e.g., Thiede et al. 2000).

Prior to analysis, we downsample and downmix
the audio to 11 kHz mono. It is important to note
that we are not trying to measure differences be-
tween different sampling rates, between mono and
stereo, or between an MP3-encoded piece compared
to the same piece encoded in Ogg Vorbis or any
other format. In particular, a piece of music given
in uncompressed, CD quality should have a mini-

mal perceptual distance to the same piece encoded,
for example, in MP3 format at 56 kbps. Provided
the main characteristics such as style, tempo, and
timbre remain clearly recognizable by a human lis-
tener, any form of data reduction can only be bene-
� cial in terms of robustness and computational
speed-up.

In the next step, we remove the � rst and last ten
seconds of each piece to avoid lead-in and fade-out
effects. Subsequently, we apply a Short-Time Fou-
rier Transformation (STFT) to obtain the spectro-
gram using 23-msec windows (i.e., 256 samples),
weighted with a Hann function, and 12-msec over-
lap (i.e., 128 samples). To model the frequency re-
sponse of the outer and middle ear, we use the
formula proposed by Terhardt (1979):

1 0.8A ( f ) 4 1 3.64 fdB kHz

2 4` 6.5 exp( 1 0.6( f 1 3.3) ) 1 f /1000 (1)

The main characteristics of this weighting � lter
are that the in� uence of very high and low frequen-
cies is reduced while frequencies around 3–4 kHz
are emphasized (see Figure 1).

Subsequently, the frequency bins of the STFT are
grouped into 20 critical bands according to Zwicker
and Fastl (1999). The conversion between the Bark
and the linear frequency scale can be computed
with the relationship

Z ( f ) 4 13 arctan(0.76 f )Bark kHz

2` 3.5 arctan(f/7.5) (2)

The main characteristic of the Bark scale is that
the width of the critical bands is 100Hz up to
500Hz, and beyond 500Hz the width increases
nearly exponentially (see Figure 1).

Figure 1. The curve shows
the response of Ernst Ter-
hardt’s outer- and middle-
ear model. The dotted

lines mark the center fre-
quencies of the critical
bands. For our work, we
used the �rst 20 bands.
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We calculate spectral-masking effects according
to Schroeder et al. (1979), who suggest a spreading
function optimized for intermediate speech levels.
The spreading function has lower and upper skirts
with slopes of ` 25dB and 1 10dB per critical band.
The main characteristic is that lower frequencies
have a stronger masking in� uence on higher fre-
quencies than vice versa. The contribution of criti-
cal band zi to zj with Dz 4 zj 1 zi is computed by

B (Dz ) 4 15.81 ` 7.5(Dz ` 0.474) (3)dB Bark
2 1/21 17.5(1 ` (Dz ` 0.474) )

We calculate the loudness in sones using the for-
mula suggested by Bladon and Lindblom (1981):

(l 1 40)/102 , if l $ 40dB
S (l ) 4 (4)sone dB 1 SPL 5 2.642(l/40) , otherwise.

Finally, we normalize each piece so that the
maximum loudness value is one sone.

Periodicity Histograms

Periodicity histograms represent an attempt to cap-
ture rhythmic aspects, speci� cally, the strength
and regularity of the beat as a function of tempo.
To obtain periodicity histograms, we use an ap-
proach presented by Scheirer (1998) in the context
of beat tracking. A similar approach was developed
by Tzanetakis and Cook (2002) to classify genres.
There are two main differences to this previous
work. First, we extend the typical histograms to in-
corporate information on the variations over time,
which is valuable information when considering
similarity. Second, we use a resonance model pro-
posed by Moelants (2002) for preferred tempo to
weight the periodicities and in particular to empha-
size differences in tempi around 120 beats per min-
ute (BPM).

We begin with the preprocessed data and further
process it using a half-wave-recti� ed difference � l-
ter on each critical-band to emphasize percussive
sounds. We then process 12-sec windows (i.e.,
1,024 samples) with 6-sec overlap (i.e., 512 sam-
ples). Each window is weighted using a Hann win-
dow before a comb � lter bank is applied to each
critical-band with a 5-BPM resolution in the range
from 40

to 240 BPM. Then we apply the resonance model of
Moelants (2002) with b 4 4 to the amplitudes ob-
tained from the comb � lter bank. To emphasize
peaks, we use a full-wave-recti� ed difference � lter
before adding the amplitudes for each periodicity
over all bands.

For every six seconds of music, this yields 40 val-
ues representing the strength of recurring beats
with tempi ranging from 40 to 240 BPM. To sum-
marize this information for a whole piece of music,
we use a two-dimensional histogram with 40
equally spaced columns representing different
tempi and 50 rows representing strength levels.
The histogram counts, for each periodicity, how
many times a level equal to or greater than a spe-
ci� c value was reached. This partially preserves in-
formation on the distribution of the strength levels
over time. The sum of the histogram is normalized
to unity, and the distance between two histograms
is computed by interpreting them as 2,000-
dimensional vectors in a Euclidean space.

The histogram has clear edges if particular
strength levels are reached constantly, and the
edges are very blurry if there are strong variations
in the strength levels. It is important to note that
the beats of music with strong variations in tempo
cannot be described using this approach. Further-
more, not all 2,000 dimensions contain informa-
tion. Many are highly correlated, and thus it makes
sense to compress the representation using princi-
pal component analysis (PCA; see Jolliffe 1986). For
the experiments presented in this article, we used
the � rst 60 principal components.

A � rst quantitative evaluation of the periodicity
histograms indicated that they are not well-suited
to measure the similarity of genres or artists, in
contrast to measures that use spectrum informa-
tion (Pampalk et al. 2003a). One reason might be
that within-artist variability in rhythm is greater
than within-artist variability in timbre, because the
voice and instruments are generally � xed. The
same would apply to a lesser extent for genre.
However, it is also important to realize that using
periodicity histograms in this simple way (i.e., in-
terpreting them as images and comparing them
pixel-wise) to describe rhythm has severe limita-
tions. For example, the distance between two
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pieces with strong peaks at 60 BPM and 200 BPM is
the same as between pieces with peaks at 100 BPM
and 120 BPM.

Spectrum Histograms

To model timbre, it is necessary to take into ac-
count which frequency bands are active simulta-
neously—information we ignore in the periodicity
histograms. A popular choice for describing simul-
taneous activations in a compressed form is to use
Mel-Frequency Cepstral Coef� cients (MFCCs). Suc-
cessful applications have been reported, for exam-
ple, by Foote (1997), Logan (2000), Logan and
Salomon (2001), and Aucouturier and Pachet
(2002b).

Logan and Salomon suggested an interesting ap-
proach in which a piece of music is described by
spectra that occur frequently. Two pieces are com-
pared using the Earth-Mover’s Distance (Rubner et
al. 1998), which is a relatively expensive computa-
tion compared to the Euclidean distance metric.

Aucouturier and Pachet (2002a, 2002b) presented
a similar approach using Gaussian-mixture models
to summarize the distribution of spectra within a
piece. To compare two pieces, the likelihood that
samples from one mixture were generated by an-
other is computed.

Although the approach presented by Foote (1997)
offers a vector space in which prototype-based clus-
tering can be performed ef� ciently, the approach
does not cope well with new pieces with signi� -
cantly different spectral characteristics compared
to the ones used for training.

Compared to these previous approaches, we use a
relatively simple technique to model spectral char-
acteristics. In particular, we use the same tech-
nique introduced for the periodicity histograms to
capture information on variations of the spectrum.
The two-dimensional histogram has 20 rows for
the critical bands and 50 columns for the loudness
resolution. The histogram counts how many times
a speci� c loudness in a speci� c critical band was
reached or exceeded. The sum of the histogram is
normalized to unity. In our experiments, we re-
duced the dimensionality of the 1,000-dimensional

vectors to 30 dimensions using PCA. It is impor-
tant to note that the spectrum histogram does not
model many important aspects of timbre, such as
the attack of an instrument.

A � rst quantitative evaluation (Pampalk et al.
2003a) of the spectrum histograms indicated that
they are suited to describe similarities in terms of
genres or artists and even outperformed more com-
plex spectrum-based approaches such as those sug-
gested by Logan and Salomon (2001) and
Aucouturier and Pachet (2002b).

Organization and Visualization

In this section, we present a new approach for com-
bining different views. For example, the spectrum
and periodicity histograms give us orthogonal
views of the same data. In addition, we combine
these two views with a meta-information-based
view. This meta-information view could be any
type of view, including those for which no vector
space exists, for example an organization of pieces
according to personal taste, artists, or genres. This
information can be obtained from the Web using
Web crawlers or entered manually by the user.
Generally, any arbitrary view and resulting organi-
zation that can be laid out on a map is applicable.

We use a new technique called Aligned SOMs
(Pampalk et al. 2003b; Pampalk 2003) to integrate
these different views and permit the user to explore
the relationships between them. In this section, we
review the SOM algorithm, the smoothed data his-
togram (SDH) visualization, and we specify the
Aligned-SOM implementation used in our demon-
stration. We illustrate the techniques using a sim-
ple dataset of animals.

Self-Organizing Maps

The SOM (Kohonen 1982, 2001) is an unsupervised
neural network with applications in various do-
mains including audio analysis (e.g., Cosi et al.
1994; Feiten and Günzel 1994; Spevak and Polfre-
man 2001; Frühwirth and Rauber 2001). As a clus-
tering algorithm, the SOM is very similar to other
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partitioning algorithms such as K-means (Mac-
Queen 1967). In terms of topology preservation for
visualization of high-dimensional data, alternatives
include multi-dimensional scaling (Kruskal and
Wish 1978), Sammon’s mapping (Sammon 1969),
and generative topographic mapping (Bishop et al.
1998). The approach we present can be imple-
mented using any of these; however, we have cho-
sen the SOM because of its computational
ef� ciency.

The objective of the SOM is to map high-
dimensional data into a two-dimensional map in
such a way that similar items are located near each
other. The SOM consists of an ordered set of units
that are arranged in a two-dimensional visualiza-
tion space called the map. Common choices to ar-
range the map units are rectangular or hexagonal
grids. Each unit is assigned a model vector in the
high-dimensional data space. A data item is
mapped to the best-matching unit, which is the
unit with the most similar model vector. The SOM
can be initialized randomly, i.e., random vectors in
the data space are assigned to each model vector.
Alternatives include, for example, initializing the
model vectors using the � rst two principal compo-
nents of the data (Kohonen 2001).

After initialization, two steps are repeated itera-
tively until convergence. The � rst step is to � nd
the best-matching unit for each data item. In the
second step, the model vectors are updated so that
they � t the data better under the constraint that
neighboring units represent similar items. The
neighborhood of each unit is de� ned through
a neighborhood function and decreases with each
iteration.

To formalize the basic SOM algorithm, we de� ne
the data matrix D, the model vector matrix Mt, the
distance matrix U, the neighborhood matrix Nt, the
partition matrix Pt, and the spread activation ma-
trix St. The data matrix D is of size n 2 d, where n
is the number of data items, and d is the number of
dimensions of the data. The model vector matrix
Mt is of size m 2 d, where m is the number of map
units. The values of Mt are updated in each itera-
tion t. The matrix U of size m 2 m contains the
squared distance between the units on the map.
The neighborhood matrix Nt can be calculated, for
example, as

2N 4 exp(1 U/(2r )) (5)t t

where rt de� nes the neighborhood radius and mon-
otonically decreases with each iteration. The ma-
trix Nt is of size m 2 m, symmetrical, with high
values on the diagonal, and represents the in� u-
ence of one unit on another. The sparse partition
matrix Pt of size n 2 m is calculated given D and
Mt as

P (i,j)t (6)
1, if unit j is the best match for item i

4 50, otherwise.

The spread activation matrix St, with size n 2
m, de� nes the responsibility of each unit for each
data item at iteration t and is calculated as

S 4 P N (7)t t t

At the end of each loop, the new model vectors
Mt ` 1 are calculated as

*M 4 S D (8)t ` 1 t

where S denotes the spread activation matrix, nor-*
t

malized so that the sum over all rows in each col-
umn is unity, except for units to which no items
are mapped.

There are two main parameters for the SOM al-
gorithm. One is the map size; the other is the � nal
neighborhood radius. A larger map gives a higher
resolution of the mapping but is computationally
more expensive. The � nal neighborhood radius de-
� nes the smoothness of the mapping and should be
adjusted depending on the noise level in the data.

Various methods to visualize clusters based on
the SOM have been developed. We use smoothed
data histograms (Pampalk et al. 2002b) where each
data item votes for the map units that represent it
best based on some function of the distance to the
respective model vectors. All votes are accumu-
lated for each map unit, and the resulting distribu-
tion is visualized on the map.

A robust ranking function is used to gather the
votes. The unit closest to a data item gets n points,
the second n 1 1, the third n 1 2, and so forth, for
the n closest map units. Basically, the SDH approx-
imates the probability density of the data on the
map, which is then visualized using a color code. A
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MATLAB toolbox for the SDH can be downloaded
from www.oefai.at/;elias/sdh.

Aligned SOMs

The SOM is a useful tool for exploring a data set
according to a given similarity measure. However,
when exploring music, the concept of similarity is
not clearly de� ned, because there are many aspects
to consider. Aligned SOMs (Pampalk et al. 2003b;
Pampalk 2003) are an extension to the basic SOM
that allows for interactively shifting the focus be-
tween different aspects and exploring the resulting
gradual changes in the organization of the data.
The Aligned-SOMs architecture consists of several
mutually constrained SOMs stacked on top of each
other, as shown in Figure 2. Each map has the same
number of units arranged in the same way (e.g., on
a rectangular grid), and all maps represent the same
pieces of music but organized with a different
focus in terms of aspects of timbre or rhythm, for
example.

The individual SOMs are trained such that each
layer maps similar data items near one other
within the layer, and neighboring layers are further
constrained to map the same items to similar loca-
tions. To that end, we de� ne a distance between
individual SOM layers that is made to depend on
how similar the respective views are. The informa-
tion between layers and different views of the same
layer is shared based on the location of the pieces
on the map. Thus, organizations from arbitrary
sources can be aligned.

We formulate the Aligned-SOMs training algo-
rithm based on the formulation of the batch SOM
in the previous section. To train the SOM layers,
we extend the squared-distance matrix U to con-
tain the distances between all units in all layers;
thus the size of U is ml 2 ml, where m is the
number of units per layer, and l is the total number
of layers. The neighborhood matrix is calculated
according to Equation 5. For each aspect a of simi-
larity, a sparse partition matrix Pat of size n 2 ml is
needed. (In the demonstration discussed below,
there are three different aspects: two are calculated
from the spectrum and periodicity histograms, and
one is based on meta-information.) The partition

matrices for the � rst two aspects are calculated us-
ing Equation 6 with the extension that the best-
matching unit for a data item is selected for each
layer. Thus, the sum of each row equals the num-
ber of layers. The spread-activation matrix Sat for
each aspect a is calculated as in Equation 7. For
each aspect a and layer i, mixing coef� cients wai

are de� ned with wai 4 1 that specify the relativeoa

strength of each aspect. The spread activation for
each layer is calculated as

S 4 w S (9)it o ai aita

Finally, for each layer i and aspect a with data
Da, the updated model vectors Mait ` 1 are calculated
as

*M 4 S D , (10)ait ` 1 it a

where S denotes the normalized columns of Sit.*
it

In our demonstration, we initialized the Aligned
SOMs based on the meta-information organization
for which we assumed that only the partition ma-
trix is given, which assigns each piece of music to a
map unit. Thus, for the two views based on vector
spaces, � rst the partition matrices are initialized,
and then the model vectors are calculated from
these.

The necessary resources in terms of CPU time
and memory increase rapidly with the number of
layers and depend on the degree of congruence (or

Figure 2. Aligned-SOM
architecture.

http://www.oefai.at/%7Eelias/sdh


55Pampalk, Dixon, and Widmer

incongruence) of the views. The overall computa-
tional load is of a higher order of magnitude than
training a single SOM. For larger datasets, several
optimizations are possible; in particular, applying
an extended version of the fast winner search pro-
posed by Kaski (1999) would improve the ef� ciency
drastically, because there is a high redundancy in
the multiple layer structure.

To illustrate the Aligned SOMs, we use a simple
dataset containing 16 animals with 13 Boolean fea-
tures describing aspects of their appearance such as
size or number of legs and activities such as ability
to swim (Kohonen 2001). We trained 31 layers of
SOMs using the Aligned-SOM algorithm. The � rst
layer uses a weighting ratio between the aspects of
appearance and activity of 1:0. The 16th layer, i.e.,
the center layer, weights both aspects equally. The
last layer uses a weighting ratio of 0:1, focusing
only on activities. The weighting ratios of all other
layers are linearly interpolated.

Five layers from the resulting Aligned SOMs are
shown in Figure 3. For interactive exploration, an
HTML version with all 31 layers is available online
at www.oefai.at/;elias/aligned-soms. When the fo-
cus is only on appearance, all small birds are lo-
cated together in the lower right corner of the map.
The eagle is an outlier owing to its size. On the
other hand, all mammals are located in the upper
half of the map; the medium-sized ones appear on
the left and are separated from the larger ones on
the right. As the focus is gradually shifted to activ-
ity descriptors, the organization changes. In partic-
ular, predators are now located on the left and
others on the right. Although there are several sig-
ni� cant changes regarding individuals, the overall
structure has remained largely the same, enabling
the user to easily identify similarities and differ-
ences between two different ways of viewing the
same data.

Demonstration

To demonstrate our approach on musical data, we
have implemented an HTML-based interface. A
screenshot is depicted in Figure 4, and an online
demonstration is available at www.oefai.at/;elias/

aligned-soms. For this demonstration, we use a
small collection of 77 pieces from different genres
that we have also used in previous demonstrations
(Pampalk et al. 2002a). The pieces represent a broad
range of Western music, including classical, folk,
rock, pop, and alternative pieces.

Although realistic sizes for music collections are
much larger, we believe that even small numbers
can be of interest as they might occur in a result
set of a query, such as the ‘‘top 100’’ in the charts
for example. The limitation in size is mainly in-
duced by our simple HTML interface. Larger collec-
tions would require a hierarchical extension that
represents each ‘‘island’’ only by the most typical
member and allows the user to zoom in and out,
for example. The complete processing, from feature
extraction to creating the images, takes about 45
min for a collection of 100 pieces using non-
optimized MATLAB code.

The user interface (see Figure 4) is divided into
four parts: the navigation unit, the map, and two
codebook visualizations. On the left is the periodic-
ity histogram codebook. Each of the 10 2 5 sub-
plots represents a unit of the SOM. The x-axis of
each subplot represents the range from 40 (left) to
240 BPM (right) with a resolution of 5 BPM. The
y-axis represents the strength level of a periodic
beat at the respective frequency. The color shad-
ings correspond to the number of frames within a
piece that reach or exceed the respective strength
level at the speci� c periodicity. On the right are
the spectrum histogram codebooks. The y-axis rep-
resents the 20 critical-bands while the x-axis repre-
sents the loudness. The plots are mirrored on the
y-axis so that the contour becomes better visible.
The color shadings correspond to the number of
frames within a piece that reach or exceed the re-
spective loudness in the speci� c critical-band. The
navigation unit has the shape of a triangle, where
each corner represents an organization according to
a particular aspect. The meta-information view is
located at the top, periodicity on the left, and spec-
trum on the right. The user can navigate among
these views by moving the mouse over the inter-
mediate nodes, which results in smooth changes of
the map. In total there are 73 different nodes the
user can browse.

http://www.oefai.at/%7Eelias/aligned-soms
http://www.oefai.at/%7Eelias/aligned-soms
http://www.oefai.at/%7Eelias/aligned-soms
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(a) (b) (c)

(d) (e)

The meta-information view we use in this dem-
onstration was created manually by placing the
pieces on the map according to personal taste. For
example, all classical pieces in the collection are
mixed together in the upper left. On the other
hand, the island in the upper right of the map rep-
resents pieces by the pop-music group Bomfunk

MCs. The island in the lower right contains a mix-
ture of different pieces by Papa Roach, Limp Bizkit,
Guano Apes, and others that are quite aggressive.
The other islands contain more or less arbitrary
mixtures of pieces, although the one located closer
to the Bomfunk MCs island contains music with
stronger beats.

Figure 3. Aligned SOMs
trained with a small ani-
mal dataset showing
changes in the organiza-
tion: (a) �rst layer with
weighting ratio 1:0 be-
tween appearance and

activity features; (b) ratio
3:1; (c) ratio 1:1; (d) ratio
1:3; (e) last layer with ra-
tio 0:1. The shadings repre-
sent the density calculated
using SDH (n 4 2 with
bicubic interpolation).
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The current position in the triangle is indicated
with a red marker located in the top left-hand
corner in the screenshot. Thus, the map in Fig-
ure 4 displays the organization based on meta-
information.

Below the map are the two codebook visualiza-
tions, i.e., the model vectors for each unit. This al-
lows us to interpret the map. The codebooks

explain why a particular piece is located in a spe-
ci� c region and what the differences between re-
gions are. In particular, the codebook visualizations
reveal that the user-de� ned organization is not
completely arbitrary with respect to the features
extracted from the audio. For example, the perio-
dicity histogram has the highest peaks around the
Bomfunk MCs island and the spectrum histogram

Figure 4. Screenshot of the
HTML-based user inter-
face, showing the naviga-
tion unit (top left), the
map (to its right), the peri-

odicity histogram code-
book (lower left), and the
spectrum histogram code-
book (lower right).
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has a characteristic shape around the classical mu-
sic island. This shape is characteristic of music
with little energy in high frequencies. The shadings
are a result of the high variations in the loudness,
while the overall relatively thin shape is due to the
fact that the maximum level of loudness is rarely
exploited.

The codebooks of the other two extreme perspec-
tives are shown in Figure 5. When the focus is only
on one aspect (e.g., periodicity) the model vectors
of the SOM can better adapt to variations between
histograms and thus represent them with higher
detail. Also noticeable is how the organization of
the model vectors changes as the focus is shifted.

(a)

(b)

Figure 5. Codebooks de-
picting the underlying or-
ganization: (a) and (b) rep-
resent the periodicity and
spectrum histogram code-
books of the Aligned SOM
organized according to

periodicity histograms,
and (c) and (d) are orga-
nized according to the
spectrum histograms. The
visualization is the same
as in Figure 4 with a dif-
ferent color scale.
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For instance, the structure of the spectrum code-
book becomes more pronounced as the focus shifts
to spectral aspects.

An important characteristic of Aligned SOMs is
the global alignment of different views. This is con-
� rmed by investigating the codebooks. For in-
stance, the user-de� ned organization forces the
periodicity patterns of music by Bomfunk MCs to

be located in the upper right. If trained individu-
ally, these periodicity histograms would be found
in the lower right, which is furthest from the upper
left, where pieces such as Beethoven’s Für Elise, for
example, can be found.

Figure 6 shows the shapes of the islands for the
two extreme views focusing only on spectrum and
periodicity, respectively. When the focus is on

(c)

(d)
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spectral features, the island of classical music (up-
per left) is split into two islands, where H repre-
sents piano pieces and I represents orchestral
pieces. Inspecting the codebook reveals the differ-
ence is that orchestral music uses a broader fre-
quency range. On the other hand, when the focus is
on periodicity, a large island is formed that accom-
modates all classical pieces on one island A. This
island is connected to island G, where non-classical
music can also be found, such as the song Little
Drummer Boy by Crosby & Bowie or Yesterday by
the Beatles. Although there are several differences
between the maps, the global orientation remains
the same. In particular, the island groups A and H/
I, C and J, D/E and K, and G and M contain largely
the same pieces and correspond to the global orga-
nization based on the meta-information.

Discussion and Conclusions

We have presented a new approach to explore mu-
sic collections by navigating through different
views. Using Aligned SOMs, we implemented an
HTML interface in which the user can smoothly
change focus from one view to another while ex-
ploring how the organization of the collection
changes. We proposed two complementary similar-
ity measures, namely, the spectrum and periodicity
histograms, which describe timbre and rhythm, re-
spectively. We combined these two aspects of simi-
larity with a third view based on meta-data instead
of audio analysis.

In general, any of the three views we have used
in our demonstration can be replaced. Candidates
include similarity measures focusing on melody,
harmony, as well as other measures which might
be more suitable to describe timbre and rhythm. A
particularly interesting source for views based on
meta-data is the Internet. We are currently investi-
gating the use of Web crawlers to obtain artist and
genre information. Furthermore, the number of dif-
ferent views is not limited. For example, to study
expressive piano performances, the Aligned SOMs
were applied to integrate � ve different views (Pam-
palk et al. 2003b).

The collection we used covers a broad spectrum
of Western music that can be discriminated reason-
ably well by the similarity measures we used. If the
collection were more homogeneous (e.g., piano so-
natas by Mozart), these similarity measures would
fail to create meaningful clusters.

Furthermore, a nice feature of the SOM is the op-
tion to add new pieces to an existing organization.
In particular, a new piece is simply added to the
most similar map unit. If a relatively large number
of pieces have been added, or if the pieces are very
different to the pieces with which the map was
originally trained, then it is possible to gradually
retrain the maps to give the new pieces more space
in the display without reorganizing everything.

The main result from � rst user evaluations is
that the similarity measures are insuf� cient. Thus,
future work will include improving the similarity
measures. Another limitation is the size of the col-

(a)

(b)

Figure 6. Two extreme
views of the data and the
resulting ‘‘islands’’ of mu-
sic: (a) the focus is solely

on the periodicity histo-
grams; (b) the focus is
solely on spectrum histo-
grams.
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lection. Although we believe that browsing small
collections can be of interest (e.g., the ‘‘top 100’’ on
the charts, or all pieces by a particular artist), it
will be necessary to develop a hierarchical exten-
sion to deal with very large collections. The � rst
steps in this direction have been undertaken by
Schedl (2004), where a hierarchical variant of
Aligned SOMs was used to organize a collection of
over 800 pieces. The main dif� culty is that hierar-
chical variants of the SOM (e.g., Dittenbach et al.
2002) cannot be combined directly with the
Aligned SOM. However, using smoothed data his-
tograms to reveal hierarchical structures seems
promising.

Instead of using orthogonal views, it is also possi-
ble to compare competing similarity measures that
describe the same aspects of the music. Currently,
we are applying Aligned SOMs to investigate differ-
ences between various spectral similarity mea-
sures. For example, by comparing the organizations
obtained through the spectrum histogram and the
measure proposed by Aucouturier and Pachet
(2002b), we have obtained new results that contra-
dict � ndings from an earlier quantitative evalua-
tion (Pampalk et al. 2003a). In particular, the
spectrum histogram does not perform as well as
previously claimed. Using this subjective approach
to evaluation has helped us develop re� ned similar-
ity measures that, according to preliminary experi-
ments, are closer to our own assessment of music
similarity. Thus, we also advocate the Aligned-
SOM approach as a tool for exploratory research.
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