
International Joint Conference on Artificial Intelligence c©2005 IJCAII 1

An On-Line Time Warping Algorithm for Tracking Musical Performances ∗

Simon Dixon
Austrian Research Institute for Artificial Intelligence

Freyung 6/6, Vienna 1010, Austria
simon@oefai.at

Abstract
Dynamic time warping is not suitable for on-line
applications because it requires complete knowl-
edge of both series before the alignment of the first
elements can be computed. We present a novel on-
line time warping algorithm which has linear time
and space costs, and performs incremental align-
ment of two series as one is received in real time.
This algorithm is applied to the alignment of audio
signals in order to track musical performances.

1 On-Line Time Warping
Although efficiency and real-time concerns of dynamic time
warping (DTW) have been addressed in the literature, we do
not know of any work in which the real-time constraint in-
volves a streamed sequence, so that the alignment must be
calculated incrementally, in the forward direction, while one
of the sequences is not known in entirety. In this work we
present an on-line time warping (OLTW) algorithm which is
able to perform incremental alignment of arbitrarily long se-
quences in real time.

DTW aligns time seriesU = u1, ..., um andV = v1, ..., vn

by finding a minimum cost pathW = W1, ...,Wl, where
eachWk is an ordered pair(ik, jk), such that(i, j) ∈ W
means that the pointsui andvj are aligned. The alignment is
assessed with respect to a local cost functiond(i, j), usually
represented as anm × n matrix, which assigns a match cost
for aligning each pair(ui, vj). The path cost is the sum of
the local match costs along the path. Several constraints are
placed onW , namely that the path is bounded by the ends
of both sequences, and it is monotonic and continuous. The
minimum cost path can be calculated in quadratic time by
dynamic programming, using the recursion:

D(i, j) = d(i, j) + min

{
D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)

}
whereD(i, j) is the cost of the minimum cost path from(1, 1)
to (i, j), andD(1, 1) = d(1, 1). The path itself is obtained by
tracing the recursion backwards fromD(m,n).

In the on-line case, the length of the incoming sequence is
unknown, so one of the boundary conditions for the search

∗This work was supported by the Vienna Science and Tech-
nology Fund project CI010Interfaces to Music, the EU-FP6-IST-
507142 projectSIMAC, and the START project Y99-INF. OFAI ac-
knowledges support from the ministries BMBWK and BMVIT.

must be estimated along with the optimal path. Also, in order
to run in real time with arbitrarily long series, the complete
algorithm must be linear in the length of the series, so that
the incremental step is bounded by a constant. IfU is the
partially unknown sequence, then we seek at each timet the
best alignment of the sequenceu1, ..., ut to some initial sub-
sequence ofV . This is performed with the OLTW algorithm
(Figure 1), which we now explain.

The variablest andj are pointers to the current positions in
seriesU andV respectively. The main loop of the algorithm
calculates a partial row or column of the path cost matrix. The
calculation of the path cost uses the standard DTW recursion
formula, restricted to use only the matrix entries which have
already been calculated. The path cost is normalised by the
path length, so that paths of varying lengths can be compared
in the functionGetInc. The number of cells calculated is
given by the search width parameter,c; e.g. for a new row, the
row number is incremented, and the cells in the lastc columns
up to and including the current column are calculated.

The functionGetInc selects whether to calculate a row,
column, or both. If less thanc elements of each series have
been processed, new rows and columns are alternately cal-
culated. If one sequence has been incremented successively
MaxRunCount times, the other sequence is incremented.
Otherwise the minimum path cost for each cell in the cur-
rent row and column is found. If this occurs in the current
position(t, j), then both the row and column counts are in-
cremented; if it occurs elsewhere in rowj, then the row count
is incremented, otherwise the column countt is incremented.

For each incoming data pointut, the minimum cost path
calculated at timet is the same as that calculated by DTW,
assuming the same path constraints, but the number of cal-
culations performed by OLTW is bounded by a constant. A
further advantage of OLTW is that the centre of the search
band is adaptively adjusted to follow the best match.

2 Tracking of Musical Performances
In music performance, high level information such as struc-
ture and emotion is communicated by the performer through
parameters such as tempo, dynamics, articulation and vibrato.
These parameters vary within a musical piece, between musi-
cal pieces and between performers. We use OLTW to extract
this information directly from audio signals by aligning dif-
ferent performances of the same piece of music, enabling live
tracking and visualisation of expressive parameters during a
performance. This could be used to complement the listening



International Joint Conference on Artificial Intelligence c©2005 IJCAII 2

ALGORITHM On-Line Time Warping
t := 1; j := 1
previous := None
INPUT u(t)
EvaluatePathCost(t,j)
LOOP

IF GetInc(t,j) != Column
t := t + 1
INPUT u(t)
FOR k := j - c + 1 TO j

IF k > 0
EvaluatePathCost(t,k)

IF GetInc(t,j) != Row
j := j + 1
FOR k := t - c + 1 TO t

IF k > 0
EvaluatePathCost(k,j)

IF GetInc(t,j) == previous
runCount := runCount + 1

ELSE
runCount := 1

IF GetInc(t,j) != Both
previous := GetInc(t,j)

END LOOP

FUNCTION GetInc(t,j)
IF (t < c)

return Both
IF runCount > MaxRunCount

IF previous == Row
return Column

ELSE
return Row

(x,y) := argmin(pathCost(k,l)), where
(k == t) or (l == j)

IF x < t
return Row

ELSE IF y < j
return Column

ELSE
return Both

Figure 1: The on-line time warping (OLTW) algorithm.

experience of concert-goers, to provide feedback to teachers
and students, or to enable interactive performance and auto-
matic accompaniment systems.

The audio data is represented by the positive spectral dif-
ference between successive 20ms frames, that is, the increase
in energy (if any) in each frequency bin. This emphasises
the onsets of tones, the most important indicators of musi-
cal timing. The cost of matching two frames is given by the
Euclidean distance between their spectral difference vectors.

Since the slope of the path represents the relative tempo,
it is reasonable to constrain it to a range between1

3 and 3
(MaxRunCount = 3 ) , to allow for moderate but not arbi-
trary differences in tempo. In off-line tests with a search
width of 10s (c = 500 frames) the program aligned each
minute of music in about 10 seconds (3GHz PC). It also runs
comfortably in real time with these parameters.

Quantitative testing was performed off-line with record-
ings of 22 pianists playing 2 excerpts of solo piano music

Error≤ Percentage of notes
Frames Seconds On-line Off-line

Etude Ballade Etude Ballade
0 0.00 13.9% 13.1% 46.5% 36.6%
1 0.02 36.1% 34.5% 84.5% 77.1%
2 0.04 52.8% 50.7% 91.1% 88.9%
3 0.06 64.0% 62.2% 93.4% 92.5%
5 0.10 78.4% 76.7% 96.0% 95.1%
10 0.20 92.7% 91.4% 98.8% 97.4%
25 0.50 98.7% 98.5% 99.8% 99.1%
50 1.00 99.9% 99.7% 100.0% 99.8%

Table 1: Alignment results shown as cumulative percentages
of notes with an error up to the given value (see text).

by Chopin (Etude in E Major, Op.10, no.3, bars 1–21; and
Ballade Op.38, bars 1–45), played on a computer-monitored
grand piano. This provided precise measurements of the
times and velocities of all notes, so that we had both the audio
recordings and discrete measurements of each note.

After aligning a pair of files, the error for each note or
chord was calculated, using the Manhattan distance between
the point representing the onsets of the corresponding notes
in the two performances and the nearest point on the time
warping path. In Table 1, we show the percentages of notes
with errors less than or equal to 0,1,2,3,5,10,25 and 50 frames
across the 231 (= 22×21

2 ) pairs of performances of each piece.
The results using the off-line version of the algorithm are
also included in the table. The average error was 84ms for
the on-line algorithm and 30ms for the off-line version; the
worst errors were 2.62s (on-line) and 3.64s (off-line). The
off-line algorithm performs better because it has the advan-
tage of knowing the future evolution of the signal when cal-
culating the alignment at a given point.

3 Conclusion
We presented a new on-line time warping algorithm, which
aligns a sequence arriving in real time with a stored sequence
of arbitrary length. At each time frame, the calculated path is
optimal with respect to the data computed up to that time, but
this might not correspond to the optimal path calculated by
an off-line algorithm with full knowledge of both sequences.

OLTW was used in implementing a musical performance
alignment system, which was tested on several hundred pairs
of performances with an average error of 84ms. The system
can be used off-line for comparisons of performance inter-
pretation, using unlabelled audio recordings, e.g. in a media
player plug-in which, given a position in one audio file, au-
tomatically finds the corresponding position in other audio
files of the same piece of music. An on-line application is au-
tomatic accompaniment: given an audio file with the soloist
and accompaniment on separate tracks, alignment could be
performed on the solo track while the accompaniment track
is played back with corresponding accommodation of the dy-
namic and timing changes of the soloist. Currently planned
extensions of this work include a score following system and
a range of visualisation tools for use in concerts, teaching and
private rehearsal. At the conference we will demonstrate the
system tracking tempo and dynamics in a live performance
and displaying the data with an animation designed by musi-
cologists for off-line performance visualisation.


