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Abstract must be estimated along with the optimal path. Also, in order
— L . . to run in real time with arbitrarily long series, the complete
Dynamic time warping is not suitable for on-line algorithm must be linear in the length of the series, so that
applications because it requires complete knowl- o incremental step is bounded by a constantlU s the
edge of both series before the alignment of the first partially unknown sequence, then we seek at each tithe
elements can be computed. We presenta novel on- ot ajignment of the sequenee ..., u; to some initial sub-
line time warping algorithm which has linear time sequence oF/. This is performed with the OLTW algorithm
and space costs, and performs incremental align- (Figure 1), which we now explain.
'rprﬁgta?f;\pil% r?qeigeas aﬁec:jnteo 'fh;egﬁ'\aergégtrgfa;gé?g' The variables and; are pointers to the current positions in
si nalsgin order to 'I[Jrgck musical grformances seriesU andV’ respectively. The main loop of the algorithm
9 P ' calculates a partial row or column of the path cost matrix. The
calculation of the path cost uses the standard DTW recursion
1 On-Line Time Warping formula, restricted to use only the matrix entries which have

Although efficiency and real-time concerns of dynamic timealready been calculated. The path cost is normalised by the

warping (DTW) have been addressed in the literature, we d§ath length, so that paths of varying lengths can be compared
not know of any work in which the real-time constraint in- I the function GetInc. The number of cells calculated is
volves a streamed sequence, so that the alignment must G&€n by the search width parameigre.g. for a new row, the
calculated incrementally, in the forward direction, while one0W number is incremented, and the cells in the dasilumns

of the sequences is not known in entirety. In this work welP_{0 and including the current column are calculated.
present an on-line time warping (OLTW) algorithm which is The function GetInc selects whether to calculate a row,

able to perform incremental alignment of arbitrarily long Se_golumn, or bOt% If less than elgmerlwts of each slterlesthflve |
quences in real time. een processed, new rows and columns are alternately cal-

DTW aligns time serie& = uy, ..., u,, andV = vy, ..., v culated. If one sequence has been incremented successively
by finding a minimum cost pafva " Wy .. W, ‘where  MazRunCount times, the other sequence is incremented.
eachW, is an ordered paitiy, j;), such tﬁaf(z‘ J) c w  Otherwise the minimum path cost for each cell in the cur-

Y 1 )

means that the points, andu; are aligned. The alignment is rent row and column is found. If this occurs in the current

assessed with respect to a local cost funcilij), usually ~ Position (¢, j), then both the row and column counts are in-

represented as an x n matrix, which assigns a match cost crémented; if it occurs elsewhere in rgwthen the row count

for aligning each paifu;,v;). The path cost is the sum of is incremented, otherwise the column cotigt incremented.
,U;).

the local match costs along the path. Several constraints are FOr ach incoming data poin, the minimum cost path
placed onlV’, namely that the path is bounded by the endscalculated at time is the same as that calculated by DTW,
of both sequences, and it is monotonic and continuous. Th@SSuming the same path constraints, but the number of cal-

minimum cost path can be calculated in quadratic time b};:ulations performed by OLTW is bounded by a constant. A
dynamic programming, using the recursion: further advantage of OLTW is that the centre of the search

D(i,j — 1) band is adaptively adjusted to follow the best match.
D(i—1,5-1) 2 Tracking of Musical Performances
whereD(i, j) is the cost of the minimum costpath fram 1) |4 music i i i
SN . X ; performance, high level information such as struc-
to (i, j), andD(1, 1) = d(1, 1). The path itselfis obtained by - ,re and emotion is communicated by the performer through
tracing the recursion backwards fraf(m, n). .garameters such as tempo, dynamics, articulation and vibrato.
In the on-line case, the length of the incoming sequence i§hese parameters vary within a musical piece, between musi-

unknown, so one of the boundary conditions for the searchy| hieces and between performers. We use OLTW to extract

“This work was supported by the Vienna Science and Techihis information directly from audio signals by aligning dif-
nology Fund project Cl01nterfaces to Musicthe EU-FP6-IST-  ferent performances of the same piece of music, enabling live
507142 projecBIMAG and the START project Y99-INF. OFAl ac- tracking and visualisation of expressive parameters during a
knowledges support from the ministries BMBWK and BMVIT. performance. This could be used to complement the listening
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ALGORITHM On-Line Time Warping Error < Percentage of notes
t=1j:=1 Frames| Seconds o dC)n-lllgeII } o Ej)ff-llrée =
: — ude allage ude allage
ﬁ\rl‘;"L'JOT“SU('t) None 0 0.00 || 13.9% | 13.1% | 465% | 36.6%
. 1 0.02 || 36.1% | 345%| 845%| 77.1%
EvaluatePathCost(t,)) 2 0.04 || 52.8% | 50.7% | 91.1% | 88.9%
LOOP _ 3 0.06 || 64.0%| 62.2%| 93.4% | 92.5%
IF Getinc(t,j) '= Column 5 0.10 78.4% | 76.7% | 96.0% | 95.1%
t=t+1 10 0.20 || 92.7% | 91.4%| 98.8% | 97.4%
INPUT u(t) 25 0.50 || 98.7% | 98.5%| 99.8% | 99.1%
FORKk:=j-c+1TO]j 50 1.00 || 99.9% | 99.7% || 100.0% | 99.8%

IF k>0
EvaluatePathCost(t,k)
IF Getinc(t,j) '= Row
j=j+1
FOR k =t-c+1TOt
IF k>0
EvaluatePathCost(k,j)
IF Getlnc(t,j) == previous
runCount := runCount + 1
ELSE
runCount = 1
IF Getinc(t,j) !'= Both
previous := Getlnc(t,j)
END LOOP
FUNCTION GetlInc(t,j)
IF (t < c)
return Both
IF runCount > MaxRunCount

Table 1: Alignment results shown as cumulative percentages
of notes with an error up to the given value (see text).

by Chopin (Etude in E Major, Op.10, no.3, bars 1-21; and
Ballade Op.38, bars 1-45), played on a computer-monitored
grand piano. This provided precise measurements of the
times and velocities of all notes, so that we had both the audio
recordings and discrete measurements of each note.

After aligning a pair of files, the error for each note or
chord was calculated, using the Manhattan distance between
the point representing the onsets of the corresponding notes
in the two performances and the nearest point on the time
warping path. In Table 1, we show the percentages of notes
with errors less than or equal to 0,1,2,3,5,10,25 and 50 frames
across the 23 22;72‘1) pairs of performances of each piece.
The results using the off-line version of the algorithm are
also included in the table. The average error was 84ms for

IF p::t\ﬂfnusczimaow the on-line algorithm and 30ms for the off-line version; the
ELSE worst errors were 2.62s (on-line) and 3.64s (off-line). The
return Row off-line algorithm performs better because it has the advan-

tage of knowing the future evolution of the signal when cal-

(xy) = argmin(pathCost(k,)), where culating the alignment at a given point.

(k ==1t) or (I ==))
IF x <t

return Row 3 Conclusion
ELSE IF y < j We presented a new on-line time warping algorithm, which
return Column aligns a sequence arriving in real time with a stored sequence
ELSE of arbitrary length. At each time frame, the calculated path is
return Both optimal with respect to the data computed up to that time, but

this might not correspond to the optimal path calculated by
an off-line algorithm with full knowledge of both sequences.
OLTW was used in implementing a musical performance
alignment system, which was tested on several hundred pairs
experience of concert-goers, to provide feedback to teachef$ performances with an average error of 84ms. The system
and students, or to enable interactive performance and autéan be used off-line for comparisons of performance inter-
matic accompaniment systems. pretation, using unlabelled audio recordings, e.g. in a media
The audio data is represented by the positive spectral difPlayer plug-in which, given a position in one audio file, au-
ference between successive 20ms frames, that is, the incredegnatically finds the corresponding position in other audio
in energy (if any) in each frequency bin. This emphasisediles of the same piece of music. An on-line application is au-
the onsets of tones, the most important indicators of musitomatic accompaniment: given an audio file with the soloist
cal timing. The cost of matching two frames is given by theand accompaniment on separate tracks, alignment could be
Euclidean distance between their spectral difference vectorgperformed on the solo track while the accompaniment track
Since the slope of the path represents the relative tempds played back with corresponding accommodation of the dy-
it is reasonable to constrain it to a range betwéeand 3 ~ namic and timing changes of the soloist. Currently planned
(MazRunCount = 3) , to allow for moderate but not arbi- extensions of this work include a score following system and
trary differences in tempo. In off-line tests with a search®2nge of visualisation tools for use in concerts, teaching and
width of 10s ¢ = 500 frames) the program aligned each private rehearsal. At the conference we will demonstrate the

minute of music in about 10 seconds (3GHz PC). It also runSYSteM tracking tempo and dynamics in a live performance
comfortably in real time with these parameters. and displaying the data with an animation designed by musi-

Quantitative testing was performed off-line with record- cologists for off-line performance visualisation.
ings of 22 pianists playing 2 excerpts of solo piano music

Figure 1: The on-line time warping (OLTW) algorithm.



