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ABSTRACT

This MIREX submission exploits a convolutive probabilis-
tic model for multiple-FO estimation and note tracking. It
extends the shift-invariant Probabilistic Latent Component
Analysis method and employs several note templates from
multiple orchestral instruments. By incorporating shift-
invariance into the model along with the constant-Q trans-
form as a time-frequency representation, tuning changes
and frequency modulations such as vibrato can be better
supported. For postprocessing, Hidden Markov Models
trained on MIDI data are employed, in order to favour tem-
poral continuity. Three variants of the system are utilized,
one trained on orchestral instruments for multiple-FO es-
timation, one trained on orchestral instruments plus piano
for note tracking, and a final one trained on piano templates
for piano-only note tracking.

1. INTRODUCTION

The goal of an automatic music transcription system is to
convert an audio recording into a symbolic representation,
such as a piano-roll, a MIDI file or a music sheet. The
creation of a system able to transcribe music produced by
multiple instruments with a high level of polyphony con-
tinues to be an open problem in the research community,
although monophonic pitch transcription is largely consid-
ered solved. For a comprehensive overview on transcrip-
tion approaches the reader is referred to [6].

Here, a system for automatic transcription of polyphonic
music is utilized, which was first introduced in [2]. The
system extends the shift-invariant probabilistic latent com-
ponent analysis (PLCA) method of [11]. This model is
able to support the use of multiple pitch templates extracted
from multiple sources. Using a log-frequency represen-
tation and frequency shifting, detection of notes that are
non-ideally tuned, or that are produced by instruments that
exhibit frequency modulations is made possible. Sparsity
is also enforced in the model, in order to further constrain
the transcription result and the instrument contribution in
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Figure 1. Diagram for the proposed polyphonic transcrip-
tion system.

the production of pitches. Finally, a hidden Markov model-
based note tracking method is employed in order to provide
a smooth piano-roll transcription.

2. TRANSCRIPTION SYSTEM

The goal of the utilized transcription system is to provide
a framework that supports multiple templates per pitch, in
contrast to the relative pitch tracking method in [7], as well
as multiple templates per musical instrument. In addition,
the contribution of each instrument source is not constant
for the whole recording as in [7], but is time-dependent.
Also, its goal is to exploit the benefits given by a shift-
invariant model coupled with a log-frequency representa-
tion, in contrast to the transcription method in [5], for de-
tecting notes that exhibit frequency modulations and tun-
ing changes.

In subsection 2.1, the extraction of pitch templates for
various instruments is presented. The main transcription
model is presented in subsection 2.2, while the HMM post-
processing step is described in subsection 2.3 and the vari-
ants used for evaluation are discussed in subsection 2.4. A
diagram of the proposed transcription system is depicted
in Fig. 1.

2.1 Extracting Pitch Templates

Firstly, spectral templates are extracted for various instru-
ments, for each note, using their whole note range. Iso-
lated note samples from three different piano types were
extracted from the MAPS dataset [3] and templates for
other orchestral instruments were extracted from mono-
phonic recordings from the RWC database [4]. For extract-
ing the note templates, the constant-Q transform (CQT)
was computed [10] with spectral resolution of 60 bins per
octave. Afterwards, the standard PLCA model of [11] us-
ing only one component z was employed in order to extract



Instrument | Lowest note | Highest note

Cello 26 81
Clarinet 50 89
Flute 60 96
Guitar 40 76
Harpsichord 28 88
Oboe 58 91

Piano 21 108

Violin 55 100

Table 1. MIDI note range of the instrument templates used
in the proposed transcription system.

the spectral template P(w|z), where w is the log-frequency
index. In Table 1, the pitch range of each instrument used
for template extraction is shown.

2.2 Transcription Model

Utilizing the extracted instrument templates and by extend-
ing the shift-invariant PLCA algorithm, a model is pro-
posed which supports the use of multiple pitch and instru-
ment templates in a convolutive framework, thus support-
ing tuning changes and frequency modulations. By consid-
ering the input CQT spectrum as a probability distribution
P(w, t), the proposed model can be formulated as:

P(w,t) = P(t) Y P(wl]s,p)*. P(flp,t)P(s|p, t) P(plt)

ey
where P(w|s, p) is the spectral template that belongs to in-
strument s and MIDI pitch p = 21,...,108, P(f|p,t) is
the time-dependent impulse distribution that corresponds
to pitch p, P(s|p,t) is the instrument contribution for each
pitch in a specific time frame, and P(p|t) is the pitch prob-
ability distribution for each time frame.
By removing the convolution operator, the model of (1)
can be expressed as:

P(w,t) = P(t) Y P(w—fls,p)P(flp,t)P(s|p,t) P(p|t)
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In order to only utilize each template P(w|s, p) for detect-
ing the specific pitch p, the convolution of P(w|s,p) *,
P(f|p,t) takes place using an area spanning one semitone
around the ideal position of p. Since 60 bins per octave are
used in the CQT spectrogram, f has a length of 5.
The various parameters in (1) can be estimated using
iterative update rules derived from the EM algorithm. For
the expectation step the update rule is:

P(p, f,slw,t) =
P(w — fls,p)P(flp,t)P(s|p,t)P(p|t)
>op.ps Pw— fls,p)P(fp,t)P(s|p,t) P(plt)

For the maximization step, the update equations for the
proposed model are:

Zf,tp(p7f7s|w+fvt)P(w+fvt)
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Figure 2. (a) The transcription matrix P(p,t) of the first
10s of the MIREX woodwind quintet. (b) The pitch ground
truth of the same recording. The abscissa corresponds to
10ms.
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It should be noted that since the instrument-pitch tem-
plates have been extracted during the training stage, the up-
date rule for the templates (4) is not used, but is included
for the sake of completeness. Using these constant tem-
plates, convergence is quite fast, usually requiring 10-20
iterations. The resulting piano-roll transcription matrix is
given by:

P(p,t) = P(t)P(plt) ®)
In Fig. 2, the transcription matrix P(p,t) for an excerpt of
the MIREX multi-FO woodwind quintet recording can be
seen, along with the corresponding pitch ground truth.

In order for the algorithm to provide as meaningful so-
lutions as possible, sparsity is encouraged on transcription
matrix P(p|t), expecting that only few notes are present at
a given time frame. In addition, sparsity can be enforced
to matrix P(s|p,t), meaning that for each pitch at a given
time frame, only a few instrument sources contributes to its
production. The same technique used in [5] was employed
for controlling sparsity, by modifying the update equations
(6) and (7):
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By setting «, 8 > 1, the entropy in matrices P(s|p,t) and
P(plt) is lowered and sparsity is enforced.

P(plt) =

(10)

2.3 Postprocessing

Instead of simply thresholding P(p,t) for extracting the
piano-roll transcription as in [5], additional postprocessing
is applied in order to perform note smoothing and tracking.
Hidden Markov models (HMMs) [9] have been used in the
past for note smoothing in signal processing-based tran-
scription approaches (e.g. [8]). Here, a similar approach to
the HMM smoothing procedure employed in [8] is used,
but modified for the probabilistic framework of the pro-
posed transcription system.

Each pitch p is modeled by a two-state HMM, denot-
ing pitch activity/inactivity. The hidden state sequence for
each pitch is given by @, = {g,[t]}. MIDI files from
the RWC database [4] from the classic and jazz subgen-
res were employed in order to estimate the state priors
P(gy[1]) and the state transition matrix P(g,[t]|gp[t — 1])
for each pitch p. For each pitch, the most likely state se-
quence is given by:

Qp = arg r[ltl]aXH Plgp[t]lgplt — 1) P(op[tllgp[t]) (A1)
dp t
which can be computed using the Viterbi algorithm [9].
For estimating the observation probability for each active
pitch P(op[t]|gp[t] = 1), we use a sigmoid curve which
has as input the transcription piano-roll P(p,t) from the
output of the transcription model:

P(op[t]lgplt] = 1)

The result of the HMM postprocessing step is a binary
piano-roll transcription which can be used for evaluation.
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2.4 System Variants

Three variants of the system are utilized for MIREX eval-
uation; one trained on orchestral instruments only for the
multiple-FO estimation task (BD1), one trained on orches-
tral instruments plus piano for the note tracking task (BD2),
and a system trained on piano templates for the piano-only
note tracking task (BD3).

3. RESULTS

* For the Multiple Fundamental Frequency Estimation task,
the submitted system (BD1) ranked 3rd, reporting an ac-
curacy of 57.4% and a chroma accuracy of 62.9%. Com-
pared to the system submitted for the MIREX 2010 task
[1] this system reports an accuracy increase of +10.6%.

* For the Note Tracking task, the submitted system (BD2)
ranked 2nd, exhibiting solid rates for the onset-only met-
rics, with a significant decrease in the onset-offset met-
rics, indicating a drawback of the submitted system in
estimating note durations.

* For the Piano-only Note Tracking task, the submitted
system (BD3) ranked 1st/2nd using the onset-only met-
rics and 5th using the onset-offset metrics. This again
indicates that the system over-estimated note durations.
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