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Joint Multi-Pitch Detection Using Harmonic Envelope
Estimation for Polyphonic Music Transcription

Emmanouil Benetos, Student Member, IEEE, and Simon Dixon

Abstract—In this paper, a method for automatic transcrip-
tion of music signals based on joint multiple-F0 estimation is
proposed. As a time—frequency representation, the constant-Q
resonator time—frequency image is employed, while a novel noise
suppression technique based on pink noise assumption is applied
in a preprocessing step. In the multiple-F0 estimation stage, the
optimal tuning and inharmonicity parameters are computed and
a salience function is proposed in order to select pitch candidates.
For each pitch candidate combination, an overlapping partial
treatment procedure is used, which is based on a novel spectral
envelope estimation procedure for the log-frequency domain, in
order to compute the harmonic envelope of candidate pitches.
In order to select the optimal pitch combination for each time
frame, a score function is proposed which combines spectral and
temporal characteristics of the candidate pitches and also aims
to suppress harmonic errors. For postprocessing, hidden Markov
models (HMMs) and conditional random fields (CRFs) trained on
MIDI data are employed, in order to boost transcription accuracy.
The system was trained on isolated piano sounds from the MAPS
database and was tested on classic and jazz recordings from the
RWC database, as well as on recordings from a Disklavier piano.
A comparison with several state-of-the-art systems is provided
using a variety of error metrics, where encouraging results are
indicated.

Index Terms—Automatic music transcription, harmonic en-
velope estimation, conditional random fields (CRFs), resonator
time—frequency image.

1. INTRODUCTION

UTOMATIC music transcription is the process of con-

verting an audio recording into a symbolic representation
using some form of musical notation. Even for expert musi-
cians, transcribing polyphonic pieces of music is not a trivial
task, and while the problem of automatic pitch estimation for
monophonic signals is considered to be a solved problem, the
creation of an automated system able to transcribe polyphonic
music without setting restrictions on the degree of polyphony
and the instrument type still remains open. In the past years, the
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problem of automatic music transcription has gained consider-
able research interest due to the numerous applications associ-
ated with the area, such as automatic search and annotation of
musical information, interactive music systems (i.e., computer
participation in live human performances, score following, and
rhythm tracking), as well as musicological analysis [1]-[3]. Im-
portant subtasks for automatic music transcription include pitch
estimation, onset/offset detection, loudness estimation, instru-
ment recognition, and extraction of rhythmic information. For
an overview on transcription approaches, the reader is referred
to [3], while in [4] a review of multiple fundamental frequency
estimation systems is given.

Proposed methods for automatic transcription can be
organized according to the various techniques or models em-
ployed. A large subset of the proposed systems employ signal
processing techniques, usually for feature extraction, without
resorting to any supervised or unsupervised learning procedures
or classifiers for pitch estimation (see [3] for an overview).
Several approaches for note tracking have been proposed using
variants of non-negative matrix factorization (NMF), e.g.,
[5]. Maximum likelihood approaches, usually employing the
expectation—maximization algorithm, have been also proposed
in order to estimate the spectral envelope of candidate pitches
or to estimate the likelihood of a set of pitch candidates (e.g.,
[2], [6]). Hidden Markov models (HMMs) are frequently used
in a postprocessing stage for note tracking, due to the sequential
structure offered by the models (e.g., [7], [8]).

Approaches for transcription related to the current work are
discussed here. Yeh et al. in [9] present a multipitch estima-
tion algorithm based on a pitch candidate set score function. The
front-end of the algorithm consists of an STFT computation fol-
lowed by an adaptive noise level estimation method based on the
assumption that the noise amplitude follows a Rayleigh distribu-
tion. Given a pitch candidate set, the overlapping partials are de-
tected and smoothed according to the spectral smoothness prin-
ciple. The weighted score function consists of four features: har-
monicity, mean bandwidth, spectral centroid, and synchronicity.
A polyphony inference mechanism based on the score function
increase selects the optimal pitch candidate set. Zhou [10] pro-
posed an iterative method for polyphonic pitch estimation using
a complex resonator filterbank as a front-end, called resonator
time—frequency image (RTFI). FO candidates are selected ac-
cording to their pitch energy spectrum value and a set of rules is
utilized in order to cancel extra estimated pitches. These rules
are based on the number of harmonic components detected for
each pitch and the spectral irregularity measure, which mea-
sures the concentrated energy around possibly overlapped par-
tials from harmonically related FOs.
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A probabilistic method is proposed by in [6], where piano
notes are jointly estimated using a likelihood function which
models the spectral envelope of overtones using a smooth au-
toregressive (AR) model and models the residual noise using a
low-order moving average (MA) model. The likelihood function
is able to handle inharmonicity and the amplitudes of overtones
are assumed to be generated by a complex Gaussian random
variable. In [7], Poliner and Ellis used STFT bins for frame-level
piano note classification using one-versus-all support vector ma-
chines (SVMs). In order to improve transcription performance,
the classification output of the SVMs was fed as input to HMMs
for post-processing.

Finally, previous work by the authors includes an iterative
system for multiple-FO estimation for piano sounds [11] which
incorporates temporal information for pitch estimation based on
the common amplitude modulation (CAM) assumption and a
public evaluation of the aforementioned system for the MIREX
2010 multiple fundamental frequency estimation task [12].
Results for the MIREX task were encouraging, considering
that the system was trained on isolated piano sounds and tested
on woodwind and string recordings, noting also that no note
tracking procedure was incorporated.

In this paper, a system for automatic transcription is pro-
posed which is based on joint multiple-FO estimation and sub-
sequent note tracking. The constant-Q RTFI is used as a suitable
time—frequency representation for music signals and a noise
suppression method based on cepstral smoothing and pink noise
assumption is proposed. For the multiple-FO estimation step, a
salience function is proposed for pitch candidate selection that
incorporates tuning and inharmonicity estimation. For each pos-
sible pitch combination, an overlapping partial treatment pro-
cedure is proposed that is based on a novel method for spec-
tral envelope estimation in the log-frequency domain, used for
computing the harmonic envelope of candidate pitches. A score
function which combines spectral and temporal features is pro-
posed in order to select the optimal pitch set. Note smoothing
is also applied in a postprocessing stage, employing HMMs and
conditional random fields (CRFs) [13]. To the best knowledge
of the authors, CRFs have not been used in the past for transcrip-
tion approaches. The system was trained on a set of piano chords
from the MAPS dataset [6], and tested on classic, jazz, and
random piano chords from the same set, as well as on recordings
from the RWC database [14], Disklavier recordings prepared in
[7], and the MIREX recording used for the multiple-FO estima-
tion task [15]. The proposed system is compared with several
approaches in the literature, where competitive results are pro-
vided using several error metrics which indicate that the current
system outperforms state-of-the-art methods in many cases.

The outline of the paper is as follows. Section II describes the
preprocessing steps used in the transcription system. The pro-
posed multiple-FO estimation method is presented in Section III.
The HMM- or CRF-based postprocessing steps of the system
are detailed in Section IV. In Section V, the datasets used for
training and testing are presented, the employed error metrics
are defined, and experimental results are shown and discussed.
Finally, conclusions are drawn and future directions are indi-
cated in Section VI, while in the Appendices a derivation for the
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noise suppression algorithm is given and the proposed log-fre-
quency spectral envelope estimation method is described.

II. PREPROCESSING

A. Resonator Time—Frequency Image

First, the input music signal is loudness-normalized to 70 dB
relative to the reference amplitude for 16-bit audio files, as in
[16]. The resonator time—frequency image (RTFI) is employed
as a time—frequency representation [10]. The RTFI selects a
first-order complex resonator filter bank to implement a fre-
quency-dependent time—frequency analysis. It can be formu-
lated as

RTFI(t,w) = z(t) * Ir(t,w) (1)
where

Ip(t,w) = r(w)el~r@+iw)t, 2)

x(t) stands for the input signal, (¢, w) is the impulse response
of the first-order complex resonator filter with oscillation fre-
quency w, and (w) is a decay factor which additionally sets the
frequency resolution.

Here, a constant-Q RTFI is selected for the time—frequency
analysis, due to its suitability for music signal processing tech-
niques, because the inter-harmonic spacings are the same for
any periodic sounds. The time interval between two successive
frames is set to 40 ms, which is typical for multiple-FO estima-
tion approaches [3]. A sampling rate of 44.1 kHz is considered
for the input samples (some recordings with sampling rate 8 kHz
which are presented in Subsection V-A were up-converted) and
the center frequency difference between two neighboring filters
is set to 10 cents (thus, the number of bins per octave b is set
to 120). The frequency range is set from 27.5 Hz (AO) to 12.5
kHz (which reaches up to the third harmonic of C8). The em-
ployed absolute value of the RTFI will be denoted as X [n, k]
from now on, where n denotes the time frame and % the log-fre-
quency bin. When needed, X [k] will stand for the RTFI slice
for a single time-frame.

B. Spectral Whitening

Spectral whitening (or flattening) is a key preprocessing step
applied in multiple-FO estimation systems, in order to suppress
timbral information and make the following analysis more ro-
bust to different sound sources. When viewed from an auditory
perspective, it can be interpreted as the normalization of the hair
cell activity level [17]. In this paper, we employ a method sim-
ilar to the one in [3], but modified for log-frequency spectra
instead of linear frequency ones. For each frequency bin, the
power within a subband of (1/3) octave span multiplied by a
Hann-window Whyann[k] is computed. The square root of the
power within each subband is

1 k+K/2 1/2
o= S WiemlIX[P 3)
I=k—F/2

where K = b/3 = 40 bins. Afterwards, each bin is scaled
according to

Y[k] = (o[k])" ™' X[] Q)
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Fig. 1. Diagram for the proposed automatic transcription system.

where v is a parameter which determines the amount of spectral
whitening applied and X [k] is the absolute value of the RTFI for
a single time frame, and Y'[k] is the final whitened RTFI slice.
As in [3], v was set to 0.33.

C. Noise Suppression

In [9], an algorithm for noise level estimation was proposed,
based on the assumption that noise peaks are generated from a
white Gaussian process, and the resulting spectral amplitudes
obey a Rayleigh distribution. Here, an approach based on pink
noise assumption (elsewhere called 1/ f noise or equal-loudness
noise) is proposed. In pink noise, each octave carries an equal
amount of energy, which corresponds well to the approximately
logarithmic frequency scale of human auditory perception. Ad-
ditionally, it occurs widely in nature, contrary to white noise
and is also suitable for the employed time—frequency representa-
tion used in this work. Initial experiments were performed using
a pink noise generator and the MATLAB distribution fitting
toolbox. It was shown that when fitting the pink noise ampli-
tudes with the exponential probability distribution, the resulting
log likelihood was —286, compared to —539 for the Rayleigh
distribution, thus motivating for the exponential distribution as-
sumption.
The proposed signal-dependent noise estimation algorithm is
as follows.
1) Perform a two-stage median filtering procedure on Y[k], in
a similar way to [18]. The span of the filter is set to (1/3)
octave. The resulting noise representation N[k] gives a
rough estimate of the noise level.

2) Using the noise estimate, a transformation from the log-
frequency spectral coefficients to cepstral coefficients is

performed [19]:
I 1\ =
ce = Zlog(N[k]) cos <§ (k — 5) F)
k=1

where K’ = 1043 is the total number of log-frequency bins
in the RTFI and = is the number of cepstral coefficients
employed, ¢ = 0,...,2 — 1.

&)

3) A smooth curve in the log-magnitude, log-frequency do-
main is reconstructed from the first D cepstral coefficients

D—1
log | N.(@)| = exp | co + 2 Z ce - cos(éw)
£=1

(6)

4) The resulting smooth curve is mapped from @ into k. As-
suming that the noise amplitude follows an exponential dis-
tribution, the expected value of the noise log amplitudes
E{log(|N.(@)])} is equal to log(A~!) — ~, where  is the
Euler constant (= 0.5772). Since the mean of an expo-
nential distribution is equal to (1/A), the noise level in the
linear amplitude scale can be described as
Ln(@) = N.(@)-e. )
The analytic derivation of E{log(|N.(@)|)} can be found
in Appendix A.
In this paper, the number of cepstral coefficients used was set to
D = 50. Let Z[k] stand for the whitened and noise-suppressed
RTFI representation.

III. MULTIPLE-FO ESTIMATION

In this section, multiple-FO estimation, being the core of the
proposed transcription system, is described. Performed on a
frame-by-frame basis, a pitch salience function is generated,
tuning and inharmonicity parameters are extracted, candidate
pitches are selected, and for each possible pitch combination an
overlapping partial treatment is performed and a score function
is computed. In Fig. 1, the diagram for the proposed automatic
transcription system is depicted, where the various stages for
multiple-FO estimation can be seen.

A. Salience Function Generation

In the linear frequency domain, considering a pitch p of a
musical instrument sound with fundamental frequency f, 1 and
inharmonicity coefficient 3, partials are located at frequencies

fon =hfpay/1+ (h2 = 1)B,

®)
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where h > 1 is the partial index [3]. Inharmonicity occurs due to
string stiffness, where all partials of an inharmonic instrument
have a frequency that is higher than their expected harmonic
value [20]. Consequently, in the log-frequency domain, consid-
ering a pitch p at bin k), o, overtones are located at bins

b
by = by + [+ Toma(h) + o1+ 12 = 1)) | )

where b = 120 refers to the number of bins per octave.

In addition, variations occur concerning the position of the
fundamental; in [21], a model is proposed assuming that the
frequency of the first partial can be shifted by a specific tuning
factor. In this work, a pitch salience function s[p, 6,, 3,] oper-
ating in the log-frequency domain is proposed, which incorpo-
rates tuning and inharmonicity information

H
[, 0y 8] = ) max{J[kyp + 8., B]} - (10)
h=1 '

where
J[k mp, /B])]

= \/z [k:-{- ’meh + glogQ(l + (h% - 1)@)” (11)

0 is the tuning deviation, and mj;, € N* specifies a search range
around overtone positions, belonging to the interval (m}, m¥),
where ml, = [(log(h — 1) + (M — 1) logy(h)) /(M) m}; =
[((M —1)logy(h) +logy(h +1))/(M)]. M € RY is a factor
controlling the width of the interval, since in the log-frequency
domain the search space for each harmonic is inversely propor-
tional to the harmonic index. Here, M was set to 60, so the
search range for the second harmonic is [—2, 2] log-frequency
bins, and for the third and fourth harmonics is [—1, 1] bins.

While the employed salience functions in the linear fre-
quency domain (e.g., [18]) used a constant search space for
each overtone, the proposed log-frequency salience function
sets the search space to be inversely proportional to the par-
tial index. The number of considered overtones H is set to
13 at maximum. The tuning deviation ¢, takes values from
[—4,...,4] log-frequency bins for each pitch (thus having a
tuning search space of £40 cents around the reference tuning
frequency), thus allowing the detection of notes that are not
tuned using the reference frequency. The range of the inhar-
monicity coefficient 3, is set between 0 (completely harmonic
sounds) and 5 - 10~* (moderately inharmonic sounds, e.g.,
from a baby grand piano [20]). The explicit modeling of in-
harmonicity can also be useful for temperament estimation
systems, such as [22].

In order to accurately estimate the ideal tuning factor and
the inharmonicity coefficient for each pitch, a 2-D maximiza-
tion procedure is applied to s[p, 6,, 3,] for each pitch p, in a
similar manner to the work in [6]. Here p = 1,...,88 which
corresponds to notes AO to C8, where the pitch reference
is A4 (MIDI note 69) = 440 Hz. This results in a pitch
salience function estimate s’[p], a tuning deviation vector
and an inharmonicity coefficient vector. All in all, the com-
putational complexity for the salience function generation is
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Fig.2. (a) RTFIslice X [k] of an Ff3 piano sound. (b) The corresponding pitch
salience function s’ [p].

O(N,- Ny- Ns- Ng), where N, = 88, N}, = 13, Ns = 9, and
N3 = 6 (the number of discrete values each variable takes).

Using the information extracted from the tuning and in-
harmonicity estimation, a harmonic partial sequence (HPS)
Vp, h], which contains magnitude information from X/k]
for each harmonic of each candidate pitch, is also stored for
further processing. For example, V'[39, 2] corresponds to the
magnitude of the second harmonic of p = 39 (which is note
B3). An example of the salience function generation is given in
Fig. 2, where the RTFI spectrum of an isolated Ff3 note played
by a piano is seen, along with its corresponding salience s'[p].
The highest peak in s'[p] corresponds to p = 34, thus Ff3.

B. Pitch Candidate Selection

A set of conservative rules examining the harmonic partial
sequence structure of each pitch candidate is applied, which is
inspired by work from [1], [23]. These rules aim to reduce the
pitch candidate set for computational speed purposes. As can be
seen from Fig. 2, false peaks that correspond to multiples and
sub-multiples of the actual pitches occur in s’[p]. Here, peaks
in §'[p] that occur at sub-multiples of the actual FOs are sub-
sequently deleted. In the semitone space, these peaks occur at
—{12,19,24,28, ...} semitones from the actual pitch.

A first rule for suppressing salience function peaks is setting
a minimum number for partial detection in V'[p, h], similar to
[1]. At least three partials out of the first six need to be present
in the harmonic partial sequence (since there may be a missing
fundamental). A second rule discards pitch candidates with a
salience value less than 0.1 - max(s’[p]), as in [23].

Finally, after spurious peaks in s’[p] have been eliminated,
Cy = 10 candidate pitches are selected from the highest am-
plitudes of s'[p] [6]. The set of selected pitch candidates will
be denoted as C. Thus, the maximum number of possible pitch
candidate combinations that will be considered is 2'°, compared
to 288 if the aforementioned procedures were not employed. It
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should be stressed that this procedure does not affect the tran-
scription performance of the system, as tested with the training
set of piano chords described in Subsection V-A.

C. Overlapping Partial Treatment

Current approaches in the literature rely on certain assump-
tions in order to recover the amplitude of overlapped harmonics.
In [24], it is assumed that harmonic amplitudes decay smoothly
over frequency (spectral smoothness). Thus, the amplitude of
an overlapped harmonic can be estimated from the amplitudes
of neighboring non-overlapped harmonics. In [25], the ampli-
tude of the overlapped harmonic is estimated through nonlinear
interpolation on the neighboring harmonics. In [26], each set of
harmonics is filtered from the spectrum and in the case of over-
lapping harmonics, linear interpolation is employed.

In this work, an overlapping partial treatment procedure
based on spectral envelope estimation of candidate pitches is
proposed. The proposed spectral envelope estimation algorithm
for the log-frequency domain is presented in Appendix B. For
each possible pitch combination C' C C, overlapping partial
treatment is performed, in order to accurately estimate the
partial amplitudes. The proposed overlapping partial treatment
procedure is as follows.

1) Given a set C of pitch candidates, estimate a partial colli-

sion list.

2) For a given harmonic partial sequence, if the number of
overlapped partials is less than Ve, , then estimate the har-
monic envelope SE,[k] of the candidate pitch using only
amplitude information from non-overlapped partials.

3) For a given harmonic partial sequence, if the number of
overlapped partials is equal or greater than Ny, €stimate
the harmonic envelope using information from the com-
plete harmonic partial sequence.

4) For each overlapped partial, estimate its amplitude using
the harmonic envelope parameters of the corresponding
pitch candidate (see Appendix B).

The output of the overlapping partial treatment procedure is the
updated harmonic partial sequence V[p, h] for each pitch set
combination.

D. Pitch Set Score Function

Having selected a set of possible pitch candidates and
performed overlapping partial treatment on each possible com-
bination, the goal is to select the optimal pitch combination for
a specific time frame. In [9], Yeh proposed a score function
which combined four criteria for each pitch: harmonicity,
bandwidth, spectral centroid, and synchronicity. Also, in [23],
a simple score function was proposed for pitch set selection,
based on the smoothness of the pitch set. Finally, in [6] a
multipitch detection function was proposed, which employed
the spectral flatness of pitch candidates along with the spectral
flatness of the noise residual.

Here, a weighted pitch set score function is proposed, which
combines spectral and temporal characteristics of the candidate
FOs, and also attempts to minimize the noise residual to avoid
any missed detections. Also, features which concern harmon-
ically related FOs are included in the score function, in order
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to suppress any harmonic errors. Given a candidate pitch set
C C C with size |C], the proposed pitch set score function is

IC]

£(C) = Y (£,) + L

p=1

12)

where £, is the score function for each candidate pitch p € C,
and L, is the score for the residual spectrum. £, and L, are
defined as

L, = w1 Flp] + waSm][p]
— w;;SC[p] + w4PR[p] — w5AM[p]
Lyes = weF1[Res]. (13)
F1[p] denotes the spectral flatness of the harmonic partial se-
quence

Pl Do log(Vip )/ H
p| = T
% Zh:l Vip, h]

The spectral flatness is a measure of the “whiteness” of the spec-
trum. Its values lie between 0 and 1 and it is maximized when the
input sequence is smooth, which is the ideal case for an HPS. It
has been used previously for multiple-FO estimation in [6], [23].
Here, the definition given for the spectral flatness measure is the
one adapted by the MPEG-7 framework, which can be seen in
[27].

Sm(p] is the smoothness measure of a harmonic partial se-
quence, which was proposed in [23]. The definition of smooth-
ness stems from the spectral smoothness principle and its defi-
nition stems from the definition of sharpness:

(14)

H

Srip] =Y (SEy[kpn] — Vip, ).

h=1

15)

Here, instead of a low-pass filtered HPS using a Gaussian
window as in [23], the estimated harmonic envelope SE, of
each candidate pitch is employed for the smoothness computa-
tion. Sr[p] is normalized into Sr[p] and the smoothness measure
Sm(p] is defined as: Sm[p] = 1 — Sr[p]. A high value of Sm[p]
indicates a smooth HPS.

SCJp] is the spectral centroid for a given HPS and has been
used for the score function in [9]:

o Zhet b VIp hP?

SClp| =
i S Vip, b2

(16)

It indicates the center of gravity of an HPS; for pitched percus-
sive instruments it is positioned at lower partials. A typical value
for a piano note would be 1.5 denoting that the center of gravity
of its HPS is between the first and second harmonic.

PR[p] is a novel feature, which stands for the harmonically
related pitch ratio. Here, harmonically related pitches [9] are
candidate pitches in C that have a semitone difference of [12 -
log,(1)] = {12,19,24,28, ...}, where I > 1,1 € N. PR[p]
is applied only in cases of harmonically related pitches, in an



1116

attempt to estimate the ratio of the energy of the smoothed par-
tials of the higher pitch compared to the energy of the smoothed
partials of the lower pitch. It is formulated as follows:

3

PRi[p] =)

h=1

Vip+ [12 - logy(1)], A
Vip,l - h]

a7

where p stands for the lower pitch and p + [12 - log,(1)] for the
higher harmonically related pitch. [ stands for the harmonic re-
lation between the two pitches ( fuigh = [ fiow). In case of more
than one harmonic relation between the candidate pitches, a
mean value is computed: PR[p] = (1)/(|Ni|) 22w, PRu[p],
where Ny, is the set of harmonic relations. A high value of PR
indicates the presence of a pitch in the higher harmonically re-
lated position.

Another novel feature applied in the case of harmonically
related FOs, measuring the amplitude modulation similarity
between an overlapped partial and a non-overlapped partial
frequency region, is proposed. The feature is based on the
common amplitude modulation (CAM) assumption, which
states that partial amplitudes of a harmonic source are cor-
related over time [28]. Here, an extra assumption is made
that frequency deviations are also correlated over time. The
time—frequency region of a non-overlapped partial is compared
with the time—frequency region of the fundamental. In order to
compare 2-D time—frequency partial regions, the normalized
tensor scalar product [29] is used:

3 .. Rh
Zi,j A’LJBz'j

AM[p] =) (18)
h=1 \/Zi,j AijBjj - \/Zi,j A Bl
where
A= X[no : nhkp,l —4: kp,l +4]
Bh = X[no : n1, kpni —4:kp i+ 4] 19)

where i, j denote the indexes of matrices A and B" and ng and
n1 = ng + 5 denote the frame boundaries of the time—frame
region selected for consideration. The normalized tensor scalar
product is a generalization of the cosine similarity measure,
which compares two vectors, finding the cosine of the angle be-
tween them.
Res denotes the residual spectrum, which can be expressed in
a similar way to the linear frequency version in [6]:
} (20)

Aw

where Ayy denotes the mainlobe width of the employed window
W . In order to find a measure of the “whiteness” of the residual,
1 — F1[Res], which denotes the residual smoothness, is used.

It should be noted that features F1, Sr, SC, PR, AM have also
been weighted by the salience function of the candidate pitch
and divided by the sum of the salience function of the can-
didate pitch set, for normalization purposes. In order to train
the weight parameters w;,z = 1,...,6 of the features in (13),
we used the Nelder—Mead search algorithm for parameter esti-
mation [30]. The training set employed for experiments is de-

Res = {Z[k] /Vp,Vh, ‘k —kpn >
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scribed in Subsection V-A. Finally, the pitch candidate set that
maximizes the score function

C = argmax L(C)
cce

2n

is selected as the pitch estimate for the current frame.

IV. POSTPROCESSING

Although temporal information has been included in the
frame-based multiple-FO estimation system, additional post-
processing is needed in order to track notes over time, and
eliminate any single-frame errors. In the transcription litera-
ture, HMMSs [31] have been used for postprocessing. In [32],
three-state note-event HMMs were trained for each pitch,
where the input features were the pitch salience value and
the onset strength of the current frame. Poliner and Ellis [7]
trained two-state HMMs for each note using MIDI data from
the RWC database and used as observation probabilities the
pseudo-posteriors of the one-versus-all SVM classifiers used
for frame-based multiple-FO estimation of piano recordings.
In [33], each possible note combination between two onsets is
represented by one HMM state, where the state transitions were
also learned using MIDI data and the observation probability
is given by the spectral flatness of the HPS of the pitch set. Fi-
nally, Cafladas-Quesada et al. [8] also utilized two-state HMMSs
for each pitch that were trained using MIDI data, where the
observation likelihood is given by the salience of the candidate
pitch. In all cases mentioned, the Viterbi algorithm is used to
extract the best state sequence.

In this work, two postprocessing methods were employed:
the first using HMMs and the second using conditional random
fields (CRFs), which to the authors’ knowledge have not been
used before in music transcription research.

A. HMM Postprocessing
In this work, each pitch p = 1,..., 88 is modeled by a

two-state HMM, denoting pitch activity/inactivity, as in [7]
and [8]. The observation sequence is given by the output of
the frame-based multiple-FO estimation step for each pitch
p: Op = {op[n]},n = 1,..., N, while the state sequence is
given by @, = {¢p[n]}. Essentially, in the HMM post-pro-
cessing step, detected pitches from the multiple-FO estimation
step are tracked over time and their note activation boundaries
are estimated using information from the salience function. In
order to estimate the state priors P(g,[1]) and the state tran-
sition matrix P(g,[n]|gp[n — 1]), MIDI files from the RWC
database [14] from the classic and jazz subgenres were em-
ployed, as in [8]. For each pitch, the most likely state sequence
is given by

Q, =arg I[Ll]&tXHP(qp[n] [ gp[n = 1)) P(op[n] [ gp[n]) (22)

n

in order to estimate the observation probabilities
P(op[n]|gp[n]), we employ a sigmoid curve which has
as input the salience function of an active pitch from the output
of the multiple-FO estimation step
1
P(op[n] | gp[n] = 1)

g e e sy S L
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Fig. 3. Transcription output of an excerpt of “RWC MDB-J-2001 No. 2” (jazz

piano) in a 10-ms time scale. (a) Output of the multiple-FO estimation system.
(b) Piano-roll transcription after HMM postprocessing.

where s[p,n] denotes the salience function value at frame n.
The output of the HMM-based postprocessing step is generated
using the Viterbi algorithm. The transcription output of an ex-
ample recording at the multiple-FO estimation stage and after
the HMM postprocessing is depicted in Fig. 3. In addition, in
Fig. 4(a) the graphical structure of the employed HMMs is dis-
played.

B. CRF Postprocessing

Although the HMMs have repeatedly proved to be an in-
valuable tool for smoothing sequential data, they suffer from
the limitation that the observation at a given time frame de-
pends only on the current state. In addition, the current state
depends only on its immediate predecessor. In order to alle-
viate these assumptions, conditional random fields (CRFs) [13]
can be employed. CRFs are undirected graphical models that
directly model the conditional distribution P(Q | O) instead of
the joint probability distribution P((Q, O) as in the HMMs. This
indicates that HMMs belong to the class of generative models,
while the un-directed CRFs are discriminative models. The as-
sumptions concerning the state independence and the observa-
tion dependence on the current state which are posed for the
HMMs are relaxed.

In this work, 88 linear-chain CRFs are employed (one for
each pitch p), where the current state g[n] is dependent not
only on the current observation o[n], but also on o[n — 1]. For
learning, we used the same note priors and state transitions from
the RWC database which were also utilized for the HMMs post-
processing. For inference, the most likely state sequence for
each pitch is computed using a Viterbi-like recursion which es-
timates

Q; = arngaX P(Q,|0,) (24)
where P(Q,|0,) = I, P(gp[n]|O,) and the observation
probability for a given state is given as a sum of two potential
functionsTS:

P(Oy | gpln] = 1) . .

S 1 F @D T 1§ o=@m-1-1)"
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(b)

Fig. 4. Graphical structure of the employed. (a) HMM. (b) Linear chain CRF
networks for postprocessing.

(25)

It should be noted that in our employed CRF model we as-
sume that each note state depends only on its immediate prede-
cessor (like in the HMMs), while the relaxed assumption over
the HMMs concerns the observation potentials. The graphical
structure of the linear-chain CRF which was used in our exper-
iments is presented in Fig. 4(b).

V. EVALUATION

A. Datasets

For training the system parameters, samples from the MIDI
Aligned Piano Sounds (MAPS) database [6] were used. The
MAPS database contains real and synthesized recordings of
isolated notes, musical chords, random chords, and music
pieces, produced by nine real and synthesized pianos in dif-
ferent recording conditions, containing around 10 000 sounds in
total. Recordings are stereo, sampled at 44.1 kHz, while MIDI
files are provided as ground truth. Here, 103 samples from two
piano types were employed for training!, while 6832 samples
from the remaining 7 piano types were used for testing on
polyphonic piano sounds. The test set consists of classic, jazz,
and randomly generated chords of polyphony levels 1-6, while
the note range was C2-B6, in order to match the experiments
performed in [6]. It should be noted that the postprocessing
stage was not employed for the MAPS dataset, since it consists
of isolated chords.

For the transcription experiments, we firstly used 12 excerpts
from the RWC database [14], which have been used in the past to
evaluate polyphonic music transcription approaches in [8], [34]

ITrained weight parameters w; were {1.3,1.4,0.6,0.5,0.2,25}.



1118

TABLE I
RWC DATA USED FOR TRANSCRIPTION EXPERIMENTS
[ | RWC ID [ Instruments

1 RWC-MDB-J-2001 No. 1 Piano
2 RWC-MDB-J-2001 No. 2 Piano
3 RWC-MDB-J-2001 No. 6 Guitar
4 RWC-MDB-J-2001 No. 7 Guitar
5 RWC-MDB-J-2001 No. 8 Guitar
6 RWC-MDB-J-2001 No. 9 Guitar
7 RWC-MDB-C-2001 No. 30 Piano
8 RWC-MDB-C-2001 No. 35 Piano
9 RWC-MDB-J-2001 No. 12 Flute + Piano
10 | RWC-MDB-C-2001 No. 12 Flute + String Quartet
11 RWC-MDB-C-2001 No. 42 Cello + Piano
12 RWC-MDB-C-2001 No. 49 Tenor + Piano
13 RWC-MDB-C-2001 No. 13 String Quartet
14 RWC-MDB-C-2001 No. 16 Clarinet + String Quartet
15 | RWC-MDB-C-2001 No. 24a Harpsichord
16 | RWC-MDB-C-2001 No. 36 Violin (polyphonic)
17 | RWC-MDB-C-2001 No. 38 Violin

and [35]. A list of the employed recordings along with the in-
struments present in each one is shown in the top half of Table I.
The recordings containing “MDB-J” in their RWC ID belong
to the jazz genre, while those that contain “MDB-C” belong
to the classic genre. For the recording titles and composer, the
reader can refer to [35]. Five additional pieces were also selected
from the RWC database, which have not yet been evaluated in
the literature. These pieces are described in the bottom half of
Table I (data 13—17). Also, the full wind quintet recording from
the MIREX multi-FO development set was also used for exper-
iments [15]. Finally, the test dataset developed by Poliner and
Ellis [7] was also used for transcription experiments. It contains
ten 1-min recordings from a Yamaha Disklavier grand piano,
sampled at 8 kHz.

As far as ground-truth for the RWC data 1-12 Table I, non-
aligned MIDI files are provided along with the original 44.1 kHz
recordings. However, these MIDI files contain several note er-
rors and omissions, as well as unrealistic note durations, thus
making them unsuitable for transcription evaluation. As in [8],
[34], and [35], aligned ground-truth MIDI data was created for
the first 23 s of each recording, using Sonic Visualiser [36] for
spectrogram visualization and MIDI editing. For the RWC data
13-17 in Table I, the newly released syncRWC ground truth an-
notations were utilized.2

B. Figures of Merit

In order to assess and compare the performance of the pro-
posed system, several figures of merit from the automatic tran-
scription literature are employed. For the piano chords using the
MAPS dataset, the precision, recall, and F-measure are used:

2. Pre - Rec
" Pre + Rec
(26)

t t
P Rec = 41)./
tp+ fn

where tp is the number of correctly estimated pitches, fp is the
number of false pitch detections, and fn is the number of missed
pitches.

2http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/.
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For the recordings used for the transcription experiments, sev-
eral metrics are employed. It should be noted that all evalua-
tions take place by comparing the transcribed output and the
ground-truth MIDI files at a 10-ms scale, as is the standard for
the multiple-FO MIREX evaluation [15]. The first metric that is
used is the overall accuracy, defined by Dixon [37]:

tp
Accr = ———. 27
YT+ fattp @7
When Acc; = 1, a perfect transcription is achieved [7]. For

(27), tp, fp, and fn refer to the number of true positives, false
positives, and false negatives respectively, for all frames of the
recording.

A second accuracy measure is also used, which was proposed
by Kameoka et al. [34] which also includes pitch substitution er-
rors. Let N,.¢[n] stand for the number of ground-truth pitches at
frame n, Nys[n] the number of detected pitches, and Neoy[1]
the number of correctly detected pitches. The number of false
negatives at the current frame is N, [n], the number of false pos-
itives is N, [n], and the number of substitution errors is given
by Naubs[] = min(Ny,[n], Ng,[n]). The accuracy measure is
defined as

Zn Niet [n] — Npn [n] — Ng, [n] + Nsubs [n]
Zn Niet [n] '

From the aforementioned definitions, several error metrics
have been defined in [7] that measure the substitution errors
(Esubs), miss detection errors (Ef, ), false alarm errors (Eg,),
and the total error (Fiot):

Eope = >, min(Nyee[n], Noys[n]) — Neore[n]

Accy = (28)

>n Niet[n]
Be = 2 p max(0, Neet[n] — Neys[n])
! > n Nret[n]
B — >, max(0, Ngys[n] — Nyet[n])
? > n Nret[1]

Etot = Esubs + Efn + Efp- (29)
It should be noted that the aforementioned error metrics can
exceed 100% if the number of false alarms is very high [7].

C. Results

1) MAPS Database: For the isolated chord experiments
using the MAPS database, the performance of the proposed
transcription system compared with the results shown in [11]
and [6] is shown in Fig. 5, organized according to the polyphony
level of the ground truth (experiments were performed with un-
known polyphony). The mean F-measures for polyphony levels
L=1,...,6 are 91.86%, 88.61%, 91.30%, 88.83%, 88.14%,
and 69.55%, respectively. It should be noted that the subset
of polyphony level 6 consists only of 350 samples of random
notes and not of classical and jazz chords. As far as precision
is concerned, reported rates are high for all polyphony levels,
ranging from 89.88% to 96.19%, with the lowest precision rate
reported for L = 1. Recall displays the opposite performance,
reaching 96.40% for one-note polyphony, and decreasing with
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Fig. 5. Multiple-FO estimation results for the MAPS database (in F-measure)
with unknown polyphony, organized according to the ground truth polyphony
level L.

the polyphony level, reaching 86.53%, 88.65%, 85.00%, and
83.14%, and 57.44% for levels 2-6.

In terms of a general comparison between all systems, the
global F-measure for all sounds was used, where the proposed
system outperforms all other approaches, reaching 88.54%. The
system in [11] reports 87.47%, the system in [6] 83.70%, and
finally the algorithm of [24] used for comparison in [6] reports
85.25%. By applying the same significance tests as in [11], it
can be seen that the proposed method outperforms the methods
of [6], [11], [24] in a statistically significant manner with 95%
confidence. The aforementioned methods used for comparison
follow the same pattern when Pre and Rec are concerned, re-
porting high Pre rates for all polyphony levels and decreasing
Rec rates as polyphony increases.

2) RWC + MIREX Database: Transcription results using
the RWC recordings 1-12 for the proposed system with CRF
postprocessing can be found in Table II. A comparison is
made using several reported results in the literature for the
same files [8], [34], [35], where the proposed method reports
improved mean Accy. Additional results were also produced
for this paper using a previous method [12] submitted by the
authors for the MIREX 2010 evaluation, which has a similar
front-end but performs multiple-FO estimation in an iterative
fashion. Additional comparative results which demonstrate
lower accuracy rates compared to the proposed system can
be found in [8], that are omitted here for brevity. It should
be noted that the proposed system demonstrates impressive
results for some recordings compared to the state-of-the-art
(e.g., in file 11, which is a cello-piano duet) while in some
cases it falls behind. In file 4 for example, results are inferior
compared to state-of-the-art, which could be attributed to the
digital effects applied in the recording (the present system was
created mostly for transcribing classical and jazz music). As
far as the standard deviation of the Accs metric is concerned,
the proposed system reports 11.5% which is comparable to
the approaches in Table II, although it is worth noting that the
lowest standard deviation is reported for the method in [12].

For the RWC recordings 13—17 and the MIREX recording,
transcription results can be found in Table III. It should be noted
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TABLE II
TRANSCRIPTION RESULTS (Accs) FOR THE RWC RECORDINGS
1-12 USING THE PROPOSED METHOD WITH CRF POSTPROCESSING,
COMPARED WITH OTHER APPROACHES

Proposed [12] 18] 135] 134]
1 60.2% 58.1% | 63.5% | 59.0% | 64.2%
2 74.1% 50.6% | 72.1% | 63.9% | 62.2%
3 50.0% 42.8% | 58.6% | 513% | 63.8%
4 35.7% 288% | 79.4% | 68.1% | 77.9%
5 75.0% 63.9% | 55.6% | 67.0% | 75.2%
6 57.9% 520% | 703% | 77.5% | 81.2%
7 66.8% 515% | 493% | 57.0% | 70.9%
8 54.8% 47.0% | 643% | 63.6% | 63.2%
9 74.4% 549% | 30.6% | 44.9% | 43.2%
10 64.0% 584% | 535.9% | 489% | 48.1%
11 58.9% 46.2% | 51.1% | 37.0% | 37.6%
12 53.9% 47.6% | 38.0% | 35.8% | 27.5%
Mean 60.5% 51.2% | 59.1% | 56.2% | 59.6%
Std. 11.5% 9.0% 11.5% 12.9% 16.9%
TABLE III

TRANSCRIPTION RESULTS (Accs) FOR RWC RECORDINGS 13-17 AND
THE MIREX RECORDING, USING THE PROPOSED METHOD WITH CRF
POSTPROCESSING, COMPARED WITH THE METHOD IN [12]

Proposed [12]
13 48.2% 38.4%
14 41.8% 41.2%
15 66.8% 41.0%
16 70.7% 57.0%
17 75.2% 52.2%
MIREX 41.3% 39.9%
Mean 57.4% 44.9 %
Std. 153% 7.7%

that no results have been published in the literature for these
recordings. In general, it can be seen that bowed string tran-
scriptions are more accurate than woodwind transcriptions.

Concerning the statistical significance of the proposed
method’s performance for the RWC recordings 1-12 compared
to the various methods shown in Table II, the recognizer com-
parison technique described in [38] was employed. The number
of pitch estimation errors of the two methods in comparison
is assumed to be distributed according to the binomial law.
The error rate of the proposed method is €1 = Fiox = 0.395,
while the error rate for the methods of [8], [12], [34], [35]
is €2 = 0.488,é5 = 0.409,é4 = 0.438, and é5 = 0.404,
respectively. The number of examples used to generate these
error rates is ( = 12-23.-100 = 27600. Considering 95%
confidence, it can be seen that é; — € > zg.05+/2¢/(, where
i=2,...,5,6 = (é1+¢€)/(2), and z9.05 = 1.65 which can be
determined from tables of the Normal law. This demonstrates
that the performance of the proposed transcription system
is significantly better when compared with the methods in
[8], [12], [34], and [35]. It should be noted however that the
significance threshold was only just surpassed when compared
with the method of [34].

Additional insight to the proposed system’s performance
for all 17 RWC recordings and the MIREX one is given in
Table IV, where the error metrics of Subsection V-B are pre-
sented using different postprocessing configurations. It can be
seen that without any postprocessing Acco = 53.8%, while
when using the HMMs an improvement of 4.6% is reported
and when the CRFs are employed, the improvement is 5.7%.
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TABLE IV
TRANSCRIPTION ERROR METRICS FOR THE PROPOSED METHOD USING
RWC RECORDINGS 1-17 AND THE MIREX RECORDING, USING
DIFFERENT POSTPROCESSING TECHNIQUES

Method Acey Acca FEiot FEgups En Eyp

No Post. 544% | 53.8% | 46.2% | 11.9% | 19.4% | 14.9%

HMM Post. | 57.3% | 58.4% | 41.6% 5.4% 32.2% 4.0%

CRF Post. 589% | 59.5% | 40.5% 7.1% 25.3% 8.2%
TABLE V

TRANSCRIPTION RESULTS (Accs) FOR THE RWC RECORDINGS 1-12
USING CRF POSTPROCESSING, WHEN FEATURES ARE REMOVED
FROM THE SCORE FUNCTION (13)

All Fl
60.5% | 56.3%

Sm
59.2%

SC
58.6%

PR
53.5%

AM
59.4%

Fl[Res]
29.1%

It can also be seen that the note postprocessing procedures
mainly decrease the number of false alarms (as can be seen
in Ef,), at the expense however of missed detections (Ef,).
Especially for the HMM postprocessing, a large number of
missed detections have impaired the system’s performance.
It should be also noted that the accuracy improvement of the
CRF postprocessing step over the HMM one is statistically
significant with 95% confidence, using the technique in [38].
Specifically, the number of examples used to generate the error
rates is ¢ = 42200, the error rate for the CRF postprocessing
step is écrrp = 0.405, for the HMM step is égvynm = 0.416,
and the significance threshold for this experiment was found to
be 0.72% in terms of the error rate, which is surpassed by the
CRF postprocessing (being 1.1%).

In order to test the contribution of each feature in the pitch
set score function (13) to the performance of the transcription
system, experiments were made on RWC recordings 1-12. For
each experiment, the weight w;, ¢ = 1,...,6 in the score
function that corresponds to each feature was set to 0. Results
are shown in Table V, where it can clearly be seen that the
most crucial feature is F1[Res], which is the residual flatness.
Without that feature, the score function might select a single
pitch candidate and produce several missed detections. How-
ever, it can clearly be seen that each feature significantly con-
tributes to the final transcription result of 60.5%. When testing
the contribution of the inharmonicity estimation in the salience
function, the same experiment took place with no inharmonicity
search, where Accy = 59.7%. By employing the statistical sig-
nificance test of [38], the performance improvement when in-
harmonicity estimation is enabled is significant with 90% con-
fidence. It should be noted however that the contribution of the
inharmonicity estimation procedure depends on the instrument
sources that are present in the signal. In addition, by disabling
the overlapping partial treatment procedure for the same exper-
iment, it was shown that Acco = 38.0%, with Fg, = 20.4%,
which indicates that false alarms from the overlapped peaks
might be detected by the system. The 22.5% difference in terms
of accuracy for the overlapping partial treatment is shown to be
statistically significant with 95% confidence, using the method
in [38].

Concerning the performance of the proposed noise suppres-
sion algorithm, comparative experiments were performed using
the two-stage noise suppression procedure that was proposed for
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TABLE VI
MEAN TRANSCRIPTION RESULTS (Acc;) FOR THE RECORDINGS FROM [7]
USING CRF POSTPROCESSING, COMPARED WITH OTHER APPROACHES

Method
Acey

[11] 171
433% | 56.5%

132]
41.2%

[39]
38.4%

Proposed
49.4%

TABLE VII
TRANSCRIPTION ERROR METRICS USING THE RECORDINGS FROM [7]
AND DIFFERENT POSTPROCESSING TECHNIQUES

Method Accy Acca FEiot Fsubs Efn Efp
No Post. 46.8% | 482% | 51.8% 10.5% | 352% | 6.1%
HMM Post. | 47.2% | 483% | 51.7% 8.5% 38.1% | 5.1%
CRF Post. 49.4% | 49.8% | 50.2% 10.1% | 31.4% | 8.6%

multiple-FO estimation in [18], using the RWC recordings 1-12.
The noise suppression procedure of [18] consists of median fil-
tering on the whitened spectrum, followed by a second median
filtering which does not take into account spectral peaks. Ex-
periments with CRF postprocessing showed that transcription
accuracy using the two-state noise suppression algorithm was
Acce = 56.0%, compared to the 60.5% of the proposed method.
The performance difference is statistically significant with 95%
confidence, using the method of [38].

3) Disklavier Dataset [7]: Transcription results using the ten
Disklavier recording test set created by Poliner and Ellis can be
found in Table VI, along with results from other approaches re-
ported in [7]. Also, additional results were produced by the au-
thors using our iterative MIREX-submitted method, which has
a similar preprocessing front-end and the same salience func-
tion [12]. It can be seen that the best results are reported for
the method in [7] while the proposed system is second-best, al-
though it should be noted that the training set for the method by
Poliner and Ellis used data from the same source as the test set.
In addition, the method in [7] has displayed poor generalization
performance when tested on different datasets, as can be seen
from results shown in [7] and [8].

In Table VII, several error metrics are displayed for the
Disklavier dataset, using different postprocessing configu-
rations for the proposed method. The same pattern that was
shown for the RWC data is shown here, where using the HMMs
a small improvement of 0.4% is reported, while the improve-
ment for the CRFs is 2.6%. The difference in the improvement
over the RWC data can be attributed to the faster tempo of the
Disklavier pieces. It has been argued in [8] that HMM note
smoothing provides greater improvement for music pieces with
slow tempo. For the HMM postprocessing, false alarms are
again reduced at the expense of additional missed detections,
while the CRF postprocessing displays an improvement over
the missed detection errors, at the expense of false alarms.

VI. CONCLUSION

In this paper, a joint multiple-FO estimation system for au-
tomatic transcription of polyphonic music was proposed. As a
front-end, the constant-Q resonator time—frequency image was
selected due to its suitability for music signal representation.
Contributions of the paper include the following.

* A noise suppression algorithm based on a pink noise as-

sumption.
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* Alog-frequency salience function that supports tuning and

inharmonicity estimation.

* Overlapping partial treatment procedure using harmonic

envelopes of pitch candidates.

* A pitch set score function incorporating spectral and tem-

poral features.

* An algorithm for log-frequency spectral envelope estima-

tion based on the discrete cepstrum.

¢ Note smoothing using CRFs.

The system was trained on a set of isolated piano chords
from the MAPS database and tested on recordings from the
RWC database, the Disklavier database from [7], and the
MIREX multipitch estimation recording [15]. Comparative
results are provided using various evaluation metrics over
several state-of-the-art methods, as well as on a method previ-
ously developed by the authors. The proposed system displays
promising and robust results, surpassing state-of-the-art perfor-
mance in many cases, considering also the fact that the training
and testing datasets originate from different sources. For the
RWC recordings, the improvement by the proposed system was
found statistically significant compared to other approaches in
the literature. For public evaluation, an iterative variant of this
system was submitted for the MIREX 2010 multiple-FO esti-
mation task [12] displaying encouraging results, even without
any postprocessing. In general, the proposed system showed
improvement over the one in [12] that can be attributed to the
use of pitch combinations instead of iterative selection, and the
postprocessing module.

In the future, the present system will be submitted for the next
MIREX evaluation. In general, results generally indicated a rel-
atively low false alarm rate, but a considerable number of missed
detections. This can be rectified in the future by relaxing several
assumptions concerning the inharmonicity range and spectral
smoothness (which would also allow for multipitch estimation
of inharmonic instruments such as marimba or vibraphone), but
at the expense of additional false positives. Also, in order to im-
prove transcription performance, training could be applied using
a multi-instrument dataset, such as the one used in [24]. In ad-
dition, more general forms of CRFs that link multiple states to-
gether could improve note prediction and smoothing. Finally,
system performance can be improved by performing joint mul-
tiple-FO estimation and note tracking, instead of frame-based
multipitch estimation with subsequent note tracking.

APPENDIX A
EXPECTED VALUE OF NOISE LOG-AMPLITUDES

We assume that the noise amplitude follows an exponential
distribution. In order to find the expected value of the noise log
amplitudes E{log(|N.(@)|)}, we adopt a technique similar to
[9]. Let © = log(N.(@)) = ®(N):

+o0 +oo -1
wey= [ oow= [ ep@—l(e))]ﬂ—e(”]
= /+°° Ae efdf = /+°° Aog(1h)e™* dip
oJ —00 . 0
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0o
= —y — Aog(\) / e M dyp
0
=log(A\™") =7 (30)
where 7 is the Euler constant
+oo
v=- / e Y log(vp)dip =~ 0.57721. (31)
Jo

APPENDIX B
LOG-FREQUENCY SPECTRAL ENVELOPE ESTIMATION

An algorithm for posterior-warped log-frequency regularized
spectral envelope estimation is proposed. Given a set of har-
monic partial sequences (HPS) in the log-frequency domain,
the algorithm estimates the log-frequency envelope using linear
regularized discrete cepstrum estimation. In [40], a method for
estimating the spectral envelope using discrete cepstrum coef-
ficients in the Mel-scale was proposed. The superiority of dis-
crete cepstrum over the continuous cepstrum coefficients and
the linear prediction coefficients for spectral envelope estima-
tion was argued in [41]. Other methods for envelope estima-
tion in the linear frequency domain include a weighted max-
imum-likelihood spectral envelope estimation technique in [42],
which was employed for multiple-FO estimation experiments
in [6]. To the authors’ knowledge, no other log-frequency har-
monic envelope estimation algorithm has been proposed in the
literature. The proposed algorithm can be outlined as follows.

1) Extract the harmonic partial sequence V[p, h] and corre-
sponding log-frequency bins k,, ;, for a given pitch p and
harmonic index h = 1,...,13.

2) Convert the log-frequency bins %, ;, to linear angular fre-
quencies wy, ;, (Where f; = 44.1 kHz and the lowest fre-
quency for analysis is fiow = 27.5 Hz):

2w Epon

— . 27120 |
fs

3) Perform spectral envelope estimation on V[p, h] and Wp,h
using linear regularized discrete cepstrum (estimate coef-
ficients c,,). Coefficients c,, are estimated as

(32)

Wp h = 27.5 -

~1
¢, = (MM, + oK) M'a, (33)
where a, = [In(Vip,1])...In(Vip, H])], K =
diag([0 12 22 ... (K — 1)?]), K is the cepstrum order, o
is the regularization parameter, and

1 2cos(wp1) 2cos(Kwp 1)

M_

p =

(34)

1 2cos(wp.u) 2cos(Kwp i)

4) Estimate the vector of log-frequency discrete cepstral co-
efficients d,, from c,. In order to estimate d,, from c,, we
note that the function which converts linear angular fre-
quencies into log-frequencies is given by

o) = 120-1og, (12 )

2m - 27.5 (35)
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Fig. 6. Log-frequency spectral envelope of an F#4 piano tone with P = 50.
The circle markers correspond to the detected overtones.

which is defined for w € [(27 - 27.5)/(fs), 7]. Function
g(w) is normalized using g(w) = (7)/(g(7))g(w), which
becomes

™

— fs %
g(w) = ——F—— -log, <—) : (36)
10g2 (25;5) 2m - 27.5

The inverse function, which converts angular log-frequen-
cies into angular linear frequencies is given by
2m - 27.5 2“1%2(%)

) 7 " (37)

which is defined in [0, 7] — [(27 - 27.5)/(fs), 7]. From
[40], it can be seen that

d,=A¢c (38)
where
Apyii41 = M Nz_:lcos (lf]_l (H)) cos <7r_nk>
N  — N N
(39)

where N is the size of the spectrum in samples, and k, [
range from O to P — 1.
5) Estimate the log-frequency spectral envelope SE from d,,.
The log-frequency spectral envelope is defined as
P-1
SE,(w) =exp | dop +2 Z dipcos(kw) | . (40)
k=1

In Fig. 6, the warped log-frequency spectral envelope of an F#4
note produced by a piano (from the MAPS dataset) is depicted.
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