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Joint Multi-pitch Detection using Harmonic
Envelope Estimation for Polyphonic Music
Transcription

Emmanouil Benetostudent Member, IEEE and Simon Dixon

Abstract—In this paper, a method for automatic transcrip- transcription include pitch estimation, onset/offsetedébn,
tion of music signals based on joint multiple-FO estimationis |oudness estimation, instrument recognition, and extract

proposed. As a time-frequency representation, the const# o rpythmic information. For an overview on transcription
resonator time-frequency image is employed, while a novelaise

suppression technique based on pink noise assumption is apgul approa_ches, the reader is referred to_[3], _Wh'le in [4] "’_‘GWY'

in a preprocessing step. In the multiple-FO estimation stag, the Of multiple fundamental frequency estimation systemsvegi
optimal tuning and inharmonicity parameters are computed and Proposed methods for automatic transcription can be orga-
a salience function is proposed in order to select pitch candates. njzed according to the various techniques or models employe

For each pitch candidate combination, an overlapping partal ;
treatment procedure is used, which is based on a novel speeatr A large subset of the proposed systems employ signal process

envelope estimation procedure for the log-frequency domai in Ing tEChn'queS'. usually for featurg eXtraCt'onj withowsoming
order to compute the harmonic envelope of candidate pitches t0 any supervised or unsupervised learning procedures or
In order to select the optimal pitch combination for each time classifiers for pitch estimation (see [3] for an overview).
frame, a score function is proposed which combines spectrfdnd Several approaches for note tracking have been proposed

temporal characteristics of the candidate pitches and als@ims ,qing variants of non-negative matrix factorization (NMEY.
to suppress harmonic errors. For postprocessing, hidden M&ov

models (HMMs) and conditional random fields (CRFs) trained [5]. Max'_mum I'Kel'hoqd approgches, usually employing the
on MIDI data are employed, in order to boost transcription ~€Xpectation-maximization algorithm, have been also psefo
accuracy. The system was trained on isolated piano soundsin order to estimate the spectral envelope of candidatéestc
from the MAPS database and was tested on classic and jazzor to estimate the likelihood of a set of pitch candidates

recordings from the RWC database, as well as on recordings ;
from a Disklavier piano. A comparison with several state-ofthe- (e.g. [2], [6]). Hidden Markov models (HMMs) are frequently

art systems is provided using a variety of error metrics, whee used in _a postprocessing stage for note tracking, due to the
encouraging results are indicated. sequential structure offere_d py the models (e.g. [7], [8]).
Index Terms—Automatic music transcription, Harmonic en- Approaches for transcription related to the current work

velope estimation, Conditional random fields, Resonator the- &€ discussed here. Yeh et al. in [9] present a multipitch
frequency image estimation algorithm based on a pitch candidate set score

function. The front-end of the algorithm consists of an STFT
computation followed by an adaptive noise level estimation
method based on the assumption that the noise amplitude
UTOMATIC music transcription is the process of confollows a Rayleigh distribution. Given a pitch candidate, se
verting an audio recording into a symbolic representatidhe overlapping partials are detected and smoothed aceprdi
using some form of musical notation. Even for expert musie the spectral smoothness principle. The weighted score
cians, transcribing polyphonic pieces of music is not adtliv function consists of 4 features: harmonicity, mean bantwid
task, and while the problem of automatic pitch estimatiogpectral centroid, and synchronicity. A polyphony inferen
for monophonic signals is considered to be a solved profmechanism based on the score function increase selects the
lem, the creation of an automated system able to transcrilygtimal pitch candidate set. Zhou [10] proposed an itegativ
polyphonic music without setting restrictions on the degremethod for polyphonic pitch estimation using a complex
of polyphony and the instrument type still remains open. Iresonator filterbank as a front-end, called resonator time-
the past years, the problem of automatic music transcriptirequency image (RTFI). FO candidates are selected acwprdi
has gained considerable research interest due to the nusneto their pitch energy spectrum value and a set of rules is
applications associated with the area, such as automatictse utilized in order to cancel extra estimated pitches. Thesesr
and annotation of musical information, interactive musis-s are based on the number of harmonic components detected
tems (i.e. computer participation in live human performesm)c for each pitch and the spectral irregularity measure, which
score following, and rhythm tracking), as well as musicelogneasures the concentrated energy around possibly ovedapp
ical analysis [1]-[3]. Important subtasks for automaticsicu partials from harmonically-related FOs.
A probabilistic method is proposed by in [6], where pi-
The authors are with the Queen Mary University of London, ten ang notes are jointly estimated using a likelihood function
for Digital Music, School of Electronic Engineering and Quouter Sci- . .
ence, E1 4NS London, UK. (e-mail: emmanouilb@eecs.qmuka si- which models the spectral envelope of overtones using a
mond@eecs.gmul.ac.uk). smooth autoregressive (AR) model and models the residual
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noise using a low-order moving average (MA) model. The Il. PREPROCESSING
likelihood function is able to handle inharmonicity and the\ Respnator Time-Frequency Image
ignrr?“:Zgeéa%gg\;irt;?]?jscﬁria?izsbl::elg [t?] bF?oﬁr?greZﬁszﬁy Eirstly, the input music signal is loudness-normalized to

b . o ' e "0dB relative to the reference amplitude for 16-bit audio
used STFT bins for frame-level piano note classificatiomgisi

one-versus-all support vector machines (SVMs). In order %es’ as in [16]. The resonator time-frequency image (RTFI)

improve transcription performance, the classificatiorpatibf 'S employed as a time-frequency representation [10]. The

: : RTFI selects a first-order complex resonator filter bank to
the SVMs was fed as input to HMMs for post-processing. implement a frequency-dependent time-frequency analitsis

Finally, previous work by the authors includes an iterativean be formulated as:
system for multiple-FO estimation for piano sounds [11]athi
incorporates temporal information for pitch estimatiorséx RTFI(t,w) = z(t) * Ir(t,w) @)
on the common amplitude modulation (CAM) assumptiowhere
and a public evaluation of the aforementioned system for Ir(t,w) = r(w)el "), ()
the MIREX 2010 multiple fundamental frequency estimation

. —x(t) stands for the input signallz(¢,w) is the impulse
task [12]. Results for the MIREX task were encourag|_ngesponse of the first-order complex resonator filter withliasc

considering that the system was trained on isolated Piapg e cauencyw and (w) is a decay factor which additionall
sounds and tested on woodwind and string recordings, notlneq q W rw) s y y
also that no note tracking procedure was incorporated Sets the frequency resolutlo_n ' ,
' Here, a constant-Q RTFI is selected for the time-frequency

In this work, a system for automatic transcription is proanalysis, due to its suitability for music signal procegsin
posed which is based on joint multiple-FO estimation an@chniques, because the inter-harmonic spacings are he sa
subsequent note tracking. The constant-Q RTFI is used{gf any periodic sounds. The time interval between two
a suitable time-frequency representation for music s&na&uccessive frames is set to 40ms, which is typical for miektip
and a noise suppression method based on cepstral smootlifip@stimation approaches [3]. A sampling rate of 44.1 kHz is
and pink noise assumption is proposed. For the multipleonsidered for the input samples (some recordings with sam-
FO estimation step, a salience function is proposed foihpitgling rate 8 kHz which are presented in subsection V-A were
candidate selection that incorporates tuning and inhaititgn up-converted) and the centre frequency difference betiveen
estimation. For each possible pitch combination, an operlaneighboring filters is set to 10 cents (thus, the number of
ping partial treatment procedure is proposed that is basedfins per octave is set to 120). The frequency range is set
a novel method for spectral envelope estimation in the logom 27.5 Hz (AO) to 12.5 kHz (which reaches up to the 3rd
frequency domain, used for computing the harmonic enveloRgrmonic of C8). The employed absolute value of the RTFI
of candidate pitches. A score function which combines spectwill be denoted asX [n, k] from now on, where: denotes the
and temporal features is proposed in order to select thenapti time frame andk the log-frequency bin. When needek k]
pitch set. Note smoothing is also applied in a postprocgssiwill stand for the RTFI slice for a single time-frame.
stage, employing HMMs and conditional random fields (CRFs)
[13]. To the best knowledge of the authors, CRFs have nBt Spectral Whitening
been uged in the past for 'Franscription approaches. Themyst Spectral whitening (or flattening) is a key preprocessing
was trained on a set of piano chords from the MAPS datasgb, applied in multiple-FO estimation systems, in order to
[6], and tested on classic, jazz, and random piano chords frQy,press timbral information and make the following arialys
the same set, as well as on recordings from the RWC databgge robust to different sound sources. When viewed from an
[14], Disklavier recordings prepared in [7], and the MIREXy gitory perspective, it can be interpreted as the noratidia
recording used for the multiple-FO estimation task [15]eThyt the hair cell activity level [17]. In this paper, we employ
proposed system is compared with several approachesyifnethod similar to the one in [3], but modified for log-
the literature, where competitive results are provideagisi frequency spectra instead of linear frequency ones. Fdr eac
several error metrics which indicate that the current WStq:requency bin, the power within a subband %)foctave span

outperforms state-of-the-art methods in many cases. multiplied by a Hann-windowiVi,,.[k] is computed. The
The outline of the paper is as follows. Section Il describesjuare root of the power within each subband is:

the preprocessing steps used in the transcription system. kK /2 1/2

The proposed multiple-FO estimation method is presented in olk] = (i Z Whann[lHX[lHQ) ©)

Section Ill. The HMM- or CRF-based postprocessing steps K I—h—K)2

of the system are detailed in Section IV. In Section V
the datasets used for training and testing are presented, . )
employed error metrics are defined, and experimental ESLﬂ{:cordmg to: I
are shown and discussed. Finally, conclusions are drawn and Ykl = (ofk])"™ X[k] )
future directions are indicated in Section VI, while in thevhere v is a parameter which determines the amount of
Appendices a derivation for the noise suppression algarittspectral whitening applied and [k] is the absolute value of
is given and the proposed log-frequency spectral enveloie RTFI for a single time frame, and%]| is the final whitened
estimation method is described. RTFI slice. As in [3],rv was set to 0.33.

ere K = b/3 = 40 bins. Afterwards, each bin is scaled
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Fig. 1. Diagram for the proposed automatic transcriptiostey.

C. Noise Suppression distribution, the expected value of the noise log amplitude

In [9], an algorithm for noise level estimation was propgsed E{log(|Ne(@)[)} is equal tOIOg(/\._l) — 7, wherey is
based on the assumption that noise peaks are generated from §1€ Euler constant~( 0.5772). Since the mean of an
white Gaussian process, and the resulting spectral andptu ~ €Xponential distribution is equal 1, the noise level in
obey a Rayleigh distribution. Here, an approach based onthe linear amplitude scale can be described as:
pink noise assumption (elsewhere calledf noise or equal- Ln(@) = Ne(@) - e 7)
loudness noise) is proposed. In pink noise, each octaveesarr
an equal amount of energy, which corresponds well to the The analytic derivation of{log(|N.(w)[)} can be found
approximately logarithmic frequency scale of human augito  In Appendix A.
perception. Additionally, it occurs widely in nature, caary In this work, the number of cepstral coefficients used wagoset
to white noise and is also suitable for the employed timd? = 50. Let Z[k] stand for the whitened and noise-suppressed
frequency representation used in this work. Initial expernts RTFI representation.
were performed using a pink noise generator and the MAT-

LAB distribution fitting toolbox. It was shown that when fitg [1l. M ULTIPLE-FO ESTIMATION

the pink noise amplitudes with the exponential probability |n this section, multiple-FO estimation, being the core of
distribution, the resulting log likelihood was -286, comgd the proposed transcription system, is described. Perfibone
to -539 for the Rayleigh distribution, thus motivating féret a frame-by-frame basis, a pitch salience function is geedra

exponential distribution assumption. o _tuning and inharmonicity parameters are extracted, caelid
~ The proposed signal-dependent noise estimation algoritiiches are selected, and for each possible pitch combinati
is as follows: an overlapping partial treatment is performed and a score

1) Perform a two-stage median filtering procedureYoit], function is computed. In Fig. 1, the diagram for the proposed
in a similar way to [18]. The span of the filter is set taautomatic transcription system is depicted, where theouari
1 octave. The resulting noise representatiéfk] gives a stages for multiple-FO estimation can be seen.
rough estimate of the noise level.
2) Using the noise estimate, a transformation from the log: Salience Function Generation
frequency spectral coefficients to cepstral coefficients isIn the linear frequency domain, considering a pitgh

performed [19]: of a musical instrument sound with fundamental frequency
K’ N fp,1 and inharmonicity coefficieng,, partials are located at
ce = glog(N[k]) cos (§ (k — 5) F)

(5) frequencies:
whereK’ = 1043 is the total number of log-frequency bins Ton = fpay/ 1+ (W2 = 1)fy ®)
in the RTFI and= is the number of cepstral coefficientsvhere h > 1 is the partial index [3]. Inharmonicity occurs
employed¢ =0,...,2 — 1. due to string stiffness, where all partials of an inharmonic
3) A smooth curve in the log-magnitude, log-frequency danstrument have a frequency that is higher than their exgect
main is reconstructed from the first cepstral coefficients: harmonic value [20]. Consequently in the log-frequency do-

D1 main, considering a pitcp at bin k, o, overtones are located
log |N.(@)| = exp <co +2 Z ce - cos(&l;)) (6) & bins:
= b
- b = o+ |- log (1) + 3 o (1402 = )3, ) | @

4) The resulting smooth curve is mapped framinto .
Assuming that the noise amplitude follows an exponentialhereb = 120 refers to the number of bins per octave.
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In addition, variations occur concerning the position o tt (?)
fundamental; in [21], a model is proposed assuming that t
frequency of the first partial can be shifted by a specif
tuning factor. In this work, a pitch salience functiep, ., 5,]
operating in the log-frequency domain is proposed, whit 4| i
J }\ L \A A AAA
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incorporates tuning and inharmonicity information:
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where

Ik, mp, By] = \/Z [k + {bmh + glogQ(l + (h? — 1)ﬁp)H

(11)

dp is the tuning deviation, andh;, € N* specifies a search ¢
range around overtone positions, belonging to the inten 0 20 30 40 50 60 70 80 90
(mL,m), wherem}, — [l Ut0I—Dlogalh) | »
I_(I\'{*l)logz(]}\?+10g2(h+1)J_ M € R? is a factor controlling Fig. 2. (a) The RTFI slilceX[k} of an F3 piano sound. (b) The corresponding
the width of the interval, since in the log-frequency domaiffich saience function’[p].
the search space for each harmonic is inversely propoitiona
to the harmonic index. Herd/ was set to 60, so the searcha piano is seen, along with its corresponding saliesiég
range for the 2nd harmonic [s-2, 2] log-frequency bins, and The highest ea,k in'[p] corresponds te — 34, thus B3 '
for the 3rd and 4th harmonics js-1, 1] bins. 9 P P P ®=2% '

While the employed salience functions in the linear fre-
quency domain (e.g. [18]) used a constant search space BorPitch Candidate Selection
each overtone, the proposed log-frequency salience imcti - A set of conservative rules examining the harmonic partial
sets the search space to be inversely proportional to ¥igquence structure of each pitch candidate is applied jwitic
partial index. The number of considered overtoess set inspired by work from [1], [23]. These rules aim to reduce the
to 13 at maximum. The tuning deviatiap takes values from pitch candidate set for computational speed purposes. As ca
[—4,...,4] log-frequency bins for each pitch (thus havinge seen from Fig. 2, false peaks that correspond to multiples
a tuning search space af40 cents around the referenceang sub-multiples of the actual pitches occursifp]. Here,
tuning frequency), thus allowing the detection of notest thgeaks ins’[p] that occur at sub-multiples of the actual FOs are
are not tuned using the reference frequency. The rangesphsequently deleted. In the semitone space, these peaks oc
the inharmonicity coefficient), is set between (completely at {12 19 24,28, ..} semitones from the actual pitch.
harmonic sounds) arie 10~* (moderately inharmonic sounds, -  first rule for suppressing salience function peaks issegtti
e.g. from a baby grand piano [20]). The explicit modelling of minimum number for partial detection I[p, 2], similar to
inharmonicity can also be useful for temperament estimati?l]_ At least three partials out of the first six need to be pres
systems, such as [22]. in the harmonic partial sequence (since there may be a mgissin

In order to accurately estimate the ideal tuning factor &ed tfyndamental). A second rule discards pitch candidates avith
inharmonicity coefficient for each pitch, a 2-D maximizatio sajience value less thanl - max(s'[p]), as in [23].
procedure is applied top,d,, 3,] for each pitchp, ina  Finally, after spurious peaks isf[p] have been eliminated,
similar manner to the work in [6]. Herg = 1,...,88 which ¢ — 10 candidate pitches are selected from the highest
corresponds to notes A0 to C8, where the pitch referenggpiitudes ofs'[p] [6]. The set of selected pitch candidates
is A4 (MIDI note 69) = 440 Hz. This results in a pitchyj| e denoted a<C. Thus, the maximum number of possible
salience function estimaté[p], a tuning deviation vector and pjtch candidate combinations that will be considered@'’,
an inharmonicity coefficient vector. All in all, the compu-compared to2® if the aforementioned procedures were not
tational complexity for the salience function generatien lemployed. It should be stressed that this procedure does not
O(Np: Ni- N5 Nj), whereN,, = 88, Nj =13, N5 =9, and  affect the transcription performance of the system, asdest

Np = 6 (the number of discrete values each variable takes)yith the training set of piano chords described in subsactio
Using the information extracted from the tuning and iny.a.

harmonicity estimation, a harmonic partial sequence (HPS)

Vp, h], which contains magnitude information from|k| for _ )

each harmonic of each candidate pitch, is also stored for Overlapping Partial Treatment

further processing. For exampl®[39, 2] corresponds to the Current approaches in the literature rely on certain as-
magnitude of the 2nd harmonic pf= 39 (which is note B3). sumptions in order to recover the amplitude of overlapped
An example of the salience function generation is given @ Fiharmonics. In [24], it is assumed that harmonic amplitudes d
2, where the RTFI spectrum of an isolatefBmote played by cay smoothly over frequencggectral smoothness). Thus, the
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amplitude of an overlapped harmonic can be estimated frare defined as:
the amplitudes of neighboring non-overlapped harmonies. |,

[25], the amplitude of the overlapped harmonic is estimatdey = W1 FUp] + w2 Smlp] — w3 SClp] + wa PRIp] — ws AMp]
through non-linear interpolation on the neighboring hamins. Lres = we Fl[Res] (13)
In [26], each set of harmonics is filtered from the spectrum

: . . ) . . Fl[p] denotes the spectral flatness of the harmonic partial
and in the case of overlapping harmonics, linear interpolat i P P

) sequence:
is employed. e[S log(V[p,h))]/H

In this work, an overlapping partial treatment procedure Fllp] = 7 (14)
based on spectral envelope estimation of candidate pitches 7 2n=1 VP, hl

is proposed. The proposed spectral envelope estimatiaa alyhe spectral flatness is a measure of the ‘whiteness’ of the
rithm for the log-frequency domain is presented in Appendipectrum. Its values lie between 0 and 1 and it is maximized
B. For each possible pitch combinatiéh C C, overlapping when the input sequence is smooth, which is the ideal case for
partial treatment is performed, in order to accuratelynesté an HPS. It has been used previously for multiple-FO estinati
the partial amplitudes. The proposed overlapping partgtt in [6], [23]. Here, the definition given for the spectral flags

ment procedure is as follows: measure is the one adapted by the MPEG-7 framework, which
1) Given a setC of pitch candidates, estimate a partiatan be seen in [27].
collision list. Sm[p] is the smoothness measure of a harmonic partial

2) For a given harmonic partial sequence, if the number ségquence, which was proposed in [23]. The definition of
overlapped partials is less tha¥,..., then estimate the smoothness stems from the spectral smoothness princigle an
harmonic envelop&'E, k] of the candidate pitch usingits definition stems from the definition sharpness:

only amplitude information from non-overlapped partials. "
3) For a given harmonic partial sequence, if the number Srip] = Z(SEp[kp n] = Vp, b)) (15)
of overlapped partials is equal or greater th&p,.., el ’

estimate the harmonic envelope using information fro

the complete harmonic p"?‘”'a' sequence. : .dow as in [23], the estimated harmonic enveldfig, of each
4) For each overlapped partial, estimate its amplitudegusin

the harmonic envelope parameters of the corres cmdcandidate pitch is employed for the smoothness computation
. N velope parar P Igp[p] is normalized intoSr[p] and the smoothness measure
pitch candidate (see Appendix B).

_ _ Sm[p] is defined as:Sm[p] = 1 — Sr[p]. A high value of
The output of the overlapping partial treatment procedﬂregm[p] indicates a smooth HPS.

the updated harmonic partial sequencg, k] for each pitch  gc() is the spectral centroid for a given HPS and has been
set combination. used for the score function in [9]:

rIrlere, instead of a low-pass filtered HPS using a Gaussian win-

. . H

D. Pitch set score function _h-|V[p, h]|?

_ . | scpp] = |2 s VR0 (16)
Having selected a set of possible pitch candidates and > =1 |VIp, 1|

performed overlapping partial treatment on each possire-c It indicates the center of gravity of an HPS; for pitched

bination, the goal is to select the optimal pitch combinafior T o ?. .
s . percussive instruments it is positioned at lower partiéls.
a specific time frame. In [9], Yeh proposed a score functign . . .

. . L - .. typical value for a piano note would be5 denoting that
which combined four criteria for each pitch: harmommtythe center of aravity of its HPS is between the 1st and 2nd
bandwidth, spectral centroid, and synchronicity. Also[28], gravity ot | ! W

a simple score function was proposed for pitch set selactiohnarmonic'
b brop P PR[p] is a novel feature, which stands for the harmonically-

based on the smoothness of the pitch set. Finally, in [6] a ) : . .
multipitch detection function was proposed, which emp‘byerelated pitch ratio. Here, harmonically-related pitch@sdre

the spectral flatness of pitch candidates along with thetE;e,decCandIdate pitches IrC that have a semitone difference of
; : [12 - log,(1)] = {12,19,24,28,...}, wherel > 1, € N.
flatness of the noise residual.

Here, a weighted pitch set score function is proposed, WhiéDr{%[p] is applied only in cases of harmonically-related pitches,

. - . IN" an attempt to estimate the ratio of the energy of the
combines spectral and temporal characteristics of theidated . ) .
L : . moothed partials of the higher pitch compared to the energy
FOs, and also attempts to minimize the noise residual . . .
; . . . of the smoothed partials of the lower pitch. It is formulated
avoid any missed detections. Also, features which concern )
. . . . as follows:
harmonically-related FOs are included in the score fumgtio
in order to suppress any harmonic errors. Given a candidate & Vip+ [12-logy(1)], h]
pitch setC C C with size |C|, the proposed pitch set score PRi[p] = Z Vip,l-h]

function is:

17)
h=1
wherep stands for the lower pitch angh- [12-log,(1)] for the
L(C) = (Lp) + Lyes (12)  higher harmonically-related pitchstands for the harmonic re-
p=1 lation between the two pitchegf;yn, = [ fiow). IN case of more
whereL, is the score function for each candidate pitca C, than one harmonic relation between the candidate pitches,
and L, is the score for the residual spectrui), and£,., @ mean value is compute®R[p| = ﬁ > ien,, PRip,

1€
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whereNy,,. is the set of harmonic relations. A high value/R - -

indicates the presence of a pitch in the higher harmonicallyg e - - T -

related position. T T e S YL
Another novel feature applied in the case of harmonicallyz | e — — = —— ™

related FOs, measuring the amplitude modulation simylarit _— . I L, —

between an overlapped partial and a non-overlapped parti 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

frequency region, is proposed. The feature is based on tt @

common amplitude modulation (CAM) assumption, which T -

states that partial amplitudes of a harmonic source are co, 70~ o S - T o

related over time [28]. Here, an extra assumption is mad§ | _ e T R

that frequency deviations are also correlated over time Tha - T T T m— —

. . . = gof

time-frequency region of a non-overlapped partial is coraga

with the time-frequency region of the fundamental. In order R 160()_.1.200 YR 1820' 2600;2503
to compare 2-D time-frequency partial regions, the norreali ®)

tensor scalar product [29] is used:

3 A Fig. 3. Transcription output of an excerpt of ‘RWC MDB-J-200l0. 2’
Zi,j AijBij (jazz piano) in a 10 ms time scale (a) Output of the multifdedstimation

AMl[p] = Z (18) system (b) Piano-roll transcription after HMM postprodegs
h=1 \/Zi,j AisBYj - \/Zi,j Ai;BY;
where
for postprocessing. In [32], three-state note-event HMNMseav
A = Xno:nikpy —4:kp1+4] trained for each pitch, where the input features were the
B" = X[no:ni, kpp —4: kpn +4] (19) pitch salience value and the onset strength of the current

herei. 7+ denote the ind ¢ matricasand B" and d frame. Poliner and Ellis [7] trained two-state HMMs for each
where, j denate the Indexes ot matricasan andno and e using MIDI data from the RWC database and used as
n1 = ng + 5 denote the frame boundaries of the time-fram

. | dqf ideration. Th lized tersa Sbservation probabilities the pseudo-posteriors of the-on
region selected for consideration. The normalized lensaias o ¢ a1 SVM classifiers used for frame-based multife-F
prO.dUCt is a generalization of '_[he_ cosine S|mllar|ty MmeaSUlastimation of piano recordings. In [33], each possible note
which compares two vectors, finding the cosine of the an Smbination between two onsets is represented by one HMM
bezveedn thetm. th idual ¢ hich b st%te, where the state transitions were also learned usibg M
e ﬁno €s te ;ﬁS' I_ua SF;EC rum, which can eGe.xpres%ed a and the observation probability is given by the spkctra
in a similar way to the linear frequency version in [6]: flatness of the HPS of the pitch set. Finally, Cafiadas-Qlzesa

Res — {Z[k]/vn Vh, et al. also utilized two-state HMMs for each pitch that were

trained using MIDI data, where the observation likelihosed i
where A, denotes the mainlobe width of the employe(given by the salience of the candidate pitch [8]. In all cases
window W. In order to find a measure of the ‘whiteness’ of th

g1enti0ned, the Viterbi algorithm is used to extract the best
residual,1 — FI[Res], which denotes the residual smoothnesgj[alte sequence. i
is used. In this work, two postprocessing methods were employed:

It should be noted that featuréd. Sr. SC. PR. AM have the firstusing HMMs and the second using conditional random

also been weighted by the salience function of the candidd@lds (CRFs), which to the authors’ knowledge have not been
pitch and divided by the sum of the salience function of tHéS€d before in music transcription research.
candidate pitch set, for normalization purposes. In order t
train the weight parametes;,i = 1, ..., 6 of the features in
(13), we used the Nelder-Mead search algorithm for paramefe HMM Postprocessing
estimation [30]. The training set employed for experiméasts
described in subsection V-A. Finally, the pitch candidate s In this work, each pitchp = 1,...,88 is modeled by a
that maximizes the score function: two-state HMM, denoting pitch activity/inactivity, as Y]}
N [8]. The observation sequence is given by the output of the
= argéncaxﬁ((}') (21)  frame-based multiple-FO estimation step for each pitch
5 O, ={op[n]},n=1,..., N, while the state sequence is given
by @, = {gp[n]}. Essentially, in the HMM post-processing
step, detected pitches from the multiple-FO estimatiop ste
IV. POSTPROCESSING are tracked over time and their note activation boundaries
Although temporal information has been included in thare estimated using information from the salience function
frame-based multiple-FO estimation system, additionatpoln order to estimate the state priof¥g,[1]) and the state
processing is needed in order to track notes over time, amansition matrix P(g,[n]|g,[n — 1]), MIDI files from the
eliminate any single-frame errors. In the transcriptidarh- RWC database [14] from the classic and jazz subgenres were
ture, hidden Markov models (HMMs) [31] have been useemployed, as in [8]. For each pitch, the most likely state

k—kpp > ATW‘} (20)

is selected as the pitch estimate for the current frame.
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ap[3]

sequence is given by:

417[]] ®
Q) = arg l[al]axH P(gp[n]lgp[n — 1])P(op[n]lgs[n]) (22)
qp|m n
in order to estimate the observation probabilities
@

P(op[n]|gy[n]), we employ a sigmoid curve which has
as input the salience function of an active pitch from the

output of the multiple-FO estimation step:

B 1
R

()
o

P(op[nllgpin] = 1) (23)

-

where s[p,n] denotes the salience function value at frame
n. The output of the HMM-based postprocessing step is
generated using the Viterbi algorithm. The transcriptiatpot

of an example recording at the multiple-FO estimation stage
and after the HMM postprocessing is depicted in Fig. 3. In
addition, in Fig. 4(a) the graphical structure of the emplby
HMMs is displayed. ()

. Fig. 4. Graphical structure of the employed (a) HMM (b) Linehain CRF
B. CRF Postprocessing networks for postprocessing.
Although the HMMs have repeatedly proved to be an
invaluable tool for smoothing sequential data, they suff@m
the limitation that the observation at a given time frame
depends only on the current state. In addition, the curtare s A. Datasets

depends only on its immediate predecessor. In order toiallev gqof training the system parameters, samples from the MIDI
ate these assumptions, conditional random fields (CRF$) [Higned Piano Sounds (MAPS) database [6] were used. The
can be employed. CRFs are undirected graphical models thedps database contains real and synthesized recordings of
directly model the conditional distributioR?(Q|O) instead of jspjated notes, musical chords, random chords, and music
the joint probability distribution”(Q, 0) as in the HMMS. pieces, produced by 9 real and synthesized pianos in differe
This indicates that HMMs belong to the class generative  recording conditions, containing around 10000 soundst.to
models, while the un-directed CRFs aliecriminative models. Recordings are stereo, sampled at 44.1 kHz, while MIDI files
The assumptions concerning the state independence anda#@provided as ground truth. Here, 103 samples from two
observation dependence on the current state which are pog%o types were employed for trainfygvhile 6832 samples
for the HMMs are relaxed. from the remaining 7 piano types were used for testing on

In this work, 88 linear-chain CRFs are employed (one fgjolyphonic piano sounds. The test set consists of classig, j
each pitchp), where the current statg{n] is dependent not and randomly generated chords of polyphony levels 1-6,avhil
only on the current observatiarin], but also oro[n —1]. FOr - the note range was C2-B6, in order to match the experiments
learning, we used the same note priors and state transiti(yé'fformed in [6]. It should be noted that the postprocessing
from the RWC database which were also utilized for thgiage was not employed for the MAPS dataset, since it censist
HMMs post-processing. For inference, the most likely stai§ isolated chords.
sequence for each pitch is computed using a Viterbi-like For the transcription experiments, we firstly used 12 ex-
recursion which estimates: cerpts from the RWC database [14], which have been used in

;L the past to evaluate polyphonic music transcription apgresa
@ = argQrfaXP(Q”w”) (24) in [8], [34], [35]. A list of the employed recordings along

~with the instruments present in each one is shown in the top
where P(Qp|0p) = [I,, P(gp[n]|Op) and the observation paif of Table I. The recordings containing ‘MDB-J' in their
probability for a given state is given as a sum of two poténtigyyc 1D belong to the jazz genre, while those that contain

V. EVALUATION

functionsTS: ‘MDB-C’ belong to the classic genre. For the recording §tle
PO _ 1= 1 1 and composer, the reader can refer to [35]. Five additional
(Oplgpln] =1) = 1 4+ e—(s'lp,n]-1) + 1 4 e—(s'lp,n—1]-1) pieces were also selected from the RWC database, which

have not yet been evaluated in the literature. These pigees a
It should be noted that in our employed CRF model we assui@iéscribed in the bottom half of Table | (data 13-17). Also,
that each note state depends only on its immediate pred®cegse full wind quintet recording from the MIREX multi-FO
(like in the HMMs), while the relaxed assumption over thgevelopment set was also used for experiments [15]. Finally

HMMs concerns the observation potentials. The graphicgle test dataset developed by Poliner and Ellis [7] was also
structure of the linear-chain CRF which was used in our

experiments is presented in Fig. 4(b). Trained weight parametens; were {1.3,1.4,0.6,0.5,0.2, 25}.
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| | RWC ID | 'nStr_“mems positives, and false negatives respectively, for all framiethe
1 RWC-MDB-J-2001 No. 1 Piano di
2 | RWC-MDB-J-2001 No. 2 Piano recording. _ _
3 RWC-MDB-J-2001 No. 6 Guitar A second accuracy measure is also used, which was pro-
4 RWC-MDB-J-2001 No. 7 Guitar posed by Kameoka et al. [34] which also includes pitch substi
5 | RWC-MDB-J-2001 No. 8 Guitar tution errors. LetN,.;[n] stand for the number of ground-truth
6 RWC-MDB-J-2001 No. 9 Guitar . ’ .
=T RWC-MDB-C2001 No. 30 Blano pitches at frame, N,,s[n] the number of detected pitches, and
8 | RWC-MDB-C-2001 No. 35 Piano Neorr[n] the number of correctly detected pitches. The number
190 FF:VV\\//S"\'\A"DDBB'é‘gggi EO- ﬁ o tF'ﬁt?S t+_ P'aQno - of false negatives at the current frameN, [n], the number of
- -C- 0. ute rnng Quarte . . . .
1T T RWC-MDB-C-2001 No. 42 Collo + Piano false_ positives isVy, [n], angl the number of substitution errors
12 | RWC-MDB-C-2001 No. 49 Tenor + Piano is given by Ngups[n] = min(Np,[n], Ny [n]). The accuracy
13 | RWC-MDB-C-2001 No. 13 String Quartet measure is defined as:
14 | RWC-MDB-C-2001 No. 16 | Clarinet + String Quartet N B
15 | RWC-MDB-C-2001 No. 244 Harpsichord Accy = 2n Nrep[n] = Nyn[n] = Nip 1] + Nowss[1] (28)
16 | RWC-MDB-C-2001 No. 36| _ Violin (polyphonic) > Nre 0]
17 | RWC-MDB-C-2001 No. 38 Violin . i .
From the aforementioned definitions, several error metrics
TABLE | have been defined in [7] that measure the substitution errors
THE RWC DATA USED FOR TRANSCRIPTION EXPERIMENTS (Esups), Miss detection errorsty, ), false alarm errorsKgy,),
and the total errorf{;,.;):
Eops = Zn min(Nreg [n], Nsys[1]) — Neorr[n]
used for transcription experiments. It contains 10 onetein e > n Nrep[n]
recordings from a Yamaha Disklavier grand piano, sampled at B, — , max(0, Nyer[n] — Ngys[n])
8 kHz. " > Nrey [1]
As f_ar as groun(_JI-truth for the_z RWC data _1-12 Tabl_e_l, S, max(0, Nays [n] — Nyes[n])
non-aligned MIDI files are provided along with the origi- Ep = S Ny [7]
nal 44.1 kHz recordings. However, these MIDI files contain n ref
Etot = Esubs + Efn + -Efp (29)

several note errors and omissions, as well as unrealistic
note durations, thus making them unsuitable for trangoript |t should be noted that the aforementioned error metrics can
evaluation. As in [8], [34], [35], aligned ground-truth MID exceed 100% if the number of false alarms is very high [7].
data was created for the first 23s of each recording, using

Sonic Visualiser [36] for spectrogram visualization andiMI c
editing. For the RWC data 13-17 in Table I, the newly-relélase
syncRWC ground truth annotations were utilized

. Results

1) MAPS Database: For the isolated chord experiments
using the MAPS database, the performance of the proposed
: . transcription system compared with the results shown in
B. Figures of Merit : . . .
11] and [6] is shown in Fig. 5, organized according to

In order to assess and compare the performance of the polyphony level of the ground truth (experiments were
proposed system, several figures of merit from the automagigrformed with unknown polyphony). The mean F-measures
transcription literature are employed. For the piano cBoréyr polyphony levelsL = 1,...,6 are 91.86%, 88.61%,
using the MAPS dataset, the precision, recall, and F-measgn 309, 88.83%, 88.14%, and 69.55% respectively. It should
are used: be noted that the subset of polyphony level 6 consists only
__ 1t Rec — tp _ 2-Pre- Rec (26) of 350 samples of random notes and not of classical and
tp+fp’ tp+ fn’ Pre + Rec jazz chords. As far as precision is concerned, reported rate

where tp is the number of correctly estimated pitchgs,is ré high for all polyphony levels, ranging from 89.88% to

the number of false pitch detections, afidis the number of 96:19%, with the lowest precision rate reported for= 1.
missed pitches. Recall displays the opposite performance, reaching 96 0%

For the recordings used for the transcription experimenfd]€-note polyphony, and decreasing with the polyphonylleve
several metrics are employed. It should be noted that ZAaching 86.53%, 88.65%, 85.00%, and 83.14%, and 57.44%

Pre

evaluations take place by comparing the transcribed outgf 'evels 2-6. .
and the ground-truth MIDI files at a 10 ms scale, as is the " terms of a general comparison between all systems, the

standard for the multiple-FO MIREX evaluation [15]. The fiirs9/0bal F-measure for all sounds was used, where the proposed

metric that is used is the overall accuracy, defined by DixglyStem outperforms all other approaches, reaching 88.54%.
[37]: The system in [11] reports 87.47%, the system in [6] 83.70%,

Acer — tp 27) and finally the algorithm of [24] used for comparison in [6]
e = fo+fn+tp reports 85.25%. By applying the same significance tests as in
When Ace, = 1, a perfect transcription is achieved [7]. Fotl1l, it can be seen that the proposed method outperforms the

(27), tp, fp, and fn refer to the number of true positives, falsdnethods of [6], [11], [24] in a statistically significant neer
with 95% confidence. The aforementioned methods used for

2http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotah/SyncRWC/ comparison follow the same pattern whéhme and Rec are
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| W Proposed W (1] B LR | [12] [34], [35] is &, — 0.488, &5 — 0.409, & — 0.438, and
| a B | € = 0.404, respectively. The number of examples used to gen-
% - - erate these error ratesgs= 12- 23- 100 = 27600. Considering

100

80r M 1 95% confidence, it can be seen thiat- é&; > 20.051/2¢/C,
70t M 1 wherei=2,...,5 ¢é=9t% andz s = 1.65 which can be
60k 1 determined from tables of the Normal law. This demonstrates

that the performance of the proposed transcription system
is significantly better when compared with the methods in

%

50 1

aor 1 [8], [12], [34], [35]. It should be noted however that the

301 1 significance threshold was only just surpassed when cordpare

20t 1 with the method of [34].

10l A Additional insight to the proposed system’s performance

0 for all 17 RWC recordings and the MIREX one is given
1 2 3 4 5 6 in Table 1V, where the error metrics of subsection V-B are

presented using different postprocessing configuratibman
Fig. 5. Multiple-FO estimation results for the MAPS databéis F-measure) D€ seen that without any postprocessihg, = 53.8%, while
with unknown polyphony, organized according to the groumthtpolyphony when using the HMMs an improvement of 4.6% is reported
level L. and when the CRFs are employed, the improvement is 5.7%.
It can also be seen that the note postprocessing procedures
mainly decrease the number of false alarms (as can be seen
concerned, reporting higire rates for all polyphony levels . in ), at the expense however of missed detectiofig,X
and decreasingicc rates as polyphony increases. Especially for the HMM postprocessing, a large number of
2) RWC + MIREX Database: Transcription results using missed detections have impaired the system’s performéince.
the RWC recordings 1-12 for the proposed system with CRfnould be also noted that the accuracy improvement of the
postprocessing can be found in Table Il. A comparison $RF postprocessing step over the HMM one is statistically
made using several reported results in the literature fer thignificant with 95% confidence, using the technique in [38].
same files [8], [34], [35], where the proposed method repogyecifically, the number of examples used to generate tbe err
improved meanAcc,. Additional results were also producedates is¢ = 42200, the error rate for the CRF postprocessing
for this paper using a previous method [12] submitted by tiggep isécrp = 0.405, for the HMM step isé g = 0.416,
authors for the MIREX 2010 evaluation, which has a similagnd the significance threshold for this experiment was found
front-end but performs multiple-FO estimation in an iterat to he 0.72% in terms of the error rate, which is surpassed by
fashion. Additional comparative results which demonstrajhe CRE postprocessing (being 1.1%).
lower accuracy rates compared to the proposed system cafh order to test the contribution of each feature in the pitch
be found in [8], that are omitted here for brevity. It shouldet score function (13) to the performance of the transoript
be noted that the proposed system demonstrates impresgi#tem, experiments were made on RWC recordings 1-12.
results for some recordings compared to the state-ofithesagr each experiment, the weight;, i = 1,...,6 in the
(e.g. in file 11, which is a cello-piano duet) while in som&core function that corresponds to each feature was set to
cases it falls behind. In file 4 for example, results are infer 9. Results are shown in Table V, where it can clearly be
compared to state-of-the-art, which could be attributeth® seen that the most crucial feature i8[Res], which is the
digital effects applied in the recording (the present systeas residual flatness. Without that feature, the score functiaght
created mostly for transcribing classical and jazz mu#ks). select a single pitch candidate and produce several missed
far as the standard deviation of thc, metric is concerned, detections. However, it can clearly be seen that each featur
the proposed system reports 11.5% which is comparablegignificantly contributes to the final transcription resoft
the approaches in Table I, although it is worth noting th&t t 60.506. When testing the contribution of the inharmonicity
lowest standard deviation is reported for the method |n[12bst|mat|0n in the salience function' the same experimm to
For the RWC recordings 13-17 and the MIREX recordingilace with no inharmonicity search, wherkec; = 59.7%.
transcription results can be found in Table IIl. It should bBy employing the statistical significance test of [38], the
noted that no results have been published in the literature performance improvement when inharmonicity estimation is
these recordings. In general, it can be seen that bowedy strghabled is significant with 90% confidence. It should be noted
transcriptions are more accurate than woodwind transengt however that the contribution of the inharmonicity estiimiat
Concerning the statistical significance of the proposgaocedure depends on the instrument sources that are presen
method’s performance for the RWC recordings 1-12 compargdthe signal. In addition, by disabling the overlappingtjsr
to the various methods shown in Table I, the recognizéneatment procedure for the same experiment, it was shown
comparison technique described in [38] was employed. Theat Acco = 38.0%, with Ey, = 20.4%, which indicates that
number of pitch estimation errors of the two methods ifalse alarms from the overlapped peaks might be detected by
comparison is assumed to be distributed according to tthee system. The2.5% difference in terms of accuracy for
binomial law. The error rate of the proposed method the overlapping partial treatment is shown to be statiyica
é1 = Fyor = 0.395, while the error rate for the methods of [8],significant with 95% confidence, using the method in [38].
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Proposed| [12] [8] [35] [34] Method Accy Acca FEiot FEsups Epn Ep
1 60.2% 58.1% | 63.5% | 59.0% | 64.2% No Post. 54.4% | 53.8% | 46.2% | 11.9% | 19.4% | 14.9%
2 74.1% 50.6% | 72.1% | 63.9% | 62.2% HMM Post. | 57.3% | 58.4% | 41.6% | 5.4% | 32.2% | 4.0%
3 50.0% 42.8% | 58.6% | 51.3% | 63.8% CRF Post. | 58.9% | 59.5% | 40.5% | 7.1% | 25.3% | 8.2%
4 35.7% 28.8% | 79.4% | 68.1% | 77.9%
5 75.0% 63.9% | 55.6% | 67.0% | 75.2% TABLE IV
6 57.9% | 52.0% | 70.3% | 77.5% | 81.2% TRANSCRIPTION ERROR METRICS FOR THE PROPOSED METHOD USING
7 66.8% 51.5% | 49.3% | 57.0% | 70.9% RWC RECORDINGS1-17AND THE MIREX RECORDING USING
8 54.8% 47.0% | 64.3% | 63.6% | 63.2% DIFFERENT POSTPROCESSING TECHNIQUES
9 74.4% 54.9% | 50.6% | 44.9% | 43.2%

10 64.0% 58.4% | 55.9% | 48.9% | 48.1%
11 58.9% 46.2% | 51.1% | 37.0% | 37.6%
12 53.9% 47.6% | 38.0% | 35.8% | 27.5%
Mean 60.5% 51.2% | 59.1% | 56.2% | 59.6%
Std. 11.5% 9.0% | 11.5% | 12.9% | 16.9%

All Fl Sm SC PR AM | Fl[Res]
60.5% | 56.3% | 59.2% | 58.6% | 53.5% | 59.4% | 29.1%

TABLE V
TRANSCRIPTION RESULTY Acca) FOR THERWC RECORDINGS1-12
USING CRFPOSTPROCESSINGWHEN FEATURES ARE REMOVED FROM
THE SCORE FUNCTION(13).

TABLE Il
TRANSCRIPTION RESULTY Acca) FOR THERWC RECORDINGS1-12
USING THE PROPOSED METHOD WITHCRFPOSTPROCESSINGCOMPARED
WITH OTHER APPROACHES

Proposed| [12] tions for the proposed method. The same pattern that was
13 48.2% | 38.4% shown for the RWC data is shown here, where using the
B e HMM I f0.4% i d, while th
5 56.80% | 41.0% . s a small improvement of 0.4% is reported, while the
16 70.7% | 57.0% improvement for the CRFs is 2.6%. The difference in the
17 75-224) 52-2243 improvement over the RWC data can be attributed to the
MN'EaE;( 37120//2 j’f'go//;’ faster tempo of the Disklavier pieces. It has been argued]in [
St T53% T 7.7% that .HM.M note.smoothing provides greater improvement_for
music pieces with slow tempo. For the HMM postprocessing,
S(ATAI?LE n c . false alarms are again reduced at the expense of additional
TRANSCRIPTION RESULT ccg) FORRWC RECORDINGS13-17AND H H H H H
THE MIREX RECORDING, USING THE PROPOSED METHOD WITHCRF _mlssed detections, Wh”e_ the CRF p(_)stprocessmg displays a
POSTPROCESSINGCOMPARED WITH THE METHOD IN[12]. improvement over the missed detection errors, at the expens

of false alarms.

) ) VI. CONCLUSIONS
Concerning the performance of the proposed noise suppres-

sion algorithm, comparative experiments were performed us In this work, a joint multiple-F0 estimation system for au-

ing the 2-stage noise suppression procedure that was mopd§Matic transcription of polyphonic music was proposedaAs
for multiple-FO estimation in [18], using the RWC recording Tont-énd, the constant-Q resonator time-frequency invee
1-12. The noise suppression procedure of [18] consists $Hected due to its suitability for music signal represgona
median filtering on the whitened spectrum, followed by gontnbutlons of the paper include:

second median filtering which does not take into accounts A Noise suppression algorithm based on a pink noise
spectral peaks. Experiments with CRF postprocessing showe assumption

that transcription accuracy using the 2-state noise sspjme ¢ A l0g-frequency salience function that supports tuning

algorithm wasAccs = 56.0%, compared to th€0.5% of the and inharmonicity estimation
proposed method. The performance difference is statistica * Overlapping partial treatment procedure using harmonic
significant with 95% confidence, using the method of [38]. envelopes of pitch candidates

3) Disklavier dataset [7]: Transcription results using the 10 + A pitch set score function incorporating spectral and
Disklavier recording test set created by Poliner and Elis c temporal features
be found in Table VI, along with results from other approache « An algorithm for log-frequency spectral envelope estima-
reported in [7]. Also, additional results were produced g t tion based on the discrete cepstrum

authors using our iterative MIREX-submitted method, which ¢ Note smoothing using conditional random fields (CRFs)
has a similar preprocessing front-end and the same salienc&he system was trained on a set of isolated piano chords
function [12]. It can be seen that the best results are redorfrom the MAPS database and tested on recordings from the
for the method in [7] while the proposed system is seconBWC database, the Disklavier database from [7], and the
best, although it should be noted that the training set fer tMIREX multipitch estimation recording [15]. Comparative
method by Poliner and Ellis used data from the same sourceresults are provided using various evaluation metrics over
the test set. In addition, the method in [7] has displayed poseveral state-of-the-art methods, as well as on a method
generalization performance when tested on different d&das previously developed by the authors. The proposed system
as can be seen from results shown in [7] and [8]. displays promising and robust results, surpassing sfate-o
In Table VII, several error metrics are displayed for théhe-art performance in many cases, considering also tte fac
Disklavier dataset, using different postprocessing caoméig that the training and testing datasets originate from whffe
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Method | Proposed| [11] [7] [32] [39]
Acey 49.4% | 43.3% | 56.5% | 41.2% | 38.4%

where~ is the Euler constant:

—+oo
TABLE VI v = —/ e ¥ log(v)dip ~ 0.57721. (31)
MEAN TRANSCRIPTION RESULTY Acc1) FOR THE RECORDINGS FROM7] 0

USINGCRFPOSTPROCESSINGCOMPARED WITH OTHER APPROACHES

APPENDIXB
LOG-FREQUENCY SPECTRAL ENVELOPE ESTIMATION

Method Accy Acca FEtot Eoups Epn Efp : ;
No Post. | 246.8% | 48.29% | 51.8% | 10.5% | 35.2% | 6.1% An algorithm for posterior-warped log-frequency regular-

HMM Post. | 47.2% | 48.3% | 51.7% | 85% | 38.1% | 5.1% ized spectral envelope estimation is proposed. Given a set
CRF Post. | 49.4% | 49.8% | 50.2% | 10.1% | 31.4% | 8.6% |  of harmonic partial sequences (HPS) in the log-frequency
TABLE VII domain, the algorithm estimates the log-frequency enwelop
TRANSCRIPTION ERROR METRICS USING THE RECORDINGS FROj] anp ~ USING linear regularized discrete cepstrum estimatior{4@j
DIFFERENT POSTPROCESSING TECHNIQUES a method for estimating the spectral envelope using discret
cepstrum coefficients in the Mel-scale was proposed. The
superiority of discrete cepstrum over the continuous capst
coefficients and the linear prediction coefficients for spdc
sources. For the RWC recordings, the improvement by te@velope estimation was argued in [41]. Other methods for
proposed system was found statistically significant coegarenvelope estimation in the linear frequency domain include
to other approaches in the literature. For public evalmam a weighted maximum likelihood spectral envelope estinmatio
iterative variant of this system was submitted for the MIREXechnique in [42], which was employed for multiple-FO es-
2010 multiple-FO estimation task [12] displaying encoumgg timation experiments in [6]. To the authors’ knowledge, no
results, even without any postprocessing. In general, the pother log-frequency harmonic envelope estimation alporit
posed system showed improvement over the one in [12] thafs been proposed in the literature. The proposed algorithm
can be attributed to the use of pitch combinations instead €n be outlined as follows:

iterative selection, and the postproces_sing modul_e. 1) Extract the harmonic partial sequeniép, #] and corre-
In the future, the present system will be submitted for the sponding log-frequency bink, , for a given pitchp and
next MIREX evaluation. In general, results generally iradicl harmonic indexh = 1.....13.

a relatively low false alarm rate, but a considerable numbgj Convert the log-frequency bing,, to linear angular
of missed detections. This can be rectified in the future frequenciesw, ;, (where f, = 441 EH~ and the lowest

by relaxing several assumptions concerning the inharmonic frequency for analysis iy, = 27.5 Hz):

ity range and spectral smoothness (which would also allow

for multipitch estimation of inharmonic instruments such a Wpp =27.5- 2 Qkf'z}? (32)
marimba or vibraphone), but at the expense of additionaéfal s

positives. Also, in order to improve transcription perfamee, 3) Perform spectral envelope estimation Gfp, 1] and Wph
training could be applied using a multi-instrument dataset uysing linear regularized discrete cepstrum (estimatefieoef
such as the one used in [24]. In addition, more general forms cientsc,). Coefficientsc, are estimated as:

of CRFs that link multiple states together could improveenot

prediction and smoothing. Finally, system performancelmn ¢ = (MyM,, + oK)~ "M a, (33)
improved by performing joint multiple-FO estimation and@o .

tracking, instead of frame-based multipitch estimatiorthwi :/(Vhirediaqa[% 292 ... (K [_lnl(;][)’l]K)'i's' ltIr;(eVgrgt]r)l]J,m
subsequent note tracking. '

order, o is the regularization parameter, and
1 2cos(wpi) -+ 2cos(Kwp1)
M,=|: : : (34)

1 2cos(wp,a) -+ 2cos(Kwp m)

APPENDIXA
EXPECTEDVALUE OF NOISE LOG-AMPLITUDES

We assume that the noise amplitude follows an exponential ]
distribution. In order to find the expected value of the néoge 4) Estimate the vector of log-frequency discrete cepstafc

amplitudesE{log(|N.(@)|)}, we adopt a technique similar to ficientsd, fromc,. In order to estimate,, fromc,, we note

[9]. Let © = log(N.(w)) = ®(N): that the function which converts linear angular frequesicie
into log-frequencies is given by:
goy = [ oo [ opa |2 @ fs-w
(o} = p(0)d6 = (@ (0))|——; g(w) = 120.10g2(m) (35)
—oo —00 20,
+oo “+o0
= / )\9€_A69€0d9=/ Mog(ip)e N dy which is defined forw e [#275 7). Function g(w) is
—00 0

normalized usingj(w) = T’;)g(sw), which becomes:

+o0
—W—AbgM-A e M diy 7 i fow
e (30) g(w):10g2(2.§;,5>'1°g2<2w-27-5> 59
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Fig. 6. Log-frequency spectral envelope of an F#4 piano teitle P = 50.
The circle markers correspond to the detected overtones.

The inverse function, which converts angular

21 - 27.5 2mogz<2—,2ﬁ;.—5>
fs

which is defined in0, x] — [2=272, 7]. From [40], it can
be seen that: '

g @)= (37)

d,=A-c, (38)

where

N—-1
Ait1,41 = w Z:O COS<Z§1(%)>COS<%>
N (39)
where N is the size of the spectrum in samples, and
range from O toP — 1.
5) Estimate the log-frequency spectral enveldfiefrom d,,.
The log-frequency spectral envelope is defined as:
P—1

SE, (@) = exp <d0,, +2>  diy cos(k@)) . (40)

k=1

(6]

(7]

(8]

El

[20]

(11]

log-
frequencies into angular linear frequencies is given by:

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

In Fig. 6, the warped log-frequency spectral envelope of an
F#4 note produced by a piano (from the MAPS dataset) is

depicted.
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