
REAL-TIME SYNCHRONISATION OF MULTIMEDIA STREAMS IN A MOBILE DEVICE

Robert Macrae∗, Simon Dixon

Centre for Digital Music, Queen Mary University of London

Mile End Road, E1 4NS, London

{robert.macrae,simon.dixon}@elec.qmul.ac.uk

Joachim Neumann, Xavier Anguera†, Nuria Oliver

Telefonica Research

Via Augusta 177, 08021 Barcelona, Spain

{joachim,xanguera,nuriao}@tid.es

ABSTRACT

With the constant improvements in the technical capabilities
and bandwidth available to mobile phones, mobile audio and
video streaming services are booming. This allows music en-
thusiasts to watch their favourite music videos instead of only
listening to the audio tracks, thus augmenting their listening
experience to be multimodal. Usually the highly compressed
audio tracks in these videos result in poorer quality music,
compared to music the user might already have locally on
their phone or playing through another sound source. In this
paper we present MuViSync Mobile, a mobile phone appli-
cation that synchronises real-time high quality music, either
stored locally or input through the microphone, with the cor-
responding streaming music video. We extend previous work
on music to music video synchronisation by proposing an al-
ternative algorithm for higher efficiency with similar align-
ment accuracy, which we tested with music video examples
including simulated noise. This algorithm correctly aligns
90% of the audio frames to within 100 ms of the known align-
ment. We also describe its implementation on an iPhone.

Index Terms— synchronisation, multimedia, multimodal

1. INTRODUCTION

At an increasing pace, mobile devices such as phones, tablets
and mp3 players, are becoming powerful computers capable
of delivering a full multimedia experience, i.e. audio, video,
touch-screen interaction, etc. Such devices usually have in-
ternal storage capabilities that allow users to carry around
their personal music collection in a high quality compressed
format, and have high resolution displays that let them view
videos either stored locally or streamed over a data connec-
tion. The user can therefore, instead of just listening to
his favourite music, watch the corresponding music video at
the same time. Indeed, many services nowadays allow for
music video streaming, for example Youtube1, LastFM2 or

∗The first author performed the work while at Telefonica.
†During the development of this work X. Anguera was partially funded

by the Torres Quevedo Spanish program
1http://www.youtube.com
2http://www.lastfm.com

Music Video Streaming Service Audio Track Bit Rate (Kbps)
LastFM 64-128
YouTube 64-128

Yahoo! Video 128
Music Streaming Service Audio Bit Rate (Kbps)

GrooveShark 192
Pandora One 192

Spotify 160-320
Standard Audio formats Downloaded Bit Rate (Kbps)

AAC from iTunes 256
MP3 from Amazon 256

Audio CD 1411

Table 1. Comparison of typical audio bit rates.

Yahoo3; or music streaming, such as Spotify4, Pandora5 or
GrooveShark6. Due to bandwidth limitations the audio in the
streamed videos is usually of lower quality than when stream-
ing audio alone, and neither is comparable to locally stored
high quality audio files or music on audio CDs. To illustrate
this, Table 1 compares the audio bit rates that these content
streaming services typically provide. In general, since music
video streaming services have to divide the limited bandwidth
of a mobile data connection between the video and the audio
content, the latter often suffers.

In this paper we solve this problem by proposing an exten-
sion of the MuViSync algorithm [1] to run on a mobile phone.
In [1] we showed the feasibility of online synchronisation be-
tween audio media and an independent music video by: 1)
finding an initial synchronisation between the two media, and
2) making an online alignment between the two to keep them
synchronised. In the current paper we propose an alternative
algorithm to improve its efficiency and implement the system
on a mobile device (in our case, the Apple iPhone 4 and iPad).
To the best of our knowledge, MuViSync Mobile is the first
application that performs such a task on a mobile phone.

3http://www.video.yahoo.com
4http://spotify.com
5http://www.pandora.com
6http://listen.grooveshark.com



2. RELATED WORK

In this paper we propose an algorithm for music to music
video alignment that is able to run on a portable device such as
a mobile phone. We have researched prior work both on mu-
sic to video (and in particular music video) synchronisation as
well as work evaluating the relationship between audio/video
streaming in mobile devices.

Our goal is to synchronise the information from two dif-
ferent sources, i.e. the music from a file or microphone in-
put and a music video. A few papers propose to synchronise
the two sources through an analysis of the visual track in the
video stream. They usually extract suitable features from the
video to be matched with features from the audio. In [2] and
[3] an offline alignment is performed, which is not applicable
to our problem due to the non-linear computational costs and
the need to have complete sequences for the alignment.

In our case the music video contains an audio track which
is expected to be similar to the audio stream; we therefore use
audio-to-audio alignment algorithms, rather than trying to de-
vise similar features to relate the video and the audio. Many
techniques have been proposed over the years for this task,
both for offline and for online processing, using techniques
such as beat-tracking [4, 5], Hidden Markov Models [6] or
Dynamic Time Warping (DTW) [7]. Using beat-tracking, in
[5] the tempo of a woman dancing within a video clip is al-
tered to match that of the audio. Also, in [4], beat-tracking
is used to align music with the drummer in a band in order
to keep the music to the same tempo to what is being played.
Similarly, Hidden Markov Models have been used for syn-
chronisation [6]. These can be run online, but usually need
prior training. Finally, techniques derived from DTW [7] can
be used to align any two audio segments. The classical DTW
implementation is suitable for offline alignment, although it
has quadratic complexity in computational and memory costs,
which makes it not scalable for long sequences or usable in
real-time. For this reason various modifications have been
proposed over the years to improve its efficiency, such as
Sakoe and Chiba’s bounds [7], Itakura’s slope constraints [8]
and Salvador and Chan’s multi-resolution “FastDTW” [9], as
well as variations in the local constraints imposed on the dy-
namic path finding algorithm [6]. These algorithms are not
applicable for our purpose since they are offline in nature.
Other modifications to the classical DTW, like [10], [11] and
[1] allow for an online alignment. In [10] the application of
slope constraints together with a progressive DTW method is
used for online synchronisation of two audio files. Due to the
nature of the path generation algorithm, this method can re-
sult in either a discontinuous real-time alignment or suffers
from latency incurred by waiting for the path to be firmly es-
tablished. [1] proposes an alternative progressive local DTW
algorithm to effectively align two audio sequences. This al-
gorithm constitutes the starting point for the present work and
is reviewed in Section 3.

In order to meet the constrains of a mobile phone plat-
form, we propose a novel algorithm that simplifies the ap-
proach in [1], making it much faster while preserving the ac-
curacy.

Very little research has looked into the impact of streamed
music videos in the context of the user’s listening experi-
ence. In [12] the authors analyse the suitability of mobile
devices for watching streaming video. They analysed users’
responses to devices with streaming capabilities and found
two situations to be particularly appealing. One is when a per-
son is alone and is looking for a way to use his free time, for
example, listening to music or watching a video. The other is
in social contexts, for example singing karaoke with friends.
Both situations match well with the capabilities of the system
proposed in this paper, either synchronising with the user’s
local music library or to music in the local environment.

Given the availability of audio and video in a mobile de-
vice, in [13] the authors evaluated the relationship between
audio and video quality perception on mobile devices for dif-
ferent kinds of media. They explicitly tested music videos
and concluded that the audio was playing a much more im-
portant role with respect to user perception than the image.
Similarly, [14] shows, through a user study for multimedia
content including music videos, that changes in video stream-
ing bit rates do not greatly affect the user’s perceived quality,
while small changes in the audio quality had a large effect on
the user’s perception.

3. SYNCHRONISATION ALGORITHMS

This section examines the methods for synchronising music
and corresponding music videos proposed in order to drive
MuViSync Mobile video playback. This process is based on
audio to audio alignment as we focus on the audio soundtrack
of the video and use this to adjust the video playback which
fits the original music audio as best as possible. The specifics
of MuViSync’s application leads to a number of requirements
for this audio-audio alignment method:

• Real-time: For live audio synchronisation, the algo-
rithm has to run in real-time with incomplete data. The
alignment also has to be calculated ahead of the video
playback, where a user may even skip forward.

• Efficient: The processing power available to make the
alignment in a mobile phone is limited but cannot de-
tract from the video playback experience.

• Unknown start and end points: Since the audio and
video streams do not necessarily start simultaneously,
an initial alignment has to be determined.

• Structural differences: The two audio sequences are
not guaranteed to have the same structure as one se-
quence could be incomplete (missing segments) or con-
tain added segments.



(a) (b)

Fig. 1. Original MuViSync algorithms showing (a) The Initial
Path Discovery Algorithm, (b) The Sequential-DTW Based
Approach and the input chroma feature sequences.

Typical offline audio-audio alignment techniques, such as
DTW, make use of the entire sequence information to guar-
antee the alignment is optimal with respect to the chosen path
constraints and features. Our aim is to match, as closely as
possible, the accuracy performance of a typical offline audio-
audio alignment technique, whilst achieving the above stated
goals. First we shall review the algorithms used from [1].
Then we shall describe a new synchronisation algorithm that
we designed specifically for MuViSync Mobile.

3.1. Feature Extraction

For our audio-audio alignment, we need to extract contextual
information from the audio signals, that can be used to relate
and synchronise the two signals in a robust and computation-
ally efficient manner. For this purpose we use chroma fea-
tures, a 12 dimensional representation of musical pitch con-
tent that is often used for musical information retrieval tasks
[15]. Given an input music file and a music video file, we take
the two sequences of audio S1 and S2 and divide them into
186 ms overlapping frames with a hop size of 23 ms, filtered
with a hamming window, and then transformed into the fre-
quency domain using a standard Fast Fourier Transform. The
resulting spectrum is then mapped into 12 dimensions, corre-
sponding to the pitch classes of Western music. The resulting
values are then normalised for each frame to avoid differences
in volume affecting the alignment. This results in two feature
sequences U = (u1, u2, ..., uM ) and V = (v1, v2, ..., vN ) for
each of the two audio sequences being aligned.

3.2. MuViSync Algorithms

3.2.1. Initial Path Discovery

In previous work [1], an algorithm was devised to make
a quick estimation of the start position of the two audio
feature sequences, U and V . This makes use of multiple
greedy searches through a (partially calculated) similarity ma-
trix S(m, n) of costs between the two feature sequences S1

and S2 to find a path Pg = (pg1, pg2, ..., pL) of length L.
The local cost is calculated as the inner product subtracted

from 1, dU,V (m, n) = 1 − <um,vn>
‖um‖‖vn‖ , to ensure lower path

costs are optimal. We call these searches greedy as they do
not calculate the accumulated cost, as is normal in DTW,
but instead only consider the cost of the current step. The
cost D(m, n) at any location (m, n) , can be calculated as
D(m, n) = dU,V (m, n) + min[D(m − 1, n − 2), D(m − 1, n −
1), D(m−2, n−1)]. With this approach, the path is constrained
by a minimum and maximum slope of 1

2
and 2 respectively.

Initially, we perform an initial greedy search path for every
possible position where either the audio or the video are at
the initial frame i.e. (U1, Vn) or (Um, V1). Then a path selec-
tion procedure is applied in order to prune unsuitable initial
paths: after each path is progressed a step, all the paths whose
overall cost D(Pg) above the average cost (of all the paths
currently in consideration) are discarded and when two paths
collide, the path with the highest cost is discarded. When one
path remains, this is selected as the optimal starting point.
This Initial Path Discovery can be seen in Figure 1 (a).

3.2.2. Sequential-DTW Based Approach

Once the initial path is discovered, the two feature sequences
need to be kept synchronised. Previously [1], MuViSync
made use of an adaptation of DTW, for real-time, that we will
hence forth reference as the Sequential-DTW Based Approach
or SDBA. We use this term as the synchronisation is calculated
by breaking the process into a series of small DTW steps that
would be self guided. Combined with the Initial Path Dis-
covery mentioned above, this algorithm is capable of keeping
music and music videos synchronised within 100 millisec-
onds of each other in over 90% of the alignment points ex-
amined. It also performs the alignment of two pieces of 3
minutes in length in approximately 1 second CPU time on
a standard desktop computer. In the SDBA, a single greedy
search Pg = (pg1, pg2, ..., pL) is computed, similar to the paths
found in the Initial Path Discovery in Sec. 3.2.1. Once this
line has reached a distance of 5 seconds on either of the fea-
ture sequences, a standard DTW is calculated between the
start and end point (Pg1 to PgL) of this path. The overall cost
for the DTW path at any location (m, n) can be computed
as D(m, n) = dU,V (m, n) + min[D(m − 1, n), D(m − 1, n −
1), D(m, n− 1)] to give a path Pdtw = (pdtw1, pdtw2, ..., pdtwL)

that contains the optimal alignment between both signals for
that time segment. From half way along this DTW path, a
subsequent greedy path starts in pg1 = pdtw L

2
. Subsequent

DTW sub-paths are computed until the end of either source is
reached. The initial halves of each DTW sub-path are joined
to create the final alignment path as seen in Figure 1(b).

3.3. MuViSync Mobile Algorithm

3.3.1. Diagonally-Constrained Greedy Search

In this paper we introduce a modification of the SDBA al-
gorithm for increased efficiency in mobile devices. We call



D
C
G
S
 R
A
N
G
E

MUSIC

M
U
S
IC
 V
ID
E
O

DCGS WIDTH

Fig. 2. The Diagonally-Constrained Greedy Search. The
light grey lines represent the multiple paths that are calcu-
lated. The dashed lines represent the lowest cost paths for
each segment that then get selected for the final DCGS path.

Fig. 3. MuViSync Mobile extracts audio from either the de-
vice’s microphone or the device’s music library. Simultane-
ously, the application streams video content from YouTube,
plays music, extracts features and synchronises the video
playback in real-time, ensuring the video is synchronised.
The algorithm maintains the synchronisation by altering the
video as people are more preceptive to jumps in the audio.

this algorithm the Diagonally-Constrained Greedy Search
(DCGS), which was motivated by an analysis of typical mu-
sic and music video data, which revealed that most of the
time the tempo is very similar between music and corre-
sponding music videos. The DCGS is also based on the Ini-
tial Path Discovery step (see section 3.2.2) but restricts the
multiple greedy paths to a diagonal constraint so that the
cost can be calculated at any location (m, n) as D(m, n) =

dU,V (m, n)+D(m−1, n−1). By doing this, we are assuming
the sources maintain roughly the same tempo, within short
time periods, so that the algorithm is simply required to find
the diagonal that has the least cost. This time period is re-
ferred to as the DCGS range which we set to 2 seconds (as
this was required in order to avoid loosing sufficient accuracy
when noise is applied). We calculate all the possible diago-
nal paths within a pre-defined search range, which we refer
to as the DCGS width (which we vary in our experiments).
The path Pg = (pg1, pg2, ..., pL), with the lowest cost D(Pg) is
appended to the DCGS path and the process is repeated from
the final point PgL, as illustrated in Figure 2.

4. MOBILE IMPLEMENTATION

Applications that benefit from a synchronisation between the
audio track of a video and an audio stream are not limited
to web based or desktop computer based scenarios. While
on the go, mobile devices can be used in two example sce-

narios. One is to improve the users multimedia experience
by providing synchronised videos when music is playing in
the device’s environment. Another is to replace the audio of
streamed online video content on a handset by using high-
quality songs from the devices local music library. For this
purpose we have developed MuViSync Mobile. In compar-
ison to our desktop computer implementation [1], the mo-
bile implementation needs to comply with tight restrictions
of CPU power and limited system memory of current (as of
2010) smartphones. As a platform for the implementation of
the proposed system, we chose Apple’s iOS SDK 4.1 and the
iPhone 4 / iPad hardware. However, our aim was to assure
that the implementation of the MuViSync Mobile library re-
mained cross-platform so all algorithmic source code is writ-
ten in ANSI C++. The only part of the two mobile applica-
tions that is not platform-independent is the hardware depen-
dent audio I/O and the graphical user interface provided by
the iOS SDK. In order to optimise our algorithm for a mo-
bile implementation we used a profiler tool to identify which
processing blocks are most computationally expensive in the
system. Aside from the alignment algorithm, we identified
the feature extraction as a performance bottleneck. We there-
fore optimised it by applying a set of engineering changes to
the standard extraction approach, consisting of (a) joining the
required FFT for the two audio streams into a single complex
FFT transformation; (b) dynamically switching between the
platform-independent implementation of the FFT and (when
available) the accelerate framework that is provided by iOS
which offers an optimised FFT implementation, utilising vec-
tor instructions of the iPhone’s ARM7 CPU and (c) manually
optimising critical loops in the code. Finally, further optimi-
sation of the Sequential-DTW Based Approach includes a re-
duction in the width of the DTW blocks calculated so that it is
less computationally intensive while maintaining the synchro-
nisation performance. The DCGS algorithm was specifically
designed with a mobile implementation in mind.

5. EVALUATION

MuViSync Mobile aims at synchronising music videos on
low powered devices, in real-time and in potentially noisy
environments. Therefore, in order to assess the suitability
of our synchronisation algorithms we evaluate the accuracy
and efficiency of the two algorithms with a dataset consist-
ing of matching music and videos. The evaluation is run on
a standard computer with simulated noise, equalling what is
expected when recording audio through a smartphone.

5.1. Ground Truth Test Data

The evaluation material we used consists of matching pairs of
music files from Amazon7 and music videos from YouTube8.

7www.amazon.com
8www.youtube.com



Fig. 4. Ground truth alignments for the music video data set
calculated using an offline DTW algorithm.

In order to obtain the ground truth alignments between these
files we used a standard off-line DTW, based on chroma fea-
tures, and manually checked the alignments to be correct,
pruning out any erroneous assignments. Although DTW is
based on dynamic programming, similar to the techniques
discussed here, DTW has the advantage of using the complete
sequences. We used Meinard Müller et al’s Chroma Matlab
Toolbox9 [15] with a hop size of 20 ms to extract chroma se-
quences from the two sources and aligned these using Dan
Ellis’s DTW in Matlab Toolbox10 [16]. The finished dataset
consists of 356 matching music, music video and reference
alignment files. The ground truth alignments for all 356 mu-
sic video sets can be seen in Figure 4, where although many
alignments are diagonal, some have structural differences and
have different start-end points between the sequences.

5.2. Algorithm Comparison

Next we perform a comparison of the DCGS and the SDBA
MuViSync algorithms. We measured the synchronisation ac-
curacy by counting how many of the reference alignment
points were discovered correctly, within varying degrees of
accuracy requirement. Previous work [17, 18] differs on the
human perception of music and video asynchrony (in that
we are less perceptive to audio lagging video) with estimated
ranges and requirements of 15 − 45 ms or 80 − 100 ms. We
have decided on two accuracy requirements of 25 ms for an
audio lead and 100 ms for a video lead. At the present stage,
our algorithms does not (yet) strive to reflect this asymmetry,
consequently, we test our algorithms by determining which
percentage of the resulting multi-media stream is within 25
ms and 100 ms to our ground truth. Tables 2 and 3 show

9Available at www.mpi-inf.mpg.de/ mmueller/chromatoolbox/
10Available at http://labrosa.ee.columbia.edu/matlab/dtw/

SDBA Algorithm
Width (s) Accuracy (%) Time (s)

No Noise 1:1 SNR
25 ms 100 ms 25 ms 100 ms

2 s 81.1 89.3 74.8 87.8 0.296 s
4 s 81.4 89.6 75.5 88.6 0.589 s
6 s 82.3 90.5 76.1 89.4 0.886 s
8 s 82.8 91.2 76.2 89.5 1.178 s

Table 2. Evaluation of the Sequential DTW Based Approach
(SDBA). The accuracy is the percentage of audio samples in
the mixed multi-media stream that is correctly synchronised
within 25 ms and 100 ms, respectively.

DCGS Algorithm
Width (s) Accuracy (%) Time (s)

No Noise 1:1 SNR
25 ms 100 ms 25 ms 100 ms

2 s 81.7 89.4 81.2 89.0 0.181 s
4 s 83.7 91.6 81.5 89.1 0.361 s
6 s 84.4 92.4 79.1 86.4 0.548 s
8 s 85.3 93.3 77.3 84.4 0.724 s
10 s 85.6 93.8 78.3 85.7 0.907 s

Table 3. An overview of the Diagonally-Constrained Greedy
Search (DCGS) algorithm using different video sequence
search widths for the diagonal method, with noise and with-
out.

the SDBA and DCGS algorithms at various window sizes and
with and without noise. We simulated a signal-to-noise ratio
(SNR) by combining the chroma features with randomly gen-
erated white noise, as this allowed us to efficiently control the
SNR in a way that was consistently reproducible. For an SNR
of 1:1, the energy of the added noise is equal to the energy
of the chroma features of the signal. Recording through an
iPhone’s microphone, we found a typical SNR of 1.14, mean-
ing the signal was slightly more significant than the noise.

Our evaluation shows that both algorithms yield a reason-
able synchronisation between the audio stream and the au-
dio track of the video stream in difficult conditions (real-time
processing without knowledge of the future and with the hard-
ware restrictions of the mobile platform). On examining Ta-
ble 2, we can see that the width of the sub-DTW boxes (first
column) has a strong effect on the average execution time (last
column), but a larger width results in a slightly better accu-
racy. In Table 3, the width of the DCGS algorithm refers to the
size of the search window, which affects the computation time
in a similar fashion and also improves the accuracy slightly.
A direct comparison of the two algorithms confirms that the
DCGS algorithm indeed executes faster. When comparing the
accuracies of the two algorithms, we see that the DCGS algo-
rithm performs better in three out of four conditions. Only in
the presence of noise and with the more tolerant 100 ms cri-



Fig. 5. A comparison of how accurate the SDBA algorithm
and DCGS algorithm are (within 100 ms) at different ratios of
signal to noise. Both algorithms had a width of 8 seconds.

teria, the DCGS algorithm showed a worse performance. In
order to shed further light on the comparison of the accuracy
of the two algorithms, we evaluate the accuracy of the two
algorithms for various noise levels.

Figure 5 shows the effect that noise, added to the com-
puted chroma features, has on the accuracy of the synchroni-
sation. In the absence of noise (signal-to-noise ratio∞), the
graph reflects the numbers given in Tables 2 and 3. When we
add noise to the chroma features, we observe that the accu-
racy of both algorithms decreases. An informal measurement
of the chroma features of a song that is either played from the
library or captured with the device’s microphone in a quiet
room indicates that a signal-to-noise ratio of the chroma fea-
tures of about 1.14 is a realistic operational point, which cor-
responds to 92.1% accuracy for DCGS and 90.3% for SDBA.
We also see that the DCGS algorithm performs worse at larger
signal-to-noise ratios (for the weaker criterium of 100 ms).

6. CONCLUSIONS

MuViSync Mobile is designed to take advantage of the grow-
ing computational power of smartphones to resolve the dis-
crepancy between the poor audio bit rate of music video
streaming services and the high quality music we already
own. In this work we have presented a novel, fit for purpose,
synchronisation technique that is efficient, able to synchronise
music and music videos on low powered devices and have im-
plemented this system on an iPhone as a proof of concept. In
our evaluation we have compared this algorithm with previous
work and found an improvement in the accuracy/processing
time trade off.

7. REFERENCES

[1] Robert Macrae, Xavier Anguera, and Nuria Oliver, “Muvisync:
Realtime music video alignment,” in Proceedings of IEEE In-
ternational Conference on Multimedia and Expo-ICME, 2010.

[2] Xian-Sheng Hua, Lie LU, and Hong-Jiang Zhang, “Automatic
music video generation based on temporal pattern analysis,”
in MULTIMEDIA ’04: Proceedings of the 12th annual ACM
international conference on Multimedia, NY, USA, 2004, pp.
472–475, ACM.

[3] Jong-Chul Yoon, In-Kwon Lee, and Siwoo Byun, “Automated
music video generation using multi-level feature-based seg-
mentation,” Multimedia Tools Appl., vol. 41, no. 2, pp. 197–
214, 2009.

[4] Andrew Robertson and Mark Plumbley, “B-keeper: a beat-
tracker for live performance,” in NIME ’07: Proceedings of
the 7th international conference on New interfaces for musical
expression, NY, USA, 2007, pp. 234–237, ACM.

[5] Tristan Jehan, Michael Lew, and Cati Vaucelle, “Cati dance:
self-edited, self-synchronized music video,” in SIGGRAPH
’03: ACM SIGGRAPH 2003 Sketches & Applications, New
York, NY, USA, 2003, p. 1, ACM.

[6] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of
speech recognition, Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993.

[7] Hiroaki Sakoe and Seibi Chiba, “Dynamic programming algo-
rithm optimization for spoken word recognition,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 26,
no. 1, pp. 43–49, 1978.

[8] F. Itakura, “Minimum prediction residual principle applied to
speech recognition,” IEEE Trans. on Acoustics, speech and
signal processing, vol. 23, pp. 52–72, 1975.

[9] Stan Salvador and Philip Chan, “FastDTW: Toward accurate
dynamic time warping in linear time and space,” in Workshop
on Mining Temporal and Sequential Data, 2004.

[10] Simon Dixon, “Live tracking of musical performances using
on-line time warping,” in Proceedings of the 8th International
Conference on Digital Audio Effects, Madrid, Spain, 2005, pp.
92–97.

[11] Robert Macrae and Simon Dixon, “Accurate real-time win-
dowed time warping,” in Proc. ISMIR, 2010.

[12] Petteri Repo, Kaarina Hyvonen, Mika Pantzar, and Paivi Tim-
onen, “Users inventing ways to enjoy new mobile services -
the case of watching mobile videos,” in Proc. Hawaii Interna-
tional Conference on System Sciences, 2004.

[13] Satu Jumisko-Pyykko and Jukka Hakkinen, “Evaluation of
subjective video quality of mobile devices,” in Proc. ACM MM,
2005.

[14] Stefan Wilkler and Christof Faller, “Perceived audiovisual
quality of low-bitrate multimedia content,” IEEE Trans. Mul-
timedia, vol. 8, pp. 973 – 980, 2006.

[15] Meinard Müller, Information Retrieval for Music and Motion,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[16] Robert J. Turetsky and Daniel P.W. Ellis, “Ground-truth tran-
scriptions of real music from force-aligned midi syntheses,”
in In 4th International Conference on Music Information Re-
trieval, 2003, pp. 135–141.

[17] Advanced Television Systems Committee, “Relative timing of
sound and vision for broadcast operations,” ATSC Implemen-
tation Subcommittee Finding, p. 191, June 2003.

[18] Isidor Kouvelas, Vicky Hardman, and Anna Watson, “Lip syn-
chronisation for use over the internet: Analysis and implemen-
tation,” in Proceedings of the IEEE Conference on Global
Communications, GLOBECOM’96, London, UK, 1996, vol. 2,
pp. 893–898.


