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The inharmonicity of vibrating strings can easily be estimated from recordings of isolated tones.
Likewise, the tuning system (temperament) of a keyboard instrument can be ascertained from iso-
lated tones by estimating the fundamental frequencies corresponding to each key of the instrument.
This paper addresses a more difficult problem: the automatic estimation of the inharmonicity and
temperament of a harpsichord given only a recording of an unknown musical work. An initial con-
servative transcription is used to generate a list of note candidates, and high-precision frequency
estimation techniques and robust statistics are employed to estimate the inharmonicity and fun-
damental frequency of each note. These estimates are then matched to a set of known keyboard
temperaments, allowing for variation in the tuning reference frequency, in order to obtain the temper-
ament used in the recording. Results indicate that it is possible to obtain inharmonicity estimates
and to classify keyboard temperament automatically from audio recordings of standard musical
works, to the extent of accurately (96%) distinguishing between six different temperaments com-
monly used in harpsichord recordings. Although there is an interaction between inharmonicity and
temperament, this is shown to be minor relative to the tuning accuracy.

PACS numbers: 43.75.Yy, 43.75.Bc, 43.75.Gh, 43.75.Xz

I. INTRODUCTION

Recent advances in music signal processing and the
speed of desktop computers have facilitated the automa-
tion of many aspects of the analysis of music record-
ings. For example, the extraction of semantic meta-
data such as genre (Tzanetakis and Cook, 2002), key
(Noland and Sandler, 2006), chord (Mauch and Dixon,
2010) and beat (Dixon, 2001) has been a major focus of
the music informatics research community. Such work
has applications in the areas of classification (e.g. or-
ganisation and navigation of music collections), recom-
mendation (e.g. discovery and marketing of new music)
and annotation (e.g. automatic transcription for educa-
tion, musicological research, and music practice), and it
complements traditional research methods in musicology,
enabling more quantitative and larger scale analyses to
be performed. For example, researchers and practiction-
ers of early Western music debate the virtues of various
tuning systems (temperaments) in terms of their theoret-
ical properties (e.g. Di Veroli, 2009), but are unable to
substantiate (or refute) claims about performance prac-
tice with empirical data, having no means of measuring
temperaments from musical recordings.

a)Portions of this work were presented in “High precision frequency
estimation for harpsichord tuning classification”, in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (2010), pp. 61–64.
b)simon.dixon@eecs.qmul.ac.uk

In recent work on keyboard temperament estimation
(Tidhar et al., 2010b), we presented an automatic system
for recognising temperament directly from audio record-
ings of unknown works. Our classifier is capable of dis-
tinguishing, with high accuracy, between six different
temperaments commonly used in harpsichord recordings.
The system did not take proper account of inharmonic-
ity, and thus it was only possible to use a small num-
ber of partials in the fundamental frequency estimation
step. In this paper we extend our previous work to esti-
mate the inharmonicity of each tone, and to propose an
approach for robust estimation of frequency and inhar-
monicity from note mixtures as they occur in standard
musical works.

Building a system to estimate inharmonicity and clas-
sify musical recordings by temperament presents partic-
ular signal processing challenges. First, a high frequency
resolution is required, as the differences between temper-
aments are small, of the order of a few cents (hundredths
of a semitone). For example, if A = 415 Hz is used as
the reference pitch (typical in Baroque Period music),
then middle C might have a frequency of 246.76, 247.46,
247.60, 247.93, 248.23 or 248.99 Hz, based on the six rep-
resentative temperaments described in subsection III.A.
To resolve these frequencies in a spectrum, a window
of several seconds duration would be required, but this
introduces other problems, since musical notes are not
stationary and generally do not last this long. Likewise,
the frequency differences due to inharmonicity are even
smaller for the low order partials of harpsichord tones.

The second problem is that in musical recordings, notes
rarely occur in isolation. There are almost always multi-
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ple notes sounding simultaneously, and this has the po-
tential to bias any frequency estimates. To make mat-
ters worse, the intervals which are favoured in music are
those where many partials coincide. In particular, it can
be difficult to discern whether a spectral peak is a fun-
damental frequency or a partial of another fundamental.
The ability to distinguish between these cases is crucial
to accurate pitch estimation and thus also to successful
inharmonicity determination and temperament classifi-
cation.

For example, suppose the two notes A1 and E3 are
played together (an interval of an octave and a perfect
fifth; a very common interval). Then each partial of E3
will coincide (almost or exactly, depending on the tem-
perament and inharmonicity) with every third partial of
A1. If the tone A1 has a fundamental frequency of 110
Hz, the spectrum will also have a peak at 330 Hz, the
third harmonic of the note A1, but also (if the fifth is
pure) the fundamental frequency of an E. In many tem-
peraments however, the actual note E will have a fre-
quency different from 330 Hz (e.g. 329.6 Hz in equal
temperament), so the estimation of this partial might
be biased either by not being able to resolve the two par-
tials, or if they are resolved, by assigning the partial to
the wrong tone. Inharmonicity further complicates the
situation, as the partials will not be precise integer mul-
tiples of the fundamental, making correct assignment of
partials more difficult.

We therefore require a method for distinguishing peaks
corresponding to fundamental frequencies from those
which are caused by higher harmonics. This would not be
the case if we assumed knowledge of the score, but this is
deliberately avoided in our formulation of the problem, in
order to increase the generality of our algorithms, which
is important for practical applications such as the web
service TempEst (Tidhar et al., 2010a). To avoid the
bias caused by overlapping partials, while circumventing
the problem of full polyphonic transcription, which is still
considered an unsolved problem (Klapuri, 2009), we in-
troduced the concept of conservative transcription, which
entails estimating the “safe” subset of the played notes,
i.e. those whose fundamental frequencies are not harmon-
ics of lower co-occurring frequencies. We have shown that
conservative transcription is applicable in practical situ-
ations, and that it can improve temperament estimation
in recordings of typical harpsichord music (Tidhar et al.,
2010b).

The remainder of the paper is structured as follows.
In the following section we review relevant literature on
temperament, inharmonicity and fundamental frequency
estimation. Then, in section III, we describe the prepa-
ration of test data and the methods used in this work,
consisting of signal and data processing algorithms for
estimating: (1) a conservative transcription of the music;
(2) the frequency of each partial of the transcribed notes;
(3) the inharmonicity and fundamental frequency of each
transcribed note; (4) the tuning of each pitch class rel-
ative to equal temperament; and (5) the temperament
that best matches this pitch class tuning profile. In the
final two sections we present and discuss the experimen-
tal results and the conclusions that can be drawn from

them.

II. BACKGROUND

A. Temperament

During the past two centuries, equal temperament has
been the dominant paradigm for building and describing
musical scales in Western music, but since the latter part
of the twentieth century there has been a revival of inter-
est in historical performance practice of early music on
period instruments, leading to increased attention to his-
torical, unequal temperaments. Theoretical and practical
aspects of temperament are covered thoroughly elsewhere
(Barbour, 2004/1951; Rasch, 2002; Di Veroli, 2009), so
we address them only briefly here.

The study of musical consonance has a history extend-
ing back at least as far as Pythagoras in the sixth cen-
tury BC, with numerous theoretical frameworks being
proposed (von Helmholtz, 1863; Lundin, 1947; Terhardt,
1977; Sethares, 1999; Palisca and Moore, 2010; McDer-
mott et al., 2010). Common to most of these frameworks
is the recognition that listeners prefer sounds with har-
monic spectra and without beats. For combinations of
musical sounds with harmonic spectra, the sensation of
consonance correlates to small integer frequency ratios
between fundamental frequencies, and specifically super-
particular ratios of the form n+1

n where n ≤ 5 (corre-
sponding to the following pure intervals: octave, perfect
fifth, perfect fourth, major third and minor third, for
successive values of n). Continuous-pitch instruments
and singers can dynamically adapt their intonation to
form perfectly consonant intervals if required, but fixed-
pitch instruments such as keyboard, some fretted, and
some percussion instruments, need to commit to a tun-
ing scheme for the duration of a piece, if not an entire
concert. In the Western musical tradition at least, this
gives rise to the need for temperament, because it is not
possible to accommodate all pure intervals within the
small set of pitch classes available.

The two most consonant intervals are the octave (fre-
quency ratio 2:1) and perfect fifth (frequency ratio 3:2).
In Western music these correspond to intervals of 12 and
7 semitones respectively. From a given starting note,
either a succession of 7 octave steps or a succession of
12 perfect fifth steps will lead to the same note, despite
the fact that ( 3

2 )12 6= 27. The ratio of the two sides
of this inequality (approximately 1.0136) is called the
Pythagorean comma, and one way of considering tem-
perament is according to the distribution of this comma
around the cycle of fifths. For example, in equal temper-
ament, all fifths are diminished by 1

12 of a comma relative
to the pure ratio 3:2.

Determining a temperament can thus be regarded as
an optimisation problem, whereby keeping the octaves
pure is a constraint, and various considerations lead
to different compromises between pureness of fifths and
pureness of major thirds. Among these considerations
are the key, or set of keys, which should “work well” in
the given temperament; a temperament is considered to
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work well for a given key if the most frequent harmonic
intervals in the key (major thirds and to some extent
fifths, most notably in tonic and dominant positions) are
close to their pure underlying frequency ratios, and are
therefore perceived as consonant. Temperaments which
work well for most keys, and are bearable in all keys,
are referred to as well temperaments. Temperaments in
which all fifths but one or two are equal to each other,
are called regular temperaments. Equal temperament is
the only temperament which is both regular and well.

B. Inharmonicity

There are two main strands of research regarding in-
harmonicity in string instruments: investigation of the
physical and acoustical properties of vibrating strings;
and psychoacoustic studies relating to the perceptibility
or otherwise of inharmonicity. Perceptual studies involv-
ing inharmonicity are important for understanding and
developing models of pitch perception, and they bear rel-
evance for the implementation of synthesis algorithms
which aim to artificially recreate the natural sound of
string instruments.

Early work on acoustics investigated the phenomenon
that vibrating strings have partials at frequencies which
are slightly greater than integer multiples of the funda-
mental frequency (Shankland and Coltman, 1939; Young,
1952). The inharmonicity of metal strings is due to two
main factors: stiffness of the string and the amplitude
of vibration (Shankland and Coltman, 1939); in the case
of musical instruments, stiffness accounts for most of the
inharmonicity. For a string with (ideal) fundamental fre-
quency f0 and inharmonicity constant B, the frequency
fk of the kth partial is given by (Fletcher, 1964):

fk = kf0
√

1 +Bk2 (1)

where the constants f0 and B are determined by the
physical properties of the string. This inharmonicity con-
tributes to the characteristic sound of the piano (Fletcher
et al., 1962), but is significantly less pronounced on
the harpsichord (Fletcher, 1977) so that it has been
described as “nearly negligible” (Fletcher and Rossing,
1998, p. 343). Välimäki et al. (2004) cite measured val-
ues of B ranging from 10−5 to 10−4 and show that mod-
elling of inharmonicity is essential for realistic synthesis
of harpsichord tones. Earis et al. (2007) report similar
results for measurements of inharmonicity constants, giv-
ing a slightly higher upper limit of 1.2 × 10−4. Rauhala
et al. (2007) present an efficient iterative algorithm for
estimating B given a recorded tone and its approximate
fundamental frequency.

Various studies have investigated the effects of inhar-
monicity on pitch perception. Moore et al. (1985) found
that in artificial mixtures, even a single inharmonic par-
tial in an otherwise harmonic tone influenced the overall
perception of pitch, lending support to a model in which
residue pitch is a weighted average of the pitch cues pro-
vided by each partial. The experimentally determined
weights of each partial varied between subjects, but in all

cases were significant for only the first six partials. An-
derson and Strong (2005) synthesised inharmonic com-
plex tones based on parameters obtained from the analy-
sis of piano tones, and asked listeners to match their pitch
to synthesised harmonic tones having the same spectral
and temporal envelopes. Their results showed a correla-
tion between the inharmonicity coefficient B (obtained
using a weighted least squares fit) and the perceived
pitch shift relative to the fundamental. Järveläinen et al.
(2001) investigated the threshold of audibility of inhar-
monicity for synthetic piano-like tones and found that
the threshold increased with fundamental frequency in
a linear relationship when B and f0 are both expressed
on a logarithmic scale. They concluded that the inhar-
monicity normally present in piano tones is audible, par-
ticularly at lower pitches, but that it nears the threshold
at higher pitches.

C. Fundamental Frequency Estimation

In the vast literature on estimation of fundamental fre-
quency and pitch, there is no single algorithm which is
suitable for all signals and applications. Methods are re-
viewed elsewhere (de Cheveigné, 2006; Klapuri and Davy,
2006, chapters 7 and 8), but we summarise here the lim-
itations of many current systems for music signal pro-
cessing applications (Gerhard, 2003). First, assumptions
are made about the signal which do not hold for most
music signals, such as: that the input signal at any point
in time consists of a single pitched tone (monophonic-
ity); that the properties of the signal are stable over the
duration of analysis (stationarity); and that the proper-
ties of the input signal (e.g. the instrument or class of
instrument) are known or match a small set of allowed
instruments. Second, fundamental frequency estimation
is often equated to pitch estimation, ignoring the influ-
ences of inharmonicity and human perception, although
some recent multi-pitch analysis methods do take inhar-
monicity into account (Klapuri, 2003; Emiya et al., 2010;
Benetos and Dixon, 2010). Finally, even for music analy-
sis systems, frequency resolution is rarely much finer than
one semitone, and few papers discuss the issues related
to determining frequency at the resolution required for
measuring temperament or inharmonicity, where differ-
ences of a few cents are decisive.

For our purposes, time-domain pitch estimation meth-
ods such as ACF and YIN (de Cheveigné and Kawahara,
2002) are unsuitable due to the bias caused by the pres-
ence of multiple simultaneous tones. Thus we choose
a frequency domain technique which gives sufficient fre-
quency resolution: the FFT with quadratic interpolation
(Smith and Serra, 1987) and correction of the bias due to
the window function (Abe and Smith, 2004). These tech-
niques are described in more detail in subsections III.B
and III.C respectively. In previous work we showed that
this combination of methods is suitable for estimating
temperament and that it outperforms instantaneous fre-
quency estimation using phase information (Tidhar et al.,
2010b). More advanced estimation algorithms which ad-
mit frequency and/or amplitude modulation (Wen and

Harpsichord Inharmonicity & Temperament Estimation 3



Sandler, 2009) were deemed unnecessary.

III. METHOD

A. Data

Obtaining ground-truth data for the evaluation of
temperament and inharmonicity estimation algorithms
presents several difficulties. Most commercially available
recordings do not specify the harpsichord temperament,
and even those that do might not be completely reliable
because of a possible discrepancy between tuning as a
practical matter and tuning as a theoretical construct.
In practice, the tuner’s main concern is to facilitate play-
ing, and time limitations very often compromise preci-
sion. We therefore chose to produce our own test dataset
consisting of both real and synthesised harpsichord mu-
sic. The synthesised data ensures that the temperament
is precise, but might not replicate the timbre of a harpsi-
chord (e.g. coupling between strings) and typical record-
ing conditions (e.g. reverberation and noise).

The real harpsichord recordings were played by Dan
Tidhar on a Rubio double-manual harpsichord in a small
hall. The synthesised recordings were performed on a
digital keyboard by Dan Tidhar and rendered from MIDI
files using the physical modelling synthesis software Pi-
anoteq (Pianoteq, 2010). For each of the six tempera-
ments (see below) and two rendering alternatives (real
vs synthesised), four musical excerpts were recorded (i.e.
a total of 48): a slow ascending chromatic scale, chosen
as a baseline for comparison; J.S. Bach’s Prelude 1 in
C Major from the Well-tempered Clavier ; F. Couperin’s
La Ménetou from Pièces de Clavecin, Septième Ordre;
and J.S. Bach’s Variation 21 from the Goldberg Varia-
tions. The choice of pieces encompasses various degrees
of polyphony, various degrees of chromaticism, as well as
various speeds. The tuning reference frequency for all
recordings was approximately A=415Hz.

The following six temperaments were used: equal
temperament (ET), Vallotti (V), fifth-comma (FC),
quarter-comma meantone (QCMT), sixth-comma mean-
tone (SCMT), and just intonation (JI). The properties
of these temperaments are shown graphically in Figure 1
and described briefly below. In equal temperament, each
of the fifths is diminished by 1

12 of a comma, so that the
frequency ratio between successive semitones is always
21/12. In a Vallotti temperament, 6 of the fifths are di-
minished by 1

6 of a comma each, and the other 6 fifths
are left pure. In the fifth-comma temperament we used,
five of the fifths are diminished by a 1

5 comma each, and
the remaining 7 are pure. In a quarter-comma mean-
tone temperament, 11 of the fifths are shrunk by 1

4 of
a comma, and the one remaining fifth is 7

4 of a comma
larger than pure. In sixth-comma meantone, 11 fifths are
shrunk by 1

6 of a comma, and the one remaining fifth is 5
6

comma larger than pure. The just-intonation tuning we
used is based on the reference tone A, and all other tones
are calculated as simple integer fundamental frequency
ratios. The ratios are given by the following vector, rep-
resenting the twelve chromatic tones above the reference

TABLE I. Deviations (in cents) from equal temperament
for the five unequal temperaments (V: Vallotti; FC: Fifth
Comma; QCMT: Quarter Comma Meantone; SCMT: Sixth
Comma Meantone; JI: Just Intonation) used in this work.

Note V FC QCMT SCMT JI

C 5.9 8.2 10.3 4.9 15.6

C]/D[ 0.0 -1.6 27.4 13.0 -13.7

D 2.0 2.7 3.4 1.6 -2.0

D]/E[ 3.9 2.3 20.5 9.8 -9.8

E -2.0 2.0 -3.4 -1.6 2.0

F 7.8 6.3 13.7 6.5 13.7

F]/G[ -2.0 -3.5 -10.3 -4.9 -15.6

G 3.9 5.5 6.8 3.3 17.6

G]/A[ 2.0 0.4 24.0 11.4 -11.7

A 0.0 0.0 0.0 0.0 0.0

A]/B[ 5.9 4.3 17.1 8.1 11.7

B -3.9 -0.8 -6.8 -3.3 3.9

A: { 16
15 ,

9
8 ,

6
5 ,

5
4 ,

4
3 ,

45
32 ,

3
2 ,

8
5 ,

5
3 ,

9
5 ,

15
8 ,

2
1}. The deviations (in

cents) from equal temperament of the five other temper-
aments we use are given in Table I. Apart from being
relatively common, this set of six temperaments repre-
sents different categories: Equal temperament is both
well and regular, just intonation is neither well nor regu-
lar, Vallotti and fifth-comma are well and irregular, and
the two variants of meantone (quarter and sixth comma)
are regular but not well.

B. Conservative Transcription

The ideal solution for estimating the fundamental fre-
quencies of each of the notes played in a piece would re-
quire a transcription step to identify the existence and
timing of each note. However, no reliable automatic
transcription algorithm exists. Therefore we developed a
two-stage approach in order to obtain accurate estimates
of fundamental frequency and inharmonicity of unknown
notes in the presence of multiple simultaneous tones. The
first stage is a conservative transcription, which identi-
fies the subset of notes which are easily detected, omit-
ting any unsure candidates. In other words, it obtains
a high precision (fraction of transcribed notes that are
correct) at the cost of low recall (the fraction of played
notes that are transcribed). The second stage is an ac-
curate frequency domain f0-estimation step for the notes
determined in the first stage. We take advantage of the
fact that we do not need to estimate the pitch of each
and every performed note, since the tuning of the harpsi-
chord is assumed not to change during a piece, and there
are usually multiple instances of each pitch from which
frequency estimates can be computed.

Conservative transcription consists of three main
parts: computation of frame-wise amplitude spectra
with a standard STFT; sinusoid detection through peak-
picking, which yields a set of initial frequency estimates;
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FIG. 1. Cycle of fifths representations for each of the temper-
aments used in this paper. The distance of the dark segments
from the centre of the circle represents the deviation from pure
fifths (the light circle). The fractions specify the distribution
of the comma between the fifths.

and finally the deletion of sinusoids that have a low con-
fidence, either because they are below an amplitude or
duration threshold, or because they could be overtones
of a different sinusoid. We describe the deletion of candi-
date sinusoids as “conservative” since not only overtone
sinusoids, but also some of the sinusoids that correspond
to fundamental frequencies could be deleted in this step.

The sinusoid detection is a simple spectrum-based
method. From the time-domain signal, downsampled
from fs = 44100 Hz to f ′s = 11025 Hz, we compute
the STFT X(n, i), where n is the frame index and i the
frequency bin index, using a Hamming window, a frame
length of 4096 samples (370 ms), a hop size of 256 sam-
ples (23 ms, i.e. 15

16 overlap), and a zero padding factor of
2 (i.e. FFT size N = 8192). In fast passages, the window
will contain multiple sequential notes, but the negative
effect of this is balanced by the greater frequency reso-
lution. The use of a Hamming window rather than the
Blackman-Harris window used in subsection III.C is not
critical.

In order to detect each of the partials we first iden-
tify peaks in the amplitude spectrum |X(n, i)| using two
adaptive thresholding techniques. To find locally signif-
icant bins of frame n, we calculate the moving weighted
mean µ(n, i) and the moving weighted standard deviation
σ(n, i) of |X(n, i)| using a window of length 200 bins. If
a spectral bin |X(n, i)| exceeds the moving mean plus
half a moving standard deviation we consider it a locally
salient bin:

|X(n, i)| > µ(n, i) + 0.5 · σ(n, i). (2)

To eliminate noise peaks at low amplitudes we consider as
globally salient only those bins which have an amplitude
not more than 25dB below that of the global maximum
bin amplitude:

|X(n, i)| > 10−2.5 ·max
u,v
{|X(u, v)|}. (3)

We consider only those bins that are both locally and
globally salient, i.e. both inequalities (2) and (3) hold.
From each region of consecutive peaks we pick the bin
that has the maximum amplitude and estimate the true
frequency by quadratic interpolation of the log mag-
nitude of the peak bin and its two surrounding bins
(Smith and Serra, 1987; Smith, 2010), as follows. Sup-
pose ap = log |X(n, p)| is a local peak in the log mag-
nitude spectrum, that is, ap−1 < ap < ap+1 (where we
drop the time index n for convenience). Then the three
points (−1, ap−1), (0, ap), and (1, ap+1) uniquely define a
parabola with maximum at:

δ =
ap−1 − ap+1

2(ap−1 − 2ap + ap+1)
, (4)

where −0.5 ≤ δ ≤ 0.5 is the offset from the integer bin
location p, so that the quadratically interpolated peak
frequency is given by (p+δ)f ′

s

N .
The next step is the “conservative” processing, in

which we delete many potential fundamental frequencies.
For each peak frequency f0, any other peak whose fre-
quency is within 50 cents of a multiple of f0 is deleted.
Peaks in the same frequency bins as those deleted, in a
neighbourhood of±2 frames, are also deleted. For testing
the efficacy of this approach, we compare it with an oth-
erwise identical method which treats all spectral peaks
as if they were fundamentals (see section IV).

In order to sort the remaining frequency estimates into
semitone bins we determine the standard pitch f st by
taking the median difference (in cents) of those peaks
that are within half a semitone of the nominal standard
pitch (415 Hz). Based on the new standard pitch f st each
peak frequency is assigned to one of 45 pitches ranging
from MIDI note 36 (C2) to 80 (G]5). Any frequency
peaks outside of this range are deleted.

In order to discard spurious data we delete any peaks
which lack continuity in time, i.e. where the continuous
duration of the peak is less than a threshold T . Results
for various values of T were compared in previous work
(Tidhar et al., 2010b); in this paper we use T = 0.3s.
Remaining consecutive peaks are grouped as notes, spec-
ified by onset time, duration, and MIDI pitch number.
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C. Partial Frequency Estimation

For each note object w given by the conservative tran-
scription, an initial estimate of the frequency fwk of par-
tial k is computed using equation 1, the fundamental fre-
quency found in the conservative transcription stage and
an estimate of the inharmonicity factor B. Initially B is
set to 2 × 10−5, but after the first run of the algorithm,
this is replaced by a frequency-dependent estimate of B
(see subsection III.D below). We then perform STFT
analysis using the following parameters: fs = 44100 Hz,
no downsampling, Blackman-Harris window with sup-
port size of 4096 samples, zero padding factor z = 4
(N = 16384), and hop size of 1024 samples. For each
partial frequency, a spectral peak in a window of ±30
cents around fwk is found and the peak location is refined
using quadratic interpolation (see subsection III.B). Af-
ter quadratic interpolation, a bias correction is applied
based on the window shape and zero padding factor (Abe
and Smith, 2004, equations 1 and 3):

δ′ = δ + ξzδ(δ − 0.5)(δ + 0.5) (5)

where δ′ is the bias-corrected offset in bin location, δ
is the quadratically interpolated offset (equation 4), z
is the zero-padding factor, ξz = c0z

−2 + c1z
−4 is the

bias correction factor and the constants c0 = 0.124188
and c1 = 0.013752 were determined empirically for the
Blackman-Harris window by Abe and Smith (2004, table
1). If no peak is found in the search window, that par-
tial and frame combination is ignored. For each note and
frame of the note’s duration (as estimated by the con-
servative transcription step), the frequency of the first
40 partials f1, ..., f40 is estimated. From these values the
fundamental frequency and inharmonicity can be deter-
mined.

D. Inharmonicity Estimation

Given the frequencies fj and fk of any two partials j
and k, equation 1 can be rearranged to obtain an estimate
of B:

Bj,k =
j2f2

k − k2f2
j

k4f2
j − j4f2

k

. (6)

The frequency estimates obtained above are only accu-
rate if there is no interference from partials of other tones.
Although we avoid some cases of interference using con-
servative transcription, it does not cover all cases, and
the prevalence of musical intervals involving coincident
or overlapping partials makes it impossible to avoid in-
terference entirely. To mitigate the effects of these errors
we use robust statistics to discard outliers and obtain
our final estimate of the inharmonicity of each note. The
median is a suitably robust measure of central tendency
in the presence of measurement noise, unlike the mean
which is prone to bias from outliers. B is therefore es-
timated as the median of all Bj,k values, where values
from successive frames of a single note are included in
the median computation. We also compute a measure

of the reliability of this estimate using the inter-quartile
range (IQR), defined as the difference between the third
and first quartiles. The IQR is chosen because it is a ro-
bust measure of the statistical dispersion of the data, as
it is less susceptible to outliers than measures such as the
standard deviation. Having obtained a single value of B
for each note, we iterate the partial frequency and inhar-
monicity estimation stage using the newly estimated B to
guide the search for spectral peaks (see subsection III.C
above) until they converge, or if they fail to converge the
iteration is terminated after ten steps. Approximately
40% of note estimates converge immediately, 20% require
a further one or two steps, and 25% are terminated after
ten steps.

E. Integration of Partial Frequency Estimates

Once the inharmonicity of a string has been estimated,
each partial frequency provides an independent estimate
f̂0(k) of the theoretical fundamental, by substitution in
equation 1. (The theoretical fundamental would be the
fundamental frequency of the string if it had no stiffness;
the first partial is sharper by a factor of

√
1 +B.) To

obtain a robust value, we take a single median over all
frames and partials, and compute the inter-quartile range
as an inverse measure of confidence in the estimate. The
output of this stage is a list of frequency and inharmonic-
ity estimates, together with their inter-quartile ranges,
for each note identified by the conservative transcription
algorithm, where the transcribed notes are described by a
MIDI note number, onset time and duration di (where i
is the index of the note). By ignoring the octave, the
MIDI note number can be converted to a pitch class
pi ∈ P = {C,C#, D, . . . , B}. The corresponding fre-
quency estimates are also converted to deviation ci from
equal temperament, measured in cents.

F. Classification

To test the fundamental frequency estimation we use
the deviations ci to classify the 48 recordings by the tem-
perament from which they differ least in terms of the the-
oretical profiles shown in Table I. For each pitch class k
the estimate ĉk of the deviation in cents is obtained by
taking the weighted mean of the deviations over all the
notes belonging to that pitch class:

ĉk =

∑
i:pi=k

ciwi

uk
, k ∈ P, (7)

where the note weight wi = di

qi
is the quotient of the note

duration di and the inter-quartile range qi of the funda-
mental frequency estimates for note i, and the pitch class
weight uk for pitch class k is given by uk =

∑
i:pi=k

wi.
Given this estimate ĉ = (ĉ1, . . . , ĉ12) and a temperament
profile c0 = (c01, . . . , c

0
12), we calculate the divergence

d(ĉ, c0) =
∑
k∈P

vk(ĉk − c0k − r)2 (8)
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between estimate and profile, where vk =(
uk
/∑

i∈P ui
)2 is the squared relative weight

of the kth pitch class in the note list, and
r =

∑
i∈P vi(ĉi − c0i )/

∑
i∈P vi is the offset in cents

which minimises the divergence and thus compensates
for deviations in the reference tuning frequency (pitch
A4) from the 415 Hz reference assumed in previous
calculations. A piece is classified as having the temper-
ament whose profile c0 differs least from it in terms of
d(ĉ, c0).

The weight vi favours pitch classes that have longer
cumulative durations and lower inter-quartile ranges. In
particular, any pitch classes that are not in the note
list are discarded. For the four pieces selected, all pitch
classes are present, but the distribution is uneven. For
example, in the score of the Bach Prelude, the frequen-
cies of occurrence of each pitch class range from 4 notes
(C] and A[) to 113 notes (G).

IV. RESULTS

A. Inharmonicity

Figure 2 shows the inharmonicity factor B for each
tone detected for a real (left) and a synthesised (right)
recording of Goldberg Variation 21 (using Vallotti tem-
perament). The two graphs show similar trends in inhar-
monicity, which increases with decreasing string length
(B is inversely proportional to the fourth power of string
length). The synthesised harpsichord exhibits a slightly
steeper curve, with the difference visible on the manually
fitted curves. The range of values (10−5 to 10−4) agrees
with those published elsewhere (Välimäki et al., 2004).
Most of the outliers are notes for which the intra-note
agreement is low (represented by the size of the circles).

B. Fundamental Frequency Estimation

Using the known temperament for each recording, we
compare the measured deviations from equal tempera-
ment with the corresponding expected values from Ta-
ble I, and report the errors as the mean absolute differ-
ences (in cents) across various data sets in Table II. First,
we show the errors across all recordings with and without
conservative transcription. Using spectral peaks (SP) as
fundamentals, the mean absolute error is 2.1 cents, com-
pared to 1.5 cents using conservative transcription (CT).
As in previous work, conservative transcription has a pos-
itive impact on results. The remaining results are based
on the conservative transcription results only. The sec-
ond section shows the effect of audio source: real and
synthesised harpsichord. For the real harpsichord (RH),
the mean absolute error is 2.4 cents, as compared with 0.6
cents for synthesised (PT) recordings. It is not possible
to say whether this reflects inaccuracies in the tuning (ei-
ther due to the limits of tuning ability or the instrument
going out of tune after tuning), or the greater difficulty
of signal processing due to the more complex timbres,
room reverberation and noise inherent in any acoustic

TABLE II. Comparison of the influence of four factors on the
mean absolute difference between measured pitch and the cor-
responding temperament profiles. All values are in cents (hun-
dredths of a semitone). The four factors are: Transcription
(SP: using all spectral peaks; CT: using only peaks identified
by the conservative transcription algorithm); Instrumental
Source (RH: recordings of a real harpsichord; PT: recordings
from the Pianoteq synthesiser); Temperament (ET: Equal
Temperament; V: Vallotti; FC: Fifth Comma; QCMT: Quar-
ter Comma Meantone; SCMT: Sixth Comma Meantone; JI:
Just Intonation); and Musical Piece (Chrom: one-octave chro-
matic scale; Prel: J.S. Bach’s Prelude 1 in C Major; Mén: F.
Couperin’s La Ménetou; Var21: J.S. Bach’s Goldberg Varia-
tion 21).

Transcription SP: 2.1 CT: 1.5

Instrumental Source RH: 2.4 PT: 0.6

Temperament ET: 1.2 FC: 1.6

JI: 4.2 QCMT: 3.6

SCMT: 1.2 V: 2.8

Piece Chrom: 2.2 Prel: 2.5

Mén: 2.8 Var21: 2.1

recording. The greater spread of deviations (see below)
does not necessarily imply the latter interpretation, as
each pitch class consists of a set of notes from different
octaves, which could vary in their deviation values due to
tuning imprecision. The third set of results, by temper-
ament (for the real harpsichord recordings), shows some
differences which suggest some variability in the accu-
racy of tuning across the different temperaments, with
Just Intonation, Quarter Comma Meantone and Vallotti
tunings being less accurate than the other tunings.

The final set of results (by piece, for the real harp-
sichord recordings) reveals some unexpected differences.
The slow chromatic scale, selected as a baseline since it
consists only of individual notes, yielded results slightly
worse than those of the Bach Goldberg Variation 21, a
polyphonic piece. Likewise the error for the Bach Pre-
lude, where only one note at a time is played (although
the notes do overlap) was higher than both of these, while
the more complex and highly ornamented Couperin piece
had the highest average error, as expected. Two known
factors contribute to the unexpected ranking: the con-
servative transcription algorithm selects suitable notes
for the frequencies of partials to be measured, compen-
sating at least in part for the complexity of the piece; and
the chromatic scale has only one instance of each pitch
class (except the initial and final C), whereas the other
pieces have many instances of each pitch class, allowing
more robust estimates to be made, despite the interfering
notes.

To indicate the spread of errors in pitch deviation es-
timation on a per-note basis, figure 3 shows the results
for the Vallotti temperament recordings of the Goldberg
Variation 21. The fundamental frequency difference of
each measured note relative to the same note in equal
temperament is shown, compared with the expected val-
ues for the Vallotti temperament in the staircase plots.
Fundamental frequencies appear on the horizontal axis,

Harpsichord Inharmonicity & Temperament Estimation 7
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FIG. 2. Inharmonicity factor B as a function of pitch in MIDI (semitone) units for a real harpsichord (left) and the Pianoteq
synthesiser (right). The data was extracted fully automatically from recordings of Bach’s Goldberg Variation 21. Each circle
represents a note, where the size represents the confidence, computed from the inter-quartile range (larger sizes represent
smaller IQRs).

mapped to their pitch class, and the frequency difference
from equal temperament is shown in cents on the vertical
axis.

C. Classification Results

Table III shows classification results for various ver-
sions of the algorithm. The first row shows previous re-
sults (Tidhar et al., 2010b, method M-CQIFFT), where
inharmonicity was ignored, and the median of fk

k val-
ues for the first 12 harmonics was used as an estimate
of the fundamental frequency. The second row contains
results for estimation of B using equation 1 without any
iteration, while up to ten iterations of the fundamental
frequency and inharmonicity estimation algorithm were
performed to obtain the results in the third row. The
final row shows the additional effect of early deletion
of any partials whose inharmonicity estimates are more
than half the inter-quartile range from the median. For
all cases, short note deletion was employed, so that notes
with a transcribed length less than 0.3s were not used.

The classification results confirm that automatic tem-
perament recognition can be performed with a high level
of accuracy for the chosen set of temperaments. The indi-
vidual differences between methods are less informative,
as they involve the reclassification of a very small number
of items. Figure 4 shows this more clearly, where the di-
vergence d(ĉ, c0) is shown for all six temperaments for the
real harpsichord (left) and synthesised (right) recordings
of Couperin’s La Ménetou. In the cases where misclassifi-
cation occurs, the divergence of the correct temperament
is very close to that of the winning temperament.

TABLE III. Percentage of recordings automatically classified
with the correct temperament. The columns correspond to
the use of the 24 recordings of real harpsichord (RH) and the
24 recordings synthesised with Pianoteq (PT), preprocessed
with spectral peak detection (SP) or conservative transcrip-
tion (CT) respectively. The rows correspond to four different
approaches to inharmonicity estimation: none (ICASSP’10);
using one (Single Iteration) or up to ten (Multiple Iterations)
iterations of the fundamental frequency and inharmonicity al-
gorithm; and multiple iterations with prefiltering of the data
by Outlier Deletion.

Data Type: RH PT

Overtone Removal: SP CT SP CT

ICASSP’10 79 92 88 96

Single Iteration 75 88 96 100

Multiple Iterations 79 92 96 100

Outlier Deletion 79 83 100 100

V. DISCUSSION AND CONCLUSION

In matching the measured frequencies to theoretical
definitions of temperaments, we have used a model of
temperament which ignores inharmonicity. That is, a
pure fifth is defined as a frequency ratio of 3

2 between
fundamental frequencies, rather than the fundamental
frequency ratio for which the third harmonic of the lower
tone corresponds to the second harmonic of the higher
tone. The latter definition would correspond better to
tuning practice (where a beat-free fifth would be consid-
ered pure). Likewise, by grouping all notes within a pitch
class, we assume that octaves are not stretched.

It is straightforward to compute the effect of making
this assumption, given the values of B for each note,
as estimated in this work. For two tones i and j with

Harpsichord Inharmonicity & Temperament Estimation 8
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FIG. 3. Pitch difference in cents relative to equal temperament, as measured from two recordings of Variation 21 from the
Goldberg Variations using Vallotti temperament (left: harpsichord; right: synthesised). Each circle represents a note, where
the size represents the confidence. The staircase plot shows the expected values for the Vallotti temperament.
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FIG. 4. Divergence d(ĉ, c0) between measured and theoretical temperaments for the real harpsichord (left) and synthesised
(right) recordings of Couperin’s La Ménetou (see equation 8). The actual temperament is shown on the horizontal axis, and
the divergence on the vertical axis. Horizontal lines mark the divergence of the correct temperament in each case.

inharmonicity coefficients Bi and Bj respectively, tuned
to a frequency ratio q : p (so that the frequency of the pth
partial of i is equal to the frequency of the qth partial of
j), the deviation D in cents of the fundamental frequency
ratio from the ratio q : p is given by:

D(i, j, p, q) = 1200 log2

(√
1 + p2Bi√
1 + q2Bj

)
. (9)

Using our estimates of B, this deviation is less than 0.1
cent for octave intervals (ratio 1:2), 0.25 cent for fifths
(ratio 2:3), and 0.5 cent for major thirds (ratio 4:5),
across the whole range of the harpsichord. If the top
octave is not used, the maximum deviations are smaller
by a factor of 5. These deviations are small compared to
our precision in frequency estimation, and thus do not
adversely affect our results.

We have shown that given a standard recording of a
musical work for solo harpsichord, it is possible to es-

timate the inharmonicity of each key and ascertain the
tuning of each pitch class with a precision of 1–2 cents,
which appears to be no worse than the precision of tun-
ing the instrument. One of the difficulties in this work
is the lack of ground truth data against which more ex-
tensive testing could be performed. In future work, we
plan to expand our data set to include more pieces and
temperaments, and to use our system in a large-scale
analysis of historical harpsichord recordings. This will
extend existing knowledge of inharmonicity by gathering
measurements from many instruments, and inform the
study of historical music performance by analysis of the
temperaments employed in the recordings.
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de Cheveigné, A. (2006). “Multiple f0 estimation”, in Com-
putational Auditory Scene Analysis: Principles, Algorithms
and Applications, edited by D. Wang and G. Brown, 45–79
(IEEE Press/Wiley, Piscataway, NJ).
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