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ABSTRACT

This paper investigates techniques for determining the repeti-
tion structure of musical audio. In particular, we consider the
problem of determining segment similarity from the perspec-
tive of time series prediction, where we seek to quantify sim-
ilarity in terms of pairwise predictability between segments.
To this end, we propose a novel approach based on multivari-
ate time series modelling of audio features.

Using chroma and MFCC features and based on the as-
sumption that correct segment boundaries have been previ-
ously obtained, we evaluate the proposed approach against the
Beatles dataset. We consider both Queen Mary and Tampere
University versions of dataset annotations. We obtain a max-
imum pairwise F-score of 84%. Compared to a randomised
baseline approach, this result corresponds to a performance
improvement of 26 percentage points.

1. INTRODUCTION

In the field of music information retrieval, continued prolif-
eration of music stored in digital audio format has been fre-
quently cited as one impetus behind developing techniques
for music signal analysis [1]. To the observer, the potential of
developing techniques for automatically identifying musical
attributes related to timbral, melodic, harmonic or rhythmic
facets, is particularly apparent in the creation of large-scale
music databases: Here, music signal analysis allows for novel
applications in automated music search and recommendation
systems which do not rely on manual annotation as a source
of information.

In particular, the task of music structure analysis has re-
cently received an increasing amount of attention in the liter-
ature [2]. In the context of music signal analysis, music struc-
ture analysis refers to identifying temporal structure at a time
scale corresponding to the sectional form of a piece of music,
where the notion of sectional form is applicable to a number
of musics, including Western popular music. Music structure
analysis lends itself to potential applications including music
content navigation, fingerprinting and clustering [3]. Particu-
larly relevant to music summarisation are applications such as
chorus detection and thumbnailing, which may be facilitated
by selecting a frequently occurring audio segment [4].

In this work, we propose a novel approach for detecting
repetition in a piece of music, an important characteristic of
temporal structure and a prerequisite for identifying sectional
form. We motivate our approach considering the role of ex-
pectation in music listening [5]. In this view, we examine the

problem of determining musical similarity in terms of predic-
tion: We use a model of the statistics in musical time series,
where the pairwise predictability of one time series relative
to another allows us to quantify the probability of sequence
repetition.

In music structure analysis, existing techniques for detect-
ing repetition have widely featured self-similarity matrices
[6], a form of recurrence plot obtained from a time-evolving
sequence of feature vectors extracted from musical audio. In
this approach, repeated musical sequences are manifest as di-
agonal lines in the self-similarity matrix, which may be iden-
tified using image processing techniques. An alternative class
of approaches utilises clustering techniques to determine re-
gions of homogeneity, where repeated sequences are identi-
fied by considering the mapping of sequences onto clusters
[7]. In this formulation, techniques have been proposed based
on hidden Markov models and histogram clustering [8].

In this work, the use of piecewise linear predictive mod-
els to aggregate statistics in sequences of feature vectors
bears resemblance to the approach to music structure analy-
sis proposed in [9], where sequences of feature vectors are
parametrised using linear dynamical systems. With regard
to estimating structural similarity using measures of pairwise
predictability, [10] describes an evaluation of both linear and
non-linear techniques for the problem of identifying ‘cover
songs’, which may be defined as renditions of previously
recorded music. Finally, note that multivariate time series
modelling has been previously applied in diverse settings,
including object boundary detection [11].

2. PROBLEM DEFINITION

Assume that we have a time series V = (v1,va,...,VN),
corresponding to acoustic features observed at times 1, ..., V.
Each vector is a member of /-dimensional feature space, with
v € R’. The problem of inferring musical structure entails
determining a set S = {s1,...,sx} of K segments. Each
segment consists of a subset of observation times, so that for
the kth segment we have s, = {cr + 1,..., ¢, + Ni}, with
s, €5,0<c¢, < Nand1l < ¢, + N < N. The set S is
required to be a partition of the integers {1,..., N}, so that
segments are non-overlapping and the segmentation covers
the entire piece. Segment boundaries are a description of a
piece’s sectional form and since intervals between segment
boundaries are typically large, it follows that |S| << N. The
process referred to as music structure analysis may be firstly
viewed as the process of determining segment boundaries
sk. In a second process, segments are grouped according to



musical function: Assuming that a piece of music may be de-
scribed in terms of a verse-chorus structure, a valid grouping
might assign all segments corresponding to instances of the
chorus to a single group. Formally, we can define a surjection
1:S—{1,...,L}, with L < K. Then, the image of [ yields
information on which segments share identical function and
which segments are distinct, in terms of sectional form. The
set G, = {s € S :l(s) = n} denotes all segments belonging
to the nth group.

3. PROPOSED APPROACH

In this work, we assume that segment boundaries are given
and that the task is to group identical segments. Our approach
consists of three steps:

e Segment-wise predictive modelling of feature vector
time series

e Accumulation of pairwise prediction accuracy between
segments

e Segment clustering based on prediction accuracy

Let us consider with o : S x § — R a distance func-
tion on pairs of segments. Intuitively, o should express the
amount of temporal structure shared between segments; it
should discriminate strongly between pairs of segments ob-
tained from the same group, versus segments obtained from
different groups.

3.1. Predictive models

Our approach is based on predicting the sequence of feature
vectors contained in segment s,., with respect to a model es-
timated on segment s,. We hereafter refer to this process
as cross-prediction. In this view, cross-prediction accuracy
quantifies pairwise similarity between segments. One means
of predicting the sequence of feature vectors is to assume a
vector autoregressive (VAR) model [12], where any given ob-
servation vy is expressed as a linear combination of imme-
diately preceding observations vi_ s, Vi pf+1, - - -, Vi—1, SO
that

M
V= AmViem +1ite. (M

m=1

In Equation 1, matrices A, parametrise the dependence be-
tween v; and its predecessor at lag m. The model order is
specified by M and residuals r; are assumed to have been
generated by a multivariate Gaussian noise process with zero
mean. The intercept vector ¢ denotes the multivariate process
mean.

We denote with v, ,, the nth component of v;. Assuming
independence between components, matrices A, are diago-
nal. The VAR model is then equivalent to a component-wise
autoregressive (AR) model,

M
Vt,n = § Um nVt—m,n + Tt,n +c. (2)

m=1

with 1 < n </, and where residuals r;, are assumed to have
been generated by a univariate Gaussian noise process. The
intercept ¢ denotes the univariate process mean. We evaluate
both VAR and component-wise AR models in our approach.
In addition, we evaluate a separate model whose predictions
are given by the multivariate process mean c.

3.2. Modelling nonstationary time series

To account for nonstationarity in the time series, we window
the time series and estimate an autoregressive model at each
of the obtained window positions, as described in the follow-
ing. Let us use U; 4 to refer to the parameters of an VAR
or component-wise AR model, disregarding the noise compo-
nent, estimated on the ith subsequence formed when window-
ing observations within segment s, according to some spec-
ified window length. We denote with n, the number of win-
dow positions. The ith subsequence is demarcated by starting
and ending positions g; ¢, h; 4, where 1 < g; o < hjq < N.
We denote with U, the sequence of models formed when con-
sidering all of n, window positions in segment s,
Uy = (U1,4,Uz,q, -, Unyq) - (3)
Next, letus denote with (vy?, v5?, ... v!) the sequence
of features predicted by model U; 4, as observations unfold

in time. That is, v;'? denotes the prediction given observa-
tions vy_ s, Vi— M 415 - - -, Vi—1 and given model U; 4. To de-
termine the cross-prediction accuracy with respect to model
U, 4, one possible approach might involve computing the se-
quence of squared errors

= (T — vt (4)

However, if we consider the hypothetical case of a segment
which exhibits high prediction error with respect to itself, it
follows that its cross-prediction accuracy with respect to a
segment consisting of identical features will be equivalent.
Therefore, we might conclude that is necessary to place ad-
ditional requirements on the utilised predictive model, or to
further normalise prediction errors.

3.3. Autoregressive distance

Instead, we utilise the approach described in [13], which
quantifies the structural similarity between two time series,
using their estimated AR representations. The AR metric is
based on the premise that for two AR processes defined by
coefficient vectors e, f, identical starting conditions result
in identical predictions being formed by both processes re-
spectively, if e = f. We determine the dissimilarity between
said AR processes by computing the squared AR distance
d*(e,f), defined as

d*(e,f) = |le — £||? )

where || - || denotes the Euclidean norm. Note that in the for-
mulation, we assume zero mean processes and disregard the
variance of the error term. Applied to Equation 1, to deter-
mine the dissimilarity between two VAR models defined re-
spectively by coefficients

E=[Ey,....Ef] F=[F1,...,Fy] (6)
we compute dipg(E,F) = d?(vec(E),vec(F)), where
vec(-) denotes matrix vectorisation. We assume that model
selection has been applied and that orders L, M therefore
may differ. To accommodate the case where model orders
differ, we perform zero padding prior to vectorisation. For
the AR model of multivariate prediction, the distance vector
d?% ;(E,F) is equivalent to applying Equation 5 component-



wise to AR models, as defined in Equation 2, and summing
across components.

We compute the pairwise dissimilarity between segments
54, sr by interpolating between sequences of predictors. De-
noting the number of multivariate predictors in each segment
with n,, n, respectively, we average over VAR distances, so
that the pairwise dissimilarity ovar(sq, sr) is defined as

K
1
0(sq,80) = 7= Y Biar Ustkmga Uskmnyr) (D
k=1

with K = max{ng, n,} and with f(-,-) defined as
f(k,n) =T[k/Kn]. ®)

Analogously, for the AR model of multivariate prediction,
component-wise application of the AR distance results in a
distance vector oaRr(Sq, sr). Finally, we separately compute
and evaluate the average squared error between intercept
terms a,,,(sq7 sr), which is equivalent to the average squared
cross-prediction error when using the process mean to form
predictions.

3.4. Segment clustering

Having obtained pairwise dissimilarity between segments, we
apply the logistic function to the quantity o(sq, sr),

1
~ 1+exp(—(o(sq,8r)a + 3))

where parameters «, (3 are obtained from a logistic regression.
In the case of oAR and 0, av is a row vector.

To determine segment identities, as proposed in [14] we
interpret P(o(sq, sy)) as the probability that segments s4, s,
belong to the same group. Hereafter, we abbreviate the nota-
tion so that P(o; ;) = P(o(s;, s;)). For each group we define
acluster C,, such thatJ,, Cp, = {1,...,|S|}.N,, Cm = 0.
ThesetT = {C4,...,Cp} defining a clustering is a partition
whose log likelihood function is given by

P(o(sq, Sr)) 9)

M
1
P(T) =5 > Y logP(oiy)+ Y log(1—P(0i;))
m=114,5€Cn,i#j ]&Cm
(10)
whose value we seek to maximise. As the number of clus-
ters M is not known a priori, we select the clustering which
minimises Akaike’s information criterion (AIC), defined as

AIC = 2M — 2In Ly (11)

where Lj,; denotes the maximised likelihood of the cluster-
ing when assuming M clusters. Additionally, we consider
Schwarz’s Bayesian information criterion (BIC), defined as

BIC = MIn|S|?> —2In Lyy;. (12)

4. RESULTS

We evaluate the proposed approach based on a dataset con-
sisting of 180 mono audio tracks of all studio albums by the
Beatles. Each track is sampled at 44.1kHz.

4.1. Feature extraction

To incorporate information of harmonic musical content, we
extract chroma features using the method and implementa-
tion described in [15]. The chroma features are obtained in
two steps. In the first step, a log-spaced multirate filter bank
is applied whose band centre frequencies are based on pitches
in the chromatic scale between A0 and C8, assuming equal-
tempered tuning and shifting centre frequencies according to
estimated tuning deviation. A spectro-temporal representa-
tion of signal power is then formed by applying a sliding win-
dow of 200ms length and 50% overlap, resulting in a frame
rate of 10Hz. In the second step, frame components corre-
sponding to the same pitch class are summed, where logarith-
mic compression is applied to the range of pitches, to account
for approximate human perception of sound intensity. The
resulting 12-component feature vectors are then normalised,
where components of low energy frames are beforehand re-
placed with uniform values to avoid noise-like behaviour in
non-melodic portions of the music signal.

As a descriptor of musical timbre, we extract MFCCs us-
ing the method and implementation described in [16]. The
MEFCC features are extracted using an FFT window size of
4410 samples and 50% overlap. The applied Mel scale is ap-
proximated using window centre frequencies spaced 66§HZ
apart, followed by 27 logarithmically spaced centre frequen-
cies, where in the latter case the factor relating consecutive
centre frequencies is approximately 1.07. The lowest fre-
quency window is centred at 133%Hz. We disregard the ze-
roth coefficient and retain the first 12 remaining coefficients.

4.2. Prediction

The estimation of predictor sequences is based on a window
size in the range of 25 to 150 frames and a 25 frame hop size.
Prior to AR estimation, we apply principal components analy-
sis to the entire time series as a means of decorrelating feature
vectors, yielding a further 12-component time series. Prior to
VAR and AR predictor estimation, time series contained at
each window position are centred to have zero mean. Model
orders are determined using the BIC. Model parameters for
AR models are estimated using the Levinson-Durbin method,
whereas VAR models are estimated according to the method
and implementation described in [17].

4.3. Clustering

We acquire pairwise segment similarities using the approach
described in Section 3.3. To determine segment groups, the
clustering problem is expressed as its graph theoretic dual.
We estimate the maximally likely clustering using the nor-
malised cut approach described in [18]. Logistic regression
is applied to segment similarity data using a 10-fold cross-
validation approach.

4.4. Performance statistics

To evaluate the accuracy of the proposed approach, we utilise
the pairwise precision, recall and F-score procedure as pro-
posed in [8]. Given a song, we denote with R, the set of
identically labelled frame pairs in the annotation, correspond-
ingly we denote with R, the conjectured set of identically la-
belled frame pairs. The pairwise precision PP and pairwise



recall PR are defined as
|Ra n Rb|
PP=—— 13
| Rp| (13
|Ra n Rb|
PR="—— (14)
| Ral

The pairwise F-score is defined as the harmonic mean of PR
and PF,

PF=2—--— " (15)

We evaluate using two separate versions of dataset annota-
tions, available from Tampere University ! and Queen Mary
University of London (QMUL) 2. Fig. 1 displays a histogram
of segment labels contained in the annotation datasets.

1,600 T T
1,400 [~
. (] (other)
1,200 [J outro (other)
g O outro
8 1,000 [~ B intro (other)
3 B intro
] 800 [ B bridge (other)
= [] bridge
£ 600 O refrain (other)
O B refrain
) [ verse (other)
400 W verse

200

Tampere QMUL

Fig. 1. Stacked histogram of segment labels defined in Tam-
pere and QMUL datasets.

4.5. Performance

Figures 2, 3 display plots of pairwise F-scores, for combi-
nations of data sets, audio features, model selection methods
and for each of the prediction methods described in Section
3.1: Labels ‘AR’, ‘VAR’, ‘Mean’ correspond to AR, VAR
and process mean prediction approaches, respectively. As a
baseline, we evaluate an approach where clustering is applied
to similarities sampled from a normal distribution, labelled
‘Random’ in the figures. The aforementioned approaches are
combined with AIC and BIC model selection, as indicated by
label suffixes.

We observe that for the QMUL annotations (Fig. 2), the
AR and ‘Mean’ approaches consistently outperform the base-
line approach. This result holds for all evaluated window
sizes. For both the AR and VAR approaches, we observe
that the BIC consistently outperforms the AIC as a means of
model selection. In the case of chroma features and compar-
ing the best-performing AR and VAR approaches, we observe
no significant difference in performance (Figs. 2 a,c). How-
ever, in the case of MFCC features, we observe that the best-
performing AR approach significantly outperforms the best-
performing VAR approach by 6% and 7%, for AIC and BIC,

Uhttp://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip
Zhttp://isophonics.net/content/reference-annotations-beatles

Approach Maximum pairwise F-Score (%)

Mean,Chroma 82.54
Mean,MFCC 83.78
AR,Chroma 70.63
AR,MFCC 74.11
VAR,Chroma 68.24
VAR,MFCC 68.28
Random 57.74

Table 1. Summary of results. See main text for a description
of row labels.

respectively (Figs. 2 b,d). In overall comparison to the AR
approach, the VAR approach appears more sensitive to the
window size, exhibiting larger amounts of variance in perfor-
mance. For the Tampere annotations, this behaviour is partic-
ularly apparent (Fig. 3 c).

Furthermore, we observe that the ‘Mean’ approach out-
performs both AR and VAR approaches by an average of 11
and 19 percentage points respectively, averaged over consid-
ered window sizes and data sets. Considering that the au-
toregressive and mean-value approaches incorporate different
statistics on time series, we conjecture that combining both
aforementioned approaches might result in an improvement
over the case of using the ‘Mean’ approach alone. In initial
evaluations, a linear combination of segment similarities did
not yield a performance gain beyond the obtained maximum
‘Mean’ performance. To this end, we are therefore currently
evaluating the use of alternative ensemble techniques.

Table 1 displays a summary of performance for each of
the approaches, maximised over window sizes.

5. CONCLUSIONS AND FURTHER WORK

In this work, we have considered the problem of determining
the repetition structure of musical audio. We have considered
how predictability might be used as a measure of similar-
ity between sequences. We have proposed a novel method
for detecting the repetition structure of musical audio, based
on multivariate time series prediction. The proposed ap-
proach requires no prior knowledge of the number of segment
groups, relying instead on model selection for clustering seg-
ments.

Evaluated against two versions of dataset annotations, us-
ing chroma and MFCC features, the obtained results suggest
that the proposed method is a viable approach for the afore-
mentioned problem: Although employing a restricted amount
of domain knowledge, the proposed method improves signif-
icantly over the baseline.

Considering the obtained results, we plan to extend the
present evaluation to cater for the case where segment bound-
aries are obtained heuristically. In addition, we plan to in-
corporate additional domain knowledge in the form of seg-
ment duration models. Furthermore, we aim to evaluate a
broader range of predictors, including non-linear prediction
techniques.
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Fig. 2. QMUL annotation set performance. Error bars correspond to 95% confidence intervals. See main text for a description
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