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ABSTRACT
In this paper we improve piano note tracking using a Hid-
den Markov Model (HMM). We first transcribe piano music
based on a non-negative matrix factorisation (NMF) method.
For each note four templates are trained to represent the dif-
ferent stages of piano sounds: silence, attack, decay and re-
lease. Then a four-state HMM is employed to track notes on
the gains of each pitch. We increase the likelihood of stay-
ing in silence for low pitches and set a minimum duration to
reduce short false-positive notes. For quickly repeated notes,
we allow the note state to transition from decay directly back
to attack. The experiments tested on 30 piano pieces from the
MAPS dataset shows promising results for both frame-wise
and note-wise transcription.

Index Terms— piano note tracking, Hidden Markov
Model

1. INTRODUCTION

Automatic music transcription (AMT) is the process of con-
verting a musical signal into a musical score. The majority
of recent systems focus on music transcription at two lev-
els: frame-level and note-level. Frame-level transcription
estimates the set of pitches sounding at each time frame
(multi-F0 estimation), providing a time-pitch representation,
while note-level transcription integrates this information over
time (note tracking), giving a set of note events described by
pitch, onset and offset time. Recent AMT systems are usually
based on non-negative matrix factorisation (NMF) method,
which decomposes the spectrogram into spectral bases and
the gain matrix (a mid-level transcription) with non-negative
constraints [1–7]. Multi-F0 estimation can be achieved by
simply thresholding on the gain matrix.

Note tracking systems are usually built on top of multi-F0
estimation algorithms. In these systems, notes are detected
in the time-pitch representation by converting pitches found
in consecutive frames into notes and removing those that fail
to reach a duration threshold (minimum duration pruning)
[8]. Ryynänen and Klapuri model note events using a Hidden
Markov Model (HMM) based on acoustic features, consider-
ing both pitch and onset information [9]. In [10, 11] piano
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music piece is divided into segments by detected onsets, and
pitches are estimated for each segment. Then an HMM is ap-
plied on the segment-wise transcription results to track note
events. An explicit duration HMM is applied with a convo-
lutive probabilistic framework to model the temporal evolu-
tion and duration of the sound states for multi-instrument mu-
sic [12]. Duan and Temperley build a note-level music tran-
scription system by randomly sampling notes detected by a
multi-F0 estimation system [13]. Berg-Kirkpatrick et al. pro-
pose a note detection system for piano music, which models
the note activation by velocity, temporal envelope and dura-
tion [14]. Mauch et al. present an HMM note transcription
software for sung or played melody [15]. Recent reviews of
AMT systems can be found in [8, 16].

In this paper, we focus on piano note tracking. First we
obtain the gain matrix using NMF with fixed templates. For
each pitch, four templates are trained to model the silence, at-
tack, decay and release stages of piano sounds. In this way,
the percussive onsets, the remaining energy after offsets, as
well as any silence between notes can be modelled. After
obtaining the gain matrix using the pre-trained templates, we
track notes for each pitch using an HMM. The states of the
HMM correspond to the stages of piano sounds, which are
constrained to occur in a fixed chronological sequence. The
most likely state sequence is estimated using the Viterbi al-
gorithm. We increase the likelihood of staying in silence for
low pitches and set a minimum duration to reduce short false-
positive notes. Fast repeated notes are difficult to detect be-
cause the HMM attaches a high cost to starting a new note. To
account for notes in quick succession, we modify the model to
allow transitions from decay to attack. The results show that
the note-wise performance is improved by up to 3 percentage
points with an F-measure of around 75% by dealing with this
repeated notes, while no obvious difference is observed on
frame-wise results.

For note-level transcription of piano music, repeated notes
are a typical cause of false negatives. Emiya et al. propose to
deal with this problem by considering the note loudness [10],
but generally speaking, this problem is rarely addressed in
previous work. In this paper, we investigate in detail the tem-
poral dynamics of HMM states and set bidirectional transition
possibilities between attack and decay to detect fast repeated
notes, arriving at parameter settings which could easily be
adopted by other systems.
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Fig. 1. Different stages of a note. The stages divided by the
dash lines are silence, attack, decay, release and silence.

2. PROPOSED SYSTEM

We first obtain a mid-level transcription representation based
on NMF with pre-trained templates, then track notes for each
pitch using a four-state HMM.

2.1. NMF-based template training and transcription

We provide a transcription to a mid-level representation using
NMF. In the NMF framework, the spectrogram V 2 RF⇥T

+ is
factorised into two non-negative matrices:

V ⇡WH, (1)

where W 2 RF⇥R
+ represents the spectral bases, and H 2

RR⇥T
+ denotes the gain matrix, which is the mid-level rep-

resentation of transcription results [17]. Firstly we train the
templates on isolated piano notes. In order to deal with the
time-varying spectrogram, we employ multiple templates to
describe the spectrogram of different stages of a piano note.
We divide a note into four stages: silence, attack, decay and
release. We first initialise the gains according to the onset and
offset of the note. Because of the overlap between frames,
there are several frames around the onset containing the tran-
sient. All these frames are labelled as attack stage. The decay
lasts from the onset until the offset. After the keys are re-
leased, the strings are still vibrating for a while. We simply
set the release to begin from the offset and lasts twice the du-
ration of the attack; and the rest is silence, as shown in Figure
1. We update the spectral bases and gains using NMF with
beta-divergence to train templates:

W  W.
[(WH).(��2).V ]HT

[WH].(��1)HT
, (2)

H  H.
WT [(WH).(��2).V ]

WT [WH].(��1)
. (3)

Then we normalise the sum of each template to be 1.
For the music pieces, we only update the gains using the

pre-trained templates, as shown in Figure 2. We found that
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Fig. 2. Spectrogram factorisation using pre-trained templates.

it was beneficial to initialise the gain matrix with the spectral
amplitudes at the corresponding fundamental frequencies.

2.2. HMM-based note tracking

For each pitch, we track notes using an HMM based on the
gains obtained above. The states Si (i 2 {1, 2, 3, 4}) of the
HMM correspond to the four templates for each pitch, which
represent silence, attack, decay and release, respectively. The
normalised gains corresponding to each template also indicate
the likelihood of being in each of the states.

The note tracking process is shown in Figure 3. Before
tracking each pitch, we apply a median filter to each row of
the gain matrix and normalise the gains by dividing by the
global maximum. We add a small value to the gains of silent
states for noise suppression. This value helps to delete false
positives with small energies. When the gains for non-silent
states are below the value, then the silent state becomes the
most likely state for that frame. When the note gains are much
larger than the value, their states are not influenced by the
small adjustment to the silent state’s gain. For each individual
pitch, the gains are normalised by dividing by their sum for
each frame, in order to give the observation likelihood of each
state.

A left-to-right HMM is used to constrain the transitions
between states to follow a fixed chronological sequence, so
that each note starts from silence to attack, then to decay and
release. After that, the note returns to the silent state again.
The transition matrix can be written as follows:

T =

2

664

T1 1� T1 0 0
0 T2 1� T2 0
0 0 T3 1� T3

1� T4 0 0 T4

3

775 , (4)

where Ti,j refers to the transition probability from Si to Sj ,
Ti,j = P (qt+1 = Sj |qt = Si). The diagonal values of the
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Fig. 3. Note tracking for each pitch.

transition matrix obtained from the isolated note training data
are Tdiag = [0.99, 0.9, 0.99, 0.95]. There are two main dif-
ferences between the isolated notes and those in real music
pieces. The first is that in real music pieces, notes are more
likely to stay in the silent state for most of time. The second
is the note duration. The isolated notes used in training, for
learning the templates, last for about 2 seconds, while most
notes in music pieces have much shorter durations. In addi-
tion we want a note back to the silence state sooner to get
ready for the next note. So we increase the probabilities of
remaining in the silent state, and reduce the probabilities of
staying in the decay and release states. The diagonal values
of the resulting transition matrix are as follows:

Tdiag =
⇥
0.999 0.9 0.9 0.9

⇤
.

All notes start from silence, with the initial state of
[1, 0, 0, 0]. The most likely state sequence is estimated
using the Viterbi algorithm. Because the attack and release
stages are not included in the note duration in the training
processing, only the decay state is detected as defining the
duration of an active note. We set a minimum duration to
discard notes which are too short. In the following, we deal
with the low frequency noise and repeated notes.

Low frequency noise: In piano music, notes in the mid-
dle pitch range are more likely to occur than notes at the
extremes of the register. It is therefore natural to set pitch-
varying transition probabilities from silence to attack. Due
to the energy distribution of the spectrogram, which for pi-
ano music is always heavily weighted towards low frequen-
cies, the amplitudes of high pitches are relatively small in the
gain matrix. This means that a universal transition probability
from silence to attack tends to result in many false positives
in the low pitch range. To reduce these falsely detected notes,
we set pitch-varying probabilities of staying in the silent state
to make it harder for the HMM to start a low-pitch note.

T1 = 0.999 + (88� p)/88⇥ 0.001,

where p 2 {1, 2, ..., 88} is the pitch index.

System Description

Proposed the system with the transition matrix (4)
Proposed-R the system with the transition matrix (5)
Berg a piano transcription system proposed in [14]

Table 1. Systems tested in the experiments.

Fast repeated notes: When a note is repeated quickly,
there are few if any frames corresponding to the release and
silent states. Especially because the window function blurs
the spectrogram, there is no gap between two consecutive
notes. Based on the transition matrix in (4), the note states
have to cycle through the sequence silence, attack, decay and
release. In this case, the second note will not be detected as
a new note, but as a continuation of the previous note. To
deal with this problem, we simply set a non-zero transition
probability to go from decay directly back to attack.

T =

2

664

T1 1� T1 0 0
0 T2 1� T2 0
0 (1� T3)/2 T3 (1� T3)/2

1� T4 0 0 T4

3

775 .

(5)

3. EXPERIMENTS

The systems are tested on music pieces recorded on a Disklav-
ier piano (ENSTDkCl) from the MAPS database [18]. The
transcription experiments are performed on the first 30 sec-
onds of all piano pieces. The templates are trained on the
isolated note from the same piano. The spectrogram is com-
puted by the Short-Time Fourier Transform (STFT) with an
4096-sample Hamming window and a hop-size of 441. The
Discrete Fourier Transform is performed on each frame with
2-fold zero-padding. The sampling rate is fs = 44100Hz. Beta
used in the NMF is 0.5 [4]. We apply a 7-sample median fil-
ter to smooth the gain matrix. The value added to the silence
state for noise suppression is 0.01. Minimum duration is set
to be 60ms. In the experiment we test two systems, denoted
by proposed and proposed-R, with different values of T3 (the
possibility of staying in decay). We also compare the pro-
posed systems to a state-of-the-art method [14]. Systems in
the experiment are listed in the table 3.

Metrics: Systems are evaluated by precision (P ), recall
(R) and F-measure (F ), defined as: P = Ntp

Ntp+Nfp
, R =

Ntp

Ntp+Nfn
, F = 2⇥ P⇥R

P+R , where Ntp , Nfp , Nfn are the num-
bers of true positives, false positives and false negatives, re-
spectively. We employ both frame-wise and note-wise eval-
uation. For each pitch, the detected note is considered note-
wise correct if the difference between the detected onset and
the ground truth onset is within 50ms.

Results: Figure 4 compares the transcription performance
of two proposed systems. The proposed-R system provides
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Fig. 4. Transcription results.

System Pn Rn Fn Pf Rf Ff

Proposed 87.5 62.9 72.7 85.4 72.9 77.7
Proposed-R 87.9 67.4 75.8 85.5 72.8 77.6
Berg [14] 78.1 74.7 76.4 69.1 80.7 74.4

Table 2. A comparison of transcription results.

better note-wise results on precisions (squares), recalls (cir-
cles) and F-measures (stars), while the differences of the sys-
tems in frame-wise results are subtle. We focus on the note-
wise results first. Performance of the proposed-R system con-
stantly increases with decreasing values of T3. Higher re-
call means more correct notes are found. The correspond-
ing increase in precision means at the same time fewer false
positives are detected. There is little difference in precision
between the two systems; in both cases the number of false
positives is decreased by decreasing the probability of stay-
ing in the decay state. With smaller T3, the durations of de-
tected notes are shorter. Then the false positives are more
likely to be discarded by minimum duration pruning. The
improvement in recall by the proposed system manifests that
more true positives are found because we allow transitions
from the decay to the attack state. An example of detecting
fast repeated notes is shown in Figure 5. We find that more
notes are detected when decreasing T3. The F-measure of the
proposed-R method increases from 72.7% to 75.8% when T3
decreases from 0.9 to 0.5. The difference between the two
systems also increases, from 1.7% to 3.1%, with the decrease
of T3. In Figure 4 (right), we find that the F-measure for the
frame-wise results decreases with decreasing T3. The results
are not influenced by the choice of system. The increasing
precision with the decrease of T3 means we found fewer false
positives, while the decrease in recall means also fewer true
positives were found. On the whole, the F-measure decreases
from 79.4% to 77.6% over the range of decreasing T3 values.

In summary, the proposed-R method works well for both
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Fig. 5. Note tracking results on fast repeated notes with dif-
ference T3 for the proposed-R system. In each sub-figure the
top line indicates the ground truth notes, while the bottom line
shows the detected notes.

note-wise and frame-wise transcription. It helps to detect
more true notes for repeated notes and has no obvious im-
pact on frame-wise metrics. The choice of parameter T3 has
different effects on the two levels of transcription results, giv-
ing an increase in note-wise performance and a decrease in
frame-wise performance as T3 is reduced.

By considering both the frame-wise and note-wise results,
we choose T3 = 0.5 as the optimal value for the comparison
with Berg’s method [14]. The results in Tabel 2 show that
dealing with the repeated notes (proposed-R) improves note-
wise F-measure to 75.8%, which is slightly worse than the
system of Berg by 0.6 percentage point, while in frame-wise
results the proposed methods outperform the system of Berg
by above 3 percentage points on F-measure.

4. CONCLUSIONS AND DISCUSSION

In this paper we track piano notes using a pitch-wise HMM on
the gains obtained in an NMF framework. To update the gain
matrix, templates are trained in advance with four templates
per note to represent the different stages of piano sounds: si-
lence, attack, decay and release. Then a four-state HMM is
employed to track notes on the gains of each pitch. We in-
crease the likelihood of staying in silence for low pitches and
set a minimum duration to reduce short false-positive notes.
For quickly repeated notes, we allow the note state to transi-



tion from decay back to attack. The experiment shows com-
petitive results on both frame-wise and note-wise transcrip-
tion. Dealing with fast repeated notes improves the note-wise
evaluation by up to 3 percentage points, while no obvious dif-
ference is observed on frame-wise results.

The choice for the probability of staying in the decay
state is a trade-off between detecting long-duration notes and
jumping out from short-duration notes. For this reason, we
would like to incorporate onset information or model the
duration distribution for note tracking in the future. The tran-
sition probabilities from decay to release and to attack are
not necessarily the same, but we modelled them as such to
avoid introducing another variable. We would expect a fur-
ther improvement by using individual probabilities for these
two state transitions.
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