
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. YY, ZZZZ 1

Note Value Recognition for Piano Transcription
Using Markov Random Fields

Eita Nakamura, Member, IEEE, Kazuyoshi Yoshii, Member, IEEE, Simon Dixon

Abstract—This paper presents a statistical method for use
in music transcription that can estimate score times of note
onsets and offsets from polyphonic MIDI performance signals.
Because performed note durations can deviate largely from score-
indicated values, previous methods had the problem of not being
able to accurately estimate offset score times (or note values)
and thus could only output incomplete musical scores. Based on
observations that the pitch context and onset score times are
influential on the configuration of note values, we construct a
context-tree model that provides prior distributions of note values
using these features and combine it with a performance model in
the framework of Markov random fields. Evaluation results show
that our method reduces the average error rate by around 40
percent compared to existing/simple methods. We also confirmed
that, in our model, the score model plays a more important role
than the performance model, and it automatically captures the
voice structure by unsupervised learning.

Index Terms—Music transcription, symbolic music processing,
statistical music language model, model for polyphonic musical
scores, Markov random field.

I. INTRODUCTION

Music transcription is one of the most fundamental and
challenging problems in music information processing [1],
[2]. This problem, which involves conversion of audio sig-
nals into symbolic musical scores, can be divided into two
subproblems, pitch analysis and rhythm transcription, which
are often studied separately. Pitch analysis aims to convert
the audio signals into the form of a piano roll, which can be
represented as a MIDI signal, and multi-pitch analysis methods
for polyphonic music have been extensively studied [3]–[6].
Rhythm transcription, on the other hand, aims to convert a
MIDI signal into a musical score by locating note onsets and
offsets in musical time (score time) [7]–[16]. In order to track
time-varying tempo, beat tracking is employed to locate beat
positions in music audio signals [17]–[21].

Although most studies on rhythm transcription and beat
tracking have focused on estimating onset score times, to
obtain complete musical scores it is necessary to locate note
offsets, or equivalently, identify note values defined as the
difference between onset and offset score times. The con-
figuration of note values is especially important to describe
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Fig. 1. An outcome obtained by our method (Mozart: Piano Sonata K576).
While previous rhythm transcription methods could only estimate onset score
times accurately from MIDI performances, our method can also estimate offset
score times, providing a complete representation of polyphonic musical scores.

the acoustic and interpretative nature of polyphonic music
where there are multiple voices and the overlapping of notes
produces different harmonies. Note value recognition has been
addressed only in a few studies [10], [14] and the results of
this study reveal that it is a non-trivial problem.

The difficulty of the problem arises from the fact that
observed note durations in performances deviate largely from
the score-indicated lengths so that the use of a prior (language)
model for musical scores is crucial. Because of its structure
with overlapping multiple streams (voices), construction of
a language model for polyphonic music is challenging and
gathers increasing attention recently [6], [14], [16], [22], [23].
In particular, building a model at the symbolic level of musical
notes (as opposed to the frame level of audio processing) that
properly describes the multiple-voice structure while retaining
computational tractability is a remaining problem.

The purpose of this paper is to investigate the problem of
note value recognition using a statistical approach (Fig. 1).
We formulate the problem as a post-processing step of esti-
mating offset score times given onset score times obtained
by rhythm transcription methods for note onsets. Firstly,
we present results of statistical analyses and point out that
the information of onset score times and the pitch context
together with interdependence between note values provide
clues for model construction. Secondly, we propose a Markov
random field model that integrates a prior model for musical
scores and a performance model that relates note values and
actual durations (Sec. IV). To determine an optimal set of
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contexts/features for the score model from data, we develop
a statistical learning method based on context-tree clustering
[24]–[26], which is an adaptation of statistical decision tree
analysis. Finally, results of systematic evaluations of the
proposed method and baseline methods are presented (Sec. V).

The contributions of this study are as follows. We formulate
a statistical learning method to construct a highly predictive
prior model for note values and quantitatively demonstrate its
importance for the first time. The discussions cover simple
methods and more sophisticated machine learning techniques
and the evaluation results can serve as a reference for the
state-of-the-art. Our problem is formulated in a general setting
following previous studies on rhythm transcription and the
method is applicable to a wide range of existing methods of
onset rhythm transcription. Results of statistical analyses and
learning in Secs. III and IV can also serve as a useful guide for
research using other approaches such as rule-based methods
and neural networks. Lastly, source code of our algorithms
and evaluation tools is available from the accompanying web
page [27] to facilitate future comparisons and applications.

II. RELATED WORK

Before beginning the main discussion, let us review previous
studies related to this paper.

There have been many studies on converting MIDI perfor-
mance signals into a form of musical score. Older studies [7],
[8] used rule-based methods and networks in attempts to model
the process of human perception of musical rhythm. Since
around 2000, various statistical models have been proposed
to combine the statistical nature of note sequences in musical
scores and that of temporal fluctuations in music performance.
The most popular approach is to use hidden Markov models
(HMMs) [9]–[12], [16]. The score is described either as a
Markov process on beat positions (metrical Markov model)
[9], [11], [12] or a Markov model of notes (note Markov
model) [10], and the performance model is often constructed
as a state-space model with latent variables describing locally
defined tempos. Recently a merged-output HMM incorpo-
rating the multiple-voice structure has been proposed [16].
Temperley [14] proposed a score model similar to the metrical
Markov model in which the hierarchical metrical structure is
explicitly described. There are also studies that investigated
probabilistic context-free grammar models [15].

A recent study [16] reported results of systematic evalua-
tion of (onset) rhythm transcription methods. Two data sets,
polyrhythmic data and non-polyrhythmic data, were used and
it was shown that HMM-based methods generally performed
better than others and the merged-output HMM was most
effective for polyrhythmic data. In addition to the accuracy
of recognising onset beat positions, the metrical HMM has
the advantage of being able to estimate metrical structure, i.e.
the metre (duple or triple) and bar (or down beat) positions,
and to avoid grammatically incorrect score representations that
appeared in other HMMs.

As mentioned above, there have been only a few studies
that discussed the recognition of note values in addition to
onset score times. Takeda et al. [10] applied a similar method
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Fig. 2. Example of (a) a polyphonic piano score (Mozart: Sonata KV570)
and (b) a reduced score represented with one voice. Notes that have different
note values in the two representations are indicated with red note heads.

of estimating onset score times to estimating note values of
monophonic performances and reported that the recognition
accuracy dropped from 97.3% to 59.7% if rests are included.
Temperley’s Melisma Analyzer [14], based on a statistical
model, outputs estimated onset and offset beat positions to-
gether with voice information for polyphonic music. There,
offset score times are chosen from one of the following tactus
beats according to some probabilities, or chosen as the onset
position of the next note of the same voice. The recognition
accuracy of note values has not been reported.

III. PRELIMINARY OBSERVATIONS AND ANALYSES

We explain here basic facts about the structure of poly-
phonic piano scores and discuss how it is important and
non-trivial to recognise note values for such music based on
observations and statistical analyses. This provides motivations
for the architecture of our model. Some terminology and
notions used in this paper are also introduced. We consider
the music style of the common practice period and similar
music styles such as popular and jazz music in this paper.

A. Structure of Polyphonic Musical Scores

To discuss recognition of note values in polyphonic piano
music, we first explain the structure of polyphonic scores. The
left-hand and right-hand parts are usually written in separate
staffs and each staff can contain several voices1, or streams
of notes (Fig. 2(a)). In piano scores, each voice can contain
chords and the number of voices can vary locally. Hereafter we
use the word chords to indicate those within one voice. Except
for rare cases of partial ties in chords, notes in a chord must
have simultaneous onset and offset score times. This means
that the offset score time of a note must be equal to or earlier
than the onset score time of the next note/chord of the same
voice. In the latter case, the note is followed by a rest. Such
rests are rare [14] and thus the configuration of note values
and the voice structure are inter-related.

The importance of voice structure in the description of note
values can also be understood by comparing a polyphonic
score with a reduced score obtained by putting all notes with
simultaneous onsets into a chord and forming one ‘big voice’
without any rests as in Fig. 2(b). Since these two scores are the
same in terms of onset score times, the differences are only in

1Our “voice” corresponds to the voice information defined in music notation
file formats such as MusicXML and Finale file format.
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Fig. 3. Distributions of the ratios of actual duration, (a) key-holding durations
and (b) damper-lifting durations, to the expected duration.

offset score times. One can see that appropriate voice structure
is necessary to recover correct note values from the reduced
score. It can also be confirmed that note values are influential
to realise the expected acoustic effect of polyphonic music.
Because one can automatically obtain the reduced score given
the onset score times, recovering the polyphonic score as in
Fig. 2(a) from the reduced score as in Fig. 2(b) is exactly the
aim of note value recognition.

B. Distribution of Durations in Music Performances

A natural approach to recover note values from MIDI
performances is finding those note values that best fit the actual
note durations in the performances. In this paper, duration
always means the time length measured in physical time, and
a score-written note length is called a note value. To relate
durations to note values, one needs the (local) tempo that
provides the conversion ratio. Although estimating tempos
from MIDI performances is a nontrivial problem (see Sec. IV),
let us suppose here they are given, for simplicity. Given a
local tempo and a note value, one can calculate an expected
duration, and conversely, one can estimate a note value given
a local tempo and actual duration.

Fig. 3 shows distributions of the ratios of actual durations
in performances and the durations expected from note values
and tempos estimated from onset times (used performance data
is described in Sec. IV-D). Because information of key-press
and key-release times for each note and pedal movements can
be obtained from MIDI signals, one can define the following
two durations. The key-holding duration is the time interval
between key-press and key-release times and the damper-
lifting duration is obtained by extending the offset time as
long as the sustain/sostenuto pedal is held. As can be seen
from the figure, both distributions have large variances and
thus precise prediction of note values is impossible by using
only the observed values. As mentioned previously [12], [14],
this makes note value recognition a difficult problem and it
has often been avoided in previous studies. Additionally, due
to the large deviations of durations, most tempo estimation
methods use only onset time information.

A similar situation happens in speech recognition where the
presence of acoustic variations and noise makes it difficult to
extract symbolic text information by pure feature extraction.
Similarly to using a prior language model, which was the key
to improve the accuracy of speech recognition [28], a prior
model for musical scores (score model) would be a key to
solving our problem, which we seek in this paper.
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Fig. 4. Onset clusters and inter-onset note values (IONVs).

C. Hints for Constructing a Score Model

The simplest score model for note value recognition would
be a discrete probability distribution over a set of note values.
For example, one can consider the following 15 types of note
values (e.g. 1/2 = half note, 3/8 = dotted eighth note, etc.):{

1
32 ,

1
48 ,

1
16 ,

1
24 ,

3
32 ,

1
8 ,

1
12 ,

3
16 ,

1
4 ,

1
6 ,

3
8 ,

1
2 ,

1
3 ,

3
4 , 1
}
. (1)

The distribution taken from a score data set (see Sec. IV-D)
is shown in Fig. 5(a). Although the distribution has clear
tendencies, it is not sufficiently sharp to compensate the large
variance of the duration distributions. We will confirm that this
simple model yields a poor recognition accuracy in Sec. V-B.

Hints for constructing a score model can be obtained by
again observing the example in Fig. 2. It is observed that
most notes in the reduced score have the same note values
as in the original score, and even when they do not, the offset
score times tend to correspond with one of the onset score
times of following notes. To explain this more precisely in
a statistical way, we define an onset cluster as the set of all
notes with simultaneous onsets in the score and inter-onset
note values (IONVs) as the intervals between onset score times
of succeeding onset clusters (Fig. 4). As in the figure, for later
convenience, we define IONVs for each note, even though
they are same for all notes in an onset cluster. If one counts
frequencies that each note value matches one of the first ten
IONVs (or none of them), the result is as shown in Fig. 5(b).
We see that the distribution has lower entropy than that in
Fig. 5(a) and the probability that note values would be different
from any of the first ten IONVs is small (3.50% in our data).
This suggests that a more efficient search space for note values
can be obtained by using the onset score time information.

Even more predictive distributions of note values can be
obtained by using the pitch information. This is because
neighbouring notes (either horizontally or vertically) in a voice
tend to have close pitches, as discussed in studies on voice
separation [29]–[31]. For example, if we select notes that have
a note within five semitones in the next onset cluster, the
distribution of note values in the space of IONVs becomes
as in Fig. 5(c), reflecting the fact that inserted rests are rare.
On the other hand, if we impose a condition of having a note
with five semitones in the second next onset cluster but not
having any notes within 14 semitones in the next cluster, then
the distribution becomes as in Fig. 5(d), which reflects the fact
that this condition implies that the note has an adjacent note in
the same voice in the second next onset cluster. These results
suggest on one side that pitch information together with onset
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Fig. 5. Distributions of note values. In (a), note values are categorised into
15 types in Eq. (1) and another type including all others; in (b)(c)(d), they
are categorised into the first ten IONVs and others. Samples in (c)(d) were
selected by conditions on the pitch context described in the text.

score time information can provide distributions of note values
with more predictive ability and on the other side that those
distributions are highly dependent on the pitch context.

Although so far we have considered note values as indepen-
dent distributions, their interdependence can also provide clues
in estimating note values. One such interdependence can be
inferred from the logical constraint of voice structure described
in Sec. III-A. As chordal notes have the same note values and
they also tend to have close pitches, notes with simultaneous
onset score times and close pitches tend to have identical
note values. This is another case where pitch information has
influence on the distribution of note values.

D. Summary of the Section

Here we summarise the findings in this section:
• The voice structure and the configuration of note values

are inter-related and the logical constraints for musical
scores induce interdependence between note values.

• Performed durations contain large deviations from those
implied by the score and a score model is crucial to
accurately estimate note values from performance signals.

• Information about onset score times provides an efficient
search space for note values through the use of IONVs.
In particular, the probability that a note value falls into
one of the first ten IONVs is quite high.

• The distribution of note values is highly dependent on
the pitch context, which would be useful for improving
their predictability.

In the rest of this paper, we construct a computational model
to incorporate these findings and examine by numerical exper-
iments how they quantitatively influence the accuracy of note
value recognition.

IV. PROPOSED METHOD

A. Problem Statement

For rhythm transcription, the input is a MIDI performance
signal, represented as a sequence of pitches, onset times and
offset times (pn, tn, t

off
n , t̄off

n )Nn=1 where n is an index for
musical notes and N is the number of notes. As explained
in Sec. III-B, we can define two offset times for each note,
the key-release time and damper-drop time, denoted by toff

n

and t̄off
n . The corresponding key-holding and damper-lifting

duration will be denoted by dn = toff
n − tn and d̄n = t̄off

n − tn.
The aim is to recognise the score times of the note onsets and
offsets, which are denoted by (τn, τ

off
n )Nn=1. In general, τn and

τoff
n take values in the set of rational numbers in units of a

Variable Notation
Index for note n
Pitch pn
Onset time tn
Key-release [Damper-drop] (offset) time toff

n [t̄off
n ]

Key-holding [Damper-lifting] duration dn [d̄n]
Onset [offset] score time τn [τoff

n ]
Note value rn
Local tempo vn
Sequence of variables p = (pn)Nn=1 etc.

TABLE I
LIST OF FREQUENTLY USED MATHEMATICAL SYMBOLS.

beat unit, say, the whole-note length. For example, τ1 = 0
and τoff

1 = 1/4 means that the first note is at the beginning of
the score and has a quarter-note length. We use the following
notations for sequences: d = (dn)Nn=1, τ off = (τoff

n )Nn=1, etc.
We call the difference rn = τoff

n −τn the note value. Frequently
used mathematical symbols are listed in Table I.

In this paper, we consider the situation that the onset score
times τ are given as estimations from conventional onset
rhythm transcription algorithms. In addition, we assume that
a local tempo vn, which gives a smoothed ratio of the time
interval and score time interval at each note n, is given. Local
tempos v = (vn)Nn=1 can be obtained from the sequences t
and τ by applying some smoothing methods such as Kalman
smoothing and local averaging, and typically they can be
obtained as outputs of onset rhythm transcription algorithms.

In summary, we set up the problem of note value recognition
as estimating the sequence τ off (or r) with inputs p,d, d̄, τ
and v. For concreteness, in this paper, we mainly use as τ
and v the outputs from a method based on a metrical HMM
(Sec. IV-B), but our method is applicable as a post-processing
step for any rhythm transcription method that outputs τ .

B. Estimation of Onset Score Times and Local Tempos
To estimate onset score times τ and local tempos v from

a MIDI performance (p, t, toff , t̄off), we use a metrical HMM
[9], which is one of the most accurate onset rhythm transcrip-
tion methods (Sec. II). Here we briefly review the model.

In the metrical HMM, the probability P (τ ) of the score is
generated from a Markov process on periodically defined beat
positions denoted by (sn)Nn=1 with sn ∈ {1, . . . , G} (G is a
period of beats such as a bar). The sequence s is generated
with the initial and transition probabilities as

P (s) = P (s1)

N∏
n=2

P (sn|sn−1). (2)

We interpret sn as τn modulo G, or more explicitly, we obtain
τ incrementally as follows:

τ1 = s1, (3)

τn+1 = τn +

{
sn+1 − sn, if sn+1 > sn;

G+ sn+1 − sn, if sn+1 ≤ sn.
(4)

That is, if sn+1 ≤ sn, we interpret that sn+1 indicates the
beat position in the next bar. With this understood, P (τ ) is
equivalent to P (s) as long as rn ≤ G for all n. An extension
is possible to allow note onset intervals larger than G [32].

In constructing the performance model, local tempo vari-
ables v are introduced to describe the indeterminacy and
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temporal variations of tempos. The probability P (t,v|τ ) is
decomposed as P (t|τ ,v)P (v) and each factor is described
with the following Gaussian Markov process:

P (vn|vn−1) = N(vn; vn−1, σ
2
v), (5)

P (tn+1|tn, τn+1, τn, vn)

= N(tn+1; tn + (τn+1 − τn)vn, σ
2
t ) (6)

where N( · ;µ,Σ) denotes a normal distribution with mean
µ and variance Σ, and σv and σt are standard deviations
representing the degree of tempo variations and onset time
fluctuations, respectively. An initial distribution for v1 is
described similarly as a Gaussian N(v1; vini, σ

2
v,ini).

An algorithm to estimate onset score times and local tem-
pos can be obtained by maximising the posterior probability
P (τ ,v|t) ∝ P (t,v|τ )P (τ ). This can be done by a standard
Viterbi algorithm after discretisation of the tempo variables
[20], [32]. Note that this method does not use the pitch and off-
set information to estimate onset score times, which is typical
in conventional onset rhythm transcription methods. Since the
period G and rhythmic properties encoded in P (sn|sn−1) are
dependent on the metre, in practice it is effective to consider
multiple metrical HMMs corresponding to different metres,
such as duple metre and triple metre, and choose the one with
the maximum posterior probability in the stage of inference.

C. Markov Random Field Model

Here we describe our main model. As explained in Sec. III,
it is essential to combine a score model that enables prediction
of note values given the input information of onset score
times and pitches and a performance model that relates note
values to actual durations realised in music performances. To
enable tractable inference and efficient parameter estimation,
one should typically decompose each model into component
models that involve a smaller number of stochastic variables.

As a framework to combine such component models, we
consider the following Markov random field (MRF):

P (r|p,d, d̄, τ ,v)

∝ exp

[
−

N∑
n=1

H1(rn; τ ,p)−
∑

(n,m)∈N

H2(rn, rm)

−
N∑
n=1

H3(rn; dn, d̄n, vn)

]
. (7)

Here H1 (called the context model) represents the prior model
for each note value that depends on the onset score times
and pitches, H2 (the interdependence model) represents the
interdependence of neighbouring pairs of note values (N
denotes the set of neighbouring note pairs specified later) and
H3 (the performance model) represents the likelihood model.
Each term can be interpreted as an energy function that has
small values when the arguments have higher probabilities.
The explicit forms of these functions are given as follows:

H1 = −β1lnP (rn; τ ,p), (8)
H2 = −β2lnP (rn, rm), (9)
H3 = −β31lnP (dn; rn, vn)− β32lnP (d̄n; rn, vn). (10)
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Each energy function is constructed with a negative log
probability function multiplied by a positive weight. These
weights β1, β2, β31 and β32 are introduced to represent the
relative importance of the component models. For example, if
we take β1 = β31 = β32 = 1 and β2 = 0, the model reduces to
a Naive Bayes model with the durations considered as features.
For other values of β s, the model is no longer a generative
model for the durations but still a generative model for the note
values, which are the only unknown variables in our problem.
In the following we explain the component models in detail.
Learning parameters including β s is discussed in Sec. IV-D.

1) Context Model: The context model H1 describes a prior
distribution for note values that is conditionally dependent
on given onset score times and pitches. To construct this
model, one should first specify the sample space of rn, or,
the set of possible values that each rn can take. Based on
the observations in Sec. III, we consider the first ten IONVs
as possible values of rn. Since rn can take other values in
reality, we also consider a formally defined value ‘other’,
which represents all other values of rn. Let

Ωr(n) = {IONV(n, 1), . . . , IONV(n, 10), other}
denote the sample space. Therefore P (rn; τ ,p) is considered
as an 11-dimensional discrete distribution.

As we saw in Sec. III, the distribution P (rn; τ ,p) depends
heavily on the pitch context. Based on our intuition that for
each note n the succeeding notes with a close pitch are most
influential on the voice structure, in this paper we use the
feature vector cn = (cn(1), . . . , cn(10)) as a context of note
n, where cn(k) denotes the unsigned pitch interval between
note n and the closest pitch in its k-th next onset cluster. An
example of the context is given in Fig. 6. Thus we have

P (rn; τ ,p) = P (rn; cn(1), . . . , cn(10)). (11)

We remark that in general we can additionally consider
different features (for example, metrical features) and our for-
mulation in this section and in Sec. IV-D is valid independently
of our particular choice of features.

Due to the huge number of different contexts for notes, it
is not practical to use Eq. (11) directly. With 88 pitches on a
piano keyboard, each cn(k) can take 87 values and thus the
right-hand side (RHS) of Eq. (11) has 11 · 8710 parameters
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= (fγ(ν), κγ(ν))c(fγ(ν)) ≤ κγ(ν) c(fγ(ν)) > κγ(ν)

c ∈ Cλ ⇒ P (r; c) = Qλ(r)

Fig. 7. In a context-tree model, the distribution of a quantity r is categorised
with a set of criteria on the context c.

(or slightly less free parameters after normalisation), which is
computationally infeasible. (If one uses additional features, the
number of parameters increases further.) To solve this problem,
we use a context-tree model [24], [25], in which contexts are
categorised according to a set of criteria that are represented
as a tree (as in decision tree analysis) and all contexts in one
category have the same probability distribution.

Formally, a context-tree model is defined as follows. Here
we consider a general context c = (c(1), . . . , c(F )), which is
an F -dimensional feature vector. We assume that the set of
possible values for c(f) is an ordered set for all f = 1, . . . , F
and denote it by Rf . Let us denote the leaf nodes of a binary
tree T by ∂T . Each node ν ∈ T is associated with a set of
contexts denoted by Cν . In particular, for the root node 0 ∈ T ,
C0 is the set of all contexts (R1×· · ·×RF ). Each internal node
ν ∈ T \ ∂T is associated with a criterion γ(ν) for selecting
a subset of Cν . A criterion γ = (fγ , κγ) is defined as a pair
of a feature dimension fγ ∈ {1, . . . , F} and a cut κγ ∈ Rfγ .
The criterion divides a set of contexts C into two subsets as

CL(γ) = {c ∈ C | c(fγ) ≤ κγ}, (12)

CR(γ) = {c ∈ C | c(fγ) > κγ}, (13)

so that CL(γ) ∩ CR(γ) = φ and CL(γ) ∪ CR(γ) = C. Now
denoting the left and right child of ν ∈ T \∂T by νL and νR,
their sets of contexts are defined as CνL = Cν∩CL0 (γ(ν)) and
CνR = Cν ∩ CR0 (γ(ν)), which recursively defines a context
tree (T, f, κ) (Fig. 7). By definition, a context is associated
to a unique leaf node: for all c ∈ C0 there exists a unique
λ ∈ ∂T such that c ∈ Cλ. We denote such a leaf by λ(c).
Finally, for each node ν ∈ T , a probability distribution Qν( · )
is associated. Now we can define the probability PT ( · ; c) as

PT ( · ; c) = Qλ(c)( · ). (14)

The tuple T = (T, f, κ,Q) defines a context-tree model.
For a context-tree model with L leaves, the number of

parameters for the distribution of note values is now reduced
to 11L. In general a model with a larger tree size has more
ability to approximate Eq. (11) at the cost of an increasing
number of model parameters. The next problem is to find the
optimal tree size and the optimal criterion for each internal
node. We will explain this in Sec. IV-D1.

2) Interdependence Model: Although the distribution of
note values in the context model is dependent on the pitch
context, it is independently defined for each note value. As
explained in Sec. III, interdependence of note values is also
important since it arises from logical constraint on the voice
structure. Such interdependence can be described with a joint
probability of note values of a pair of notes in H2. As in the
context model, we consider the set Ωr as a sample space for
note values so that the joint probability P (rn, rm) for notes
n and m has 112 parameters.

The choice of the set of neighbouring note pairs N in
Eq. (7) is most important for the interdependence model. In
order to capture the voice structure we define N as

N = {(n,m) | τn = τm, |pn − pm| ≤ δnbh} (15)

where δnbh is a parameter to define the vicinity of the pitch.
The value of δnbh is determined from data (see Sec. IV-D4).

3) Performance Model: The performance model is con-
structed with the probability of actual durations in perfor-
mances given a note value and a local tempo. Since we can
use two durations dn and d̄n, two distributions, P (dn; rn, vn)
and P (d̄n; rn, vn), are considered for each note as in the RHS
of Eq. (10). To regulate the effect of varying tempos and avoid
the increase in the complexity of the model to handle possibly
many types of note values, we consider distributions over
normalised durations, d′n = dn/(rnvn) and d̄′n = d̄n/(rnvn),
as we did in Sec. III. We therefore assume

P (dn; rn, vn) = g(d′n) and P (d̄n; rn, vn) = ḡ(d̄′n) (16)

where g and ḡ are one-dimensional probability distributions
supported on positive real numbers.

The histograms corresponding to g and ḡ taken from
performance data described in Sec. IV-D are illustrated in
Fig. 3. One can recognise two (one) peak(s) for the distribution
of normalised key-holding (damper-lifting) durations. Since
theoretical forms of these distributions are unknown, we
use as phenomenologically fitting distributions the following
generalised inverse-Gaussian (GIG) distribution:

GIG(x; a, b, h) =
(a/b)h/2

2Kh(2
√
ab)

xh−1e−(ax+b/x) (17)

where a, b > 0 and h ∈ R are parameters and Kh denotes the
modified Bessel function of the second kind. The GIG dis-
tributions are supported on positive real numbers and include
the gamma (a → 0), inverse-gamma (b → 0) and inverse-
Gaussian (h = −1/2) distributions as special cases. Since a
GIG distribution has only one peak, we use a mixture of GIG
distributions to represent g. We parameterise g and ḡ as

g(x) = w1GIG(x; a1, b1, h1) + w2GIG(x; a2, b2, h2), (18)
ḡ(x) = GIG(x; a3, b3, h3) (19)

where w1 and w2 = 1 − w1 are mixture weights. Parameter
values obtained from data are given in Sec. IV-D3.

D. Model Learning

Similarly as the language model and the acoustic model for
a speech recognition system are generally trained separately
with different data, our three component models can be trained
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separately and combined afterwards to determine the optimal
weights (the β s). The context model and the interdependence
model can be learned with musical score data and we used a
dataset of 148 classical piano pieces (with 3.4×106 notes) by
various composers2. On the other hand, the performance model
requires performance data aligned with reference scores. The
used data consisted of 180 performances (60 phrases × 3
different players) by various composers and various perform-
ers that are mostly collected from publicly available MIDI
performances recorded in international piano competitions
[33]. Due to the lack of abundant data, we used the same
performance data for training and evaluation. Because the
number of parameters for the performance model is small (ten
independent parameters in g and ḡ and two weight parameters)
and they are not fine-tunable, there should be little concern
about overfitting here and most comparative evaluations in
Sec. V are done with equal conditions. (See also the discussion
in Secs. IV-D3 and V-C.) To avoid overfitting, the score data
and the performance data contained no overlapping musical
pieces (at least in units of movements). Learning methods for
the component models are described in the following sections
and Sec. IV-D4 describes the optimisation of the β s.

1) Learning the Context Model: The context-tree model
can be learned by growing the tree based on the maximum
likelihood (ML) principle, which is called context-tree cluster-
ing. This is usually done by recursively splitting a node that
minimises the likelihood [24]. Although it is not essentially
new, we describe the learning method here for the readers’
convenience because context-tree clustering is not commonly
used in the field of music informatics and in articles for speech
processing (where it is widely used) the notations are adapted
for the case with Gaussian distributions, which is not ours.

Let xi = (ri, ci) denote a sample extracted from score data,
where i denotes a note in the score data, ri denotes an element
in Ωr(i) and ci denotes the context of note i. The set of all
samples will be denoted by x = (xi)

I
i=1. The log likelihood

LT (x) of a context-tree model T = (T, f, κ,Q) is given as

LT (x) =

I∑
i=1

lnPT (xi) =

I∑
i=1

lnQλ(ci)(xi)

=
∑
λ∈∂T

∑
i: ci∈Cλ

qλ(xi) (20)

where in the second line we decomposed the samples ac-
cording to the criteria of the leaves and hereafter we denote
qν( · ) = lnQν( · ) for each node ν. The parameters for each
distribution Qν for node ν ∈ T are learned from the samples
{xi|ci ∈ Cν} according to the ML method. We implicitly
understand that all Q s are already learned in this way.

Given a context tree T (m) (one begins with a tree T (0)

containing only the root node and proceeds m = 0, 1, 2, . . .
as follows), one of the leaves λ ∈ ∂T (m) is split according
to some additional criterion γ(λ). Let us denote the expanded
context-tree model by T

(m)
λ . Since T

(m)
λ is same as T (m)

except for the new leaves λL and λR, the difference of log

2The lists of used pieces for the score data and the performance data are
available at the accompanying web page [27].
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Fig. 8. A subtree of the obtained context-tree model. Above each node
are indicated the node ID, number of samples and their proportion in the
whole data and the green number indicates the highest probability in each
distribution. See text for explanation of the labels for each distribution.

likelihoods ∆L(λ) = L
T

(m)
λ

(x)− LT (m)(x) is given as∑
i: ci∈CλL

qλL(xi) +
∑

i: ci∈CλR

qλR(xi)−
∑

i: ci∈Cλ

qλ(xi). (21)

Note that ∆L(λ) ≥ 0 since QλL and QλR have the ML. Now
the leaf λ∗ and the criterion γ(λ∗) that maximise ∆L(λ) are
selected for growing the context tree: T (m+1) = T

(m)
λ∗ .

According to the above ML criterion, the context tree can
be expanded to the point where all samples are completely
separated by contexts, for which the model often suffers
from overfitting. To avoid this and find an optimal tree size
according to the data, the minimal description length (MDL)
criterion for model selection can be used [26], [34]. The MDL
`M(x) for a model M with parameters θM is given as

`M(x) = −log2P (x; θ̂M) +
|M|

2
log2I (22)

where I is the length of x, |M| is the number of free
parameters of model M and θ̂M denotes the ML estimate
of θM according to data x. Here, the first term in the RHS
is the negative log likelihood, which in general decreases
when the model’s complexity increases. On the other hand, the
second term increases when the number of model parameters
increases. Thus a model that minimises the MDL is chosen by
a trade off of the model’s precision and complexity. The MDL
criterion is justified by an information-theoretic argument [34].

For our context-tree model, each Q is an 11-dimensional
discrete distribution and has ten free parameters, and there-
fore the increase of parameters by expanding a node is ten.
Substituting this into Eq. (22), we find

∆`(λ∗) = `T (m+1)(x)− `T (m)(x)

= −∆L(λ∗)/(ln 2) + (10/2)log2I. (23)

In summary, the context tree is expanded by splitting the
optimal leaf λ∗, up to a step where ∆`(λ∗) becomes positive.

With our score data of 3.4× 106 musical notes, the learned
context tree had 132 leaves. A subtree is illustrated in Fig. 8
where the node ID is shown in square brackets and the
labels 1, . . . , 10 in the distribution show those probabilities
correspond to IONV(1), . . . , IONV(10) and the label 0 is
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Fig. 9. Joint probability distribution of note values obtained for the interde-
pendence model for δnbh = 12. See text for explanation of the labels.

assigned to the ‘other’. For example, one finds a distribution
with a sharp peak at IONV(1) in node 2 whose contexts satisfy
c(1) ≤ 2. This can be interpreted as follows: if note n has a
pitch within 2 semitones in the next onset cluster, then it is
highly probable that they are in the same voice and note n
has rn = IONV(n, 1). On the other hand, the IONV(2) has
the largest probability in node 7 (the distribution is the same
one as in Fig. 5(d)) with contexts satisfying c(2) ≤ 5 and
c(1) > 14, whose interpretation was explained in Sec. III-C.
Similar interpretations can be made for node 11 and other
nodes. These results show that the context tree tries to capture
the voice structure through the pitch context. As this is induced
from data in an unsupervised way, it serves as an information-
scientific confirmation that the voice structure has a strong
influence on the configuration of note values.

2) Learning the Interdependence Model: The interdepen-
dence model for each δnbh can be directly learned from score
data: for all note pairs defined by Eq. (15), one obtains the
joint probability of their note values. The obtained results for
δnbh = 12 is shown in Fig. 9 where the same labels are
used as in Fig. 8. The diagonal elements, which have the
largest probability in each row and column, clearly reflect the
constraint of chordal notes having the same note values.

Since the interdependence model is by itself not as precise
a generative model as the context model and these models are
not independent, we optimise δnbh in combination with the
context model. This is described in Sec. IV-D4, together with
the optimisation of the weights. In preparation for this, we
learned the joint probability for each of δnbh = 0, 1, . . . , 15.

3) Learning the Performance Model: The parameters for
the performance model in Eqs. (18) and (19) are learned from
the distributions given in Fig. 3. We performed a grid search
for minimising the squared fitting error for each distribution.
The obtained values are the following:

a1 = 2.24± 0.02, b1 = 0.24± 0.01, h1 = 0.69± 0.01,

a2 = 13.8± 0.1, b2 = 15.2± 0.1, h2 = −1.22± 0.04,

w1 = 0.814± 0.004, w2 = 0.186± 0.004,

a3 = 0.94± 0.01, b3 = 0.51± 0.01, h3 = 0.80± 0.01.

The fitting curves are illustrated in Fig. 10. In the figure, we
also show histograms of normalised durations obtained from
ten different subsets of the training data that are constructed
similarly as the 10-fold cross-validation method: i.e. we split
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Fig. 10. Distributions used for the performance model for (a) key-holding
durations and (b) damper-lifting durations. In each figure, the background
histogram is the one obtained from the whole training data (same as Fig. 3)
and the superposed histograms are obtained from 10-fold training datasets.

the training data into ten separate sets (each containing 10%
of the performances) and the remaining 90% of the data were
used as one of the 10-fold training datasets. We can see in
Fig. 10 that the differences among these histograms are not
large. Two other parameter sets for g and ḡ were chosen as
trial distributions shown in the figure, which deviate from the
best fit distribution more than the differences among the 10-
fold histograms. These distributions are used in Sec. V-C3
to examine the influence of the parameter values for the
performance model.

4) Optimisation of the Weights: Since the three component
models for the MRF model in Eq. (7) are not independent,
the weights β should be obtained by simultaneous optimisation
using performance data in general. However, since the amount
of score data at hand is significantly larger than that of the
performance data, we optimise the weights in a more efficient
way. Namely, we first optimise β1 and β2 with the score data
and then optimise β31 and β32 with the performance data (with
fixed β1 and β2). When examining the influence of varying
these weights in Sec. V-C, we will discuss that the influence
of this sub-optimisation procedure is seemingly small.

We obtained the first two weights simultaneously with δnbh

by the ML principle with the following results:

β̂1 = 0.965±0.005, β̂2 = 0.03±0.005, δ̂nbh = 12. (24)

The result β̂2 � β̂1 indicates that the interdependence model
has little influence in the score model. Although it seems
somewhat contradictory to the results in Sec. IV-D2 at first
sight, we can understand this by noticing that both the context
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model and interdependence model make use of pitch proximity
to capture the voice structure. The former model uses pitch
proximity in the horizontal (time) direction and the latter
model does so in the vertical (pitch) direction, and they have
overlapping effects since whenever a note pair (say, note n and
n′) in an onset cluster have close pitches, they tend to share
notes in succeeding onset clusters with close pitches (see e.g.
the chords in the left-hand part in the score in Fig. 16). Thus
note n and n′ tend to obey similar distributions in the context
model. Since the interdependence model is weaker in terms
of predictive ability, this results in small β̂2.

We optimised β31 and β32 according to the accuracy of
note value recognition (more precisely, the average error rate
defined in Sec. V-A) and the obtained values are as follows:

β̂31 = 0.21± 0.01, β̂32 = 0.003± 0.001. (25)

One can notice that β̂32 � β̂31, which can be explained by
the significantly larger variance of the distribution of damper-
lifting durations than that of key-holding durations in Fig. 3.
On the other hand, the result that β̂31 is considerably smaller
than β̂1 can be interpreted as that the score model has more
importance for estimating note values (in our model). The
effect of varying weights is examined in Sec. V-C.

E. Inference Algorithm and Implementation
We can develop a note value recognition algorithm based on

the maximisation of the probability in Eq. (7) with respect to
r. As a search space, we consider Ωr(n)\{other} for each rn.
Without H2, the probability is independent for each rn and the
optimisation is straightforward. With H2, we should optimise
those rn s connected in N simultaneously. Since there are
only vertical interdependencies in our model, the optimisation
can be done independently for each onset cluster. With J notes
in an onset cluster, the set of candidate note values has size
10J . Typically J ≤ 6 for piano scores and the global search
can be done directly. Occasionally, however, J can be ten or
more and the computation time can be too large. To reduce
the size of search space in this case, cutoffs are placed on the
order of IONVs when J > 6 in our implementation: instead
of the first ten IONVs, we use the first (14 − J) IONVs for
6 < J ≤ 10 and two IONVs for J > 10. Although with
this approximation we lose a certain proportion of possible
solutions, we know that this proportion is small from the small
probability of r having higher IONVs in Fig. 5(b).

Our implementation of the MRF model and the metrical
HMM for onset rhythm transcription and tempo estimation
is available [27]. A tempo estimation algorithm based on a
Kalman smoother is also provided for applying our method to
results of other onset rhythm transcriptions that do not include
tempo information as output.

V. EVALUATION

A. Evaluation Measures
We first define evaluation measures used in our study. For

each note n = 1, . . . , N , let rc
n and re

n be the correct and
estimated note values. Then the error rate E is defined as

E =
1

N

N∑
n=1

I(re
n 6= rc

n) (26)

where I(C) is 1 if condition C is true and 0 otherwise. This
measure does not take into account how close the estimation
is to the correct value when they are not exactly equal.
Alternatively one can consider the averaged ‘distance’ between
the estimated and correct note values. As such a measure we
define the following scale error S:

S = exp

[
1

N

∑
n

|ln(re
n/r

c
n)|
]
. (27)

The difference and average is defined in the logarithmic
domain to avoid bias for larger note values. S is unity if all
note values are correctly estimated, and for example, S = 2 if
all estimations are doubled or halved from the correct values.

Because of the ambiguity of defining the beat unit, score
times estimated by rhythm transcription methods often have
doubled, halved or other scaled values [16], [35], which should
not be treated as complete errors. To handle such scaling
ambiguity, we normalise note values with the first IONV as

r′en = re
n/IONVe(n, 1), (28)

r′cn = rc
n/IONVc(n, 1) (29)

where IONVe(n, 1) and IONVc(n, 1) is the first IONV de-
fined for the estimated and correct score, respectively. Scale-
invariant evaluation measures can be obtained by applying
Eqs. (26) and (27) for r′en and r′cn .

B. Comparative Evaluations

In this section, we evaluate the proposed method, a previ-
ously studied method [14] and a simple model discussed in
Sec. III on our data set and compare them in terms of the
accuracy of note value recognition.

1) Setup: To study the contribution of the component
models of our MRF model, we evaluated the full model, a
model without the interdependence model (β2 = 0), a model
without the performance model (β31 = β32 = 0) and an MRF
model with a context model having no (or a trivial) context
tree, all applied to the result of onset rhythm transcription
by the metrical HMM. For the metrical HMM, we use the
parameter values taken from a previous study [16]. These
parameters were learned with the same score data and different
performance data.

In addition, we evaluated a method based on a simple
prior distribution on note values (Fig. 5(a)) combined with
an output probability P (dn; rn, vn) in Eq. (16), which uses
no information of onset score times. For comparison, we
evaluated the Melisma Analyzer (version 2) [14], which is to
our knowledge the only major method that can estimate onset
and offset score times, and we also applied post-processing by
the proposed method on the onset score times obtained by the
Melisma Analyzer. The used data is described in Sec. IV-D.

2) Results: The piece-wise average error rates and scale
errors are shown in Fig. 11 where the mean (AVE) over all
pieces and the standard error for the mean (corresponding
to 1σ deviation in the t-test) are also given. Out of the 180
performances, only 115 performances were properly processed
by the Melisma Analyzer and are depicted in the figure. In ad-
dition, 30.0% of the note values estimated by the method were
zero and scale errors were calculated without these values.
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Fig. 11. Piece-wise average error rates and scale errors of note value
recognition. Each red cross corresponds to one performance. The circle
indicates the average (AVE) and the blue box indicates the range from the
first to third quartiles, and STD and STE indicate the standard deviation and
the standard error.

One can see that the Melisma Analyzer and the simple model
without using the onset score time information have high error
rates and the proposed methods clearly outperformed them.

The distributions of note-wise scale errors r′e/r′c for incor-
rect estimations (r′e/r′c 6= 1) in Fig. 12 show that the Melisma
Analyzer (simple model) more often estimates note values
shorter (longer) than the correct ones. For the simple model,
this is because it mostly relies on, other than a relatively weak
prior distribution in Fig. 5(a), the distribution of key-holding
durations in Fig. 3(a), which has the highest peak position
lower than its mean. For the Melisma Analyzer, the short
and zero note values arise because the method quantises the
onset and (key-release) offset times into analysis frames of 50
ms. Whereas the comparison is not fair in that the Melisma
Analyzer can potentially identify grace notes with zero note
values, which our data did not contain and our method cannot
recognise, the rate (30.0%) is considerably higher than their
typical frequency in piano scores.

Among the different conditions for the proposed method,
the full model had the best accuracy and the case with no
context tree had significantly worse results, showing a clear
effect of the context model. Compared to the full model,
the average error rate for the model without the performance
model was worse but within 1σ deviation and the average scale
error was significantly worse, indicating that the performance
model has an effect in approximating the estimated note values
to the correct ones. On the other hand, results without the
interdependence model were slightly worse but almost the
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Fig. 12. Distributions of note-wise scale errors r′e/r′c for notes with
r′e/r′c 6= 1.
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Fig. 13. Distributions of true and estimated note values relative to IONVs.

same as the full model, which is because of the small β̂2. The
last result indicates that one can remove the interdependence
model without much increase of estimation errors, which
simplifies the inference algorithm as the distributions of note
values become independent for each note.

C. Examining the Proposed Model

Here we examine the proposed model in greater depth.
1) Error Analyses: To examine the effect of the compo-

nent models, let us look at the distribution of the estimated
note values in the space of IONVs (Fig. 13). Note that the
distribution for the ground truth is essentially the same as that
in Fig. 5(b) but slightly different because the data is different
and the onset clusters here are defined with the result of onset
rhythm transcription by the metrical HMM.

Firstly, the model without a context tree assigns the first
IONV to note values with a high probability (> 98%), indicat-
ing that estimated results by the model are almost the same as
for the one-voice representation in Fig. 2(b). This is consistent
with the results in Fig. 12 that this model tends to estimate
note values shorter than the correct values. Secondly, one can
notice that the model without the performance model has a
higher probability for the first IONV and smaller probabilities
for most of the later IONVs compared with the full model.
This suggests that the performance model uses the information
of actual durations to correct (or better approximate) the
estimated note values more frequently to larger values, leading
to decreased scale errors. Finally, the proportion of errors
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the optimal number predicted by the MDL criterion. All data points have
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corresponding to note values that are larger than IONV(10) is
about 0.8%, indicating that the effect of enlarging the search
space of note values by including higher IONVs is limited.

2) Influence of the context-tree size and weights: Fig. 14
shows the average error rates and scale errors for various sizes
of the context tree. The case with only one leaf (not shown
in the figure) is the same as the case without a context tree
explained above. The errors rapidly decreased as the tree size
increased for small numbers of leaves and but changed only
slightly above 50 leaves. There was a gap between the error
rates for the cases with 50 and 75 leaves, which we confirmed
is caused by a discontinuity of results for 52 and 53 leaves.
We have not succeeded in finding a good explanation for this
gap. Far above the predicted value (132 leaves) by the MDL
criterion, the errors tended to increase slightly, confirming that
it is close to the optimal choice.

Fig. 15 shows the average error rate and scale error when
varying the weights from the values in Eqs. (24) and (25).
The context tree had 132 leaves. First, variations by increasing
and decreasing the weights by 50% are within 1σ statistical
significance, showing that the error rates are not very sensitive
to these parameters. Second, the values β̂1 and β̂2, which were
optimised based on ML using the score data, are found to
be optimal with respect to the error rate. Finally, the similar
shapes of the curves when fixing β1/β2 and fixing β31/β32

show that their relative values influences the results more
than their absolute values in the examined region. The results
together with the large-variance nature of the distributions of
durations in Fig. 3 suggest that it is likely that more elaborate
fitting functions for the performance model would not improve
the results significantly and also that the sub-optimisation
procedure for β s described in Sec. IV-D4 did not deteriorate
the results much.

3) Influence of the parameters of the performance model:
To examine the influence of the parameter values of the
performance model in Eqs. (18) and (19), we run the proposed
model for each of three distributions shown in Figs. 10(a) and
10(b). The other parameters were set to the optimal values
and the size of the context tree was 132. Results in Table
II show that despite the differences among distributions, the
average scale error was almost constant and the variation of
the average error rate is also smaller than the standard error.

 25.5

 26

 26.5

 27

 27.5

 28

 28.5

 1.22  1.225  1.23  1.235  1.24  1.245  1.25  1.255
Scale error S

E
rr

o
r

ra
te

E
(%

) β2 fixed
β1 fixed

β1/β2 fixed

1

0.464

0.215

0.215

2.15

4.64
10

 25.5

 26

 26.5

 27

 27.5

 28

 28.5

E
rr

o
r

ra
te

E
(%

)

Scale error S

1
0.464 0.215

0.12.15

4.64

 1.22  1.225  1.23  1.235  1.24  1.245  1.25  1.255

β32 fixed

β31 fixed

β31/β32 fixed

(a)

(b)

Fig. 15. Average error rates and scale errors with (a) varying β1 and β2

and (b) varying β31 and β32. The β s are scaled in logarithmically equally
spaced scaling factors, which are partly indicated by numbers, and the centre
values (indicated by ‘1’) are given in Eqs. (24) and (25). All data points have
statistical errors of order 1% for error rate and order 0.01 for scale error.

Key-holding g Damper-lifting ḡ Error rate E (%) Scale error S
Best fit Best fit 25.66 1.225
Best fit Trial 1 25.67 1.225
Best fit Trial 2 25.67 1.225
Trial 1 Best fit 25.97 1.225
Trial 1 Trial 1 25.98 1.225
Trial 1 Trial 2 25.97 1.225
Trial 2 Best fit 25.46 1.225
Trial 2 Trial 1 25.46 1.225
Trial 2 Trial 2 25.46 1.225

TABLE II
AVERAGE ERROR RATES AND SCALE ERRORS FOR DIFFERENT

DISTRIBUTIONS FOR THE PERFORMANCE MODEL. THE BEST FIT AND
TRIAL DISTRIBUTIONS ARE SHOWN IN FIG. 10.

More precisely, the influence of the choice of parameters for
ḡ is negligible, which can be explained by the small value
of β32. This confirms that the influence of the performance
model is small and there is little effect of overfitting in using
the test data for learning.

4) Example Result: Let us discuss an example3 in Fig. 16,
which has a typical texture of piano music with the left-hand
part having harmonising chords and the right-hand part having
melodic notes, both of which have multiple voices inside. By
comparing the performed durations to the score, we can see
that overall the damper-lifting durations are closer to the score-
indicated durations for the left-hand notes and the key-holding
durations are closer for the right-hand notes. This is because
pianists tend to lift the pedal when harmonising chords change.
This example shows that the two types of durations provide
complementary information and one should not rely on one of

3Sound files are available at the accompanying web page [27].
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Fig. 16. Example result of rhythm transcription by the metrical HMM and
the proposed MRF model (Beethoven: Waldstein sonata 1st mov.). Voice, staff
and time signature are added manually to the estimated result for the purpose
of this illustration.

them. On the other hand, for most notes, the offset score time
matches to the onset score time of a succeeding note with a
close pitch, which is what our context model describes.

The result by the MRF model shows that the model uses
the score and performance models complementarily to find
the optimal estimation. The correctly estimated half notes (as
IONV(6)), A4 in the first bar and E5 in the second bar, have a
close pitch in the next onset cluster and the incorrect estimates
as IONV(1) are avoided by using the duration (and perhaps
because of the existence of very close pitches at the sixth
next onset clusters). On the other hand, the quarter-note F#4
and D#4 in the left-hand part in the second bar could not be
correctly estimated probably because the voice makes a big
leap here, closer notes in the right-hand part succeed them
and the key-holding durations are short.

VI. CONCLUSION AND DISCUSSION

We discussed note value recognition of polyphonic piano
music based on an MRF model combining the score model
and the performance model. As suggested in the discussion
in Sec. III and confirmed by evaluation results, performed
durations can deviate greatly from the score-indicated lengths
and thus the performance model aline has little predictive
ability. The construction of the score model is then the key
to solve the problem. We formulated a context-tree model
that can learn highly predictive distributions of note values
from data, using onset score times and the pitch context.
It was demonstrated that this score model brings significant
improvements on the recognition accuracy.

Refinement of the score model is possible in a number of
ways. Using more features for the context-tree model could
improve the results. Using other feature-based model learning

schemes such as deep neural networks are similarly possible.
The refinement and extension of the search space for note
values is another issue since the set of the first ten IONVs
used in this study loses a certain proportion of solutions. The
result that the context-tree model learned to capture the voice
structure suggests that building a model with explicit voice
structure is also interesting for creating generative models to
reduce reliance on arbitrarily chosen features.

Remaining issues to obtain musical scores in a fully au-
tomatic way include the assignment of voice and staff to
the transcribed notes. Voice separation methods and staff
estimation methods exist (e.g. [29]–[31]) and the information
of transcribed note values can be useful to identify chordal
notes within each voice. Another issue is the recognition of
time signature. Using multiple metrical HMMs learned with
score data for each metres is one possibility and we could
also apply other metre detection methods (e.g. [36]) to the
transcribed result.

To apply this work, the construction of a complete poly-
phonic music transcription system from audio signals to musi-
cal scores is attractive. The framework developed in this study
can be combined with existing multi-pitch analysers [3]–[6]
for this purpose. It is worth mentioning that the performance
model should be trained on piano rolls obtained with these
methods since the distribution of durations would differ from
that of recorded MIDI signals. Extension of the model to
correct audio transcription errors such as note insertions and
deletions would also be of great importance.
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