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Supplementary Information

This documents provides supplementary information to the paper “Investigating Style Evolution
of Western Classical Music: A Computational Approach.” In particular, we provide details on
the feature extraction procedures including the underlying chroma features (Section 1) as well as
derived features for describing interval categories (Section 2), tonal compexity (Section 3), and
chord transitions (Section 4). In Section 5, we explain our feature aggregation method and the
basic ideas of PCA. Beyond that, Section 6 provides additional results on measuring diversity
from the piece-wise clustering results.

S1 Chroma Features

Chroma features have turned out to be suitable mid-level representations for approaching
different music processing tasks (Fujishima, 1999; Bartsch & Wakefield, 2005; Ellis & Poliner,
2007; Miiller et al., 2005). They have been shown to capture the tonal content of audio signals and
to be invariant against timbre variations to a certain extent (Gomez & Herrera, 2004; Miiller,
2015). In the following, let ¢ = (cg,c1,...,c11)T € RY denote a chroma vector of dimension
N := 12, with ¢, > 0 indicating the energy of the n-th pitch class. The indices n =0,1,2,...,11
correspond to the twelve chroma values C, Cf, D, ..., B. Because of the octave invariance, the
features show a cyclic nature so that a transposition in pitch leads to circular shift. We compute
the chroma features in a temporal resolution of 0.1ms (10Hz). The features are normalized
columnwise with respect to the £!-norm so that ¢!(c) = 1.

When extracting chroma features from music recordings, a number of acoustic effects such as
noisy or percussive sounds play a role. In particular, partials of a played note have an influence
on the chroma distribution. This may lead to a remarkable difference between the chroma vector
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and the pitch classes as notated in a score. Several strategies have been proposed to reduce this
influence of partials and to make the chroma features more robust to timbre variations (Lee,
2006; Goémez, 2006; Miiller & Ewert, 2010; Mauch & Dixon, 2010). For our experiments, we use
a strategy proposed by Mauch and Dixon (2010), which reduces the influence of partials using an
approximate transcription method based on the Non-Negative Least Squares (NNLS) algorithm.
These features considerably improved chord detection results for popular music. The code was
published as “Vamp” plugin.! We use this plugin in combination with the command line tool
Sonic Annotator.?

S2 Interval Category Features

To describe style-relevant tonal characteristics, the measurement of harmonic intervals can be
useful. A systematic way of interval-based analysis is the pitch class set theory (Hanson, 1960;
Forte, 1973). In the context of this theory, a system of six interval categories (ICs) was developed
for style analysis (Quinn, 2001; Honingh et al., 2009). In previous work (Weif et al., 2014), we
proposed features to measure the occurrence of these interval categories from audio recordings.
They are invariant to musical transposition and have shown good results as basis features for
classifying musical styles (Weif et al., 2014; Weif3, 2017).

We compute the features on the basis of NNLS chroma representations with a temporal
resolution of 10Hz (see Section 1). For a given chroma vector ¢, we compute the likelihood
for the joint appearance of two pitch classes that relate by the respective interval. To this end,
we multiply the respective entries ¢, of the chroma vector ¢, with ¢ € {0,1,...,11} :=[0: 11].
For the feature Fy relating to perfect fifth and perfect fourth intervals, we multiply the chroma
value ¢y for pitch class C (¢ = 0) with the value ¢5 for F (¢ = 5). These pitch classes form an
interval of 5semitones distance. Since we are interested in the type of the interval and not in the
specific pitches, we equally weight all transpositions of this interval by summing over all cyclic
shifts (C-F, Ct-Fi, D-G, ..., B-E). We obtain the feature value

11
F5 = Zcq " C(g+5) mod 12+ (1)
q=0
To generalize this expression, we use a binary template T := (Ty,...,T11)T € R1%:

Pr=>)_ (H (€(q+k) mod 12)T'°> (2)

k=0
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By suitably choosing T, we can estimate the different interval categories:

T, = (1,1,0,0,0,0,0,0,0,0,0,0)"
T, = (1,0,1,0,0,0,0,0,0,0,0,0)"
Ts = (1,0,0,1,0,0,0,0,0,0,0,0)"

=(1,0,0,0,1,0,0,0,0,0,0,0)"
Ts = (1,0,0,0,0,1,0,0,0,0,0,0)
T = (1,0,0,0,0,0,1,0,0,0,0,0)

T
: (3)

Using the template T, we obtain the feature value Fs as denoted in Equation (1).

S3 Tonal Complexity Features

Beyond concrete tonal structures such as intervals, we consider a more abstract property that
we refer to as tonal complexity. There are several approaches for estimating tonal complexity
from audio recordings (Streich, 2006; Honingh & Bod, 2010; Di Giorgi et al., 2017). We use a
set of features proposed in previous work (Weif§ & Miiller, 2014, 2015; Weif, 2017). The features
rely on statistical measures calculated from NNLS chroma features (see Section 1).

The notion of tonal complexity applies to different time scales. On a fine temporal level,
tonal complexity relates to the characteristics of chords or scales. Looking at a coarser level, the
presence of modulations typically leads to an increase of tonal complexity. To account for these
different aspects, we compute the complexity features from chroma features in different temporal
resolutions. For this purpose, we make use of the approach proposed by Miiller et al. (Miiller et
al., 2005; Miiller, 2015) for the CENS features. We use a smoothing window length defined by
w and a downsampling factor d, both given in frames. After smoothing, we again normalize the
feature frames using the ¢; norm obtaining the smoothed features NNLS;. For our experiments,
we consider the following resolutions:

e NNLS)ocai: Local 10 Hz features (for feature Fig)
e NNLS’: Medium resolution (for feature Fy)
e NNLS239: Medium resolution (for feature Fg)

e NNLSgiobai: Global chroma histogram (for feature Fy).
Based on the different chroma representations, we calculate the complexity measure I'gigy, which

measures the spread of chroma energy around the circle of fifths. To this end, we re-sort the
chroma values to an ordering of perfect fifth intervals (7 semitones):

fifth __
Cq = C(q-7 mod 12) (4)
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Figure S1. Circular interpretation of chroma vectors. The length of the yellow shapes corresponds to the
chroma vector entries ¢ with g € [0 : 11]. The red line indicates the resultant vector. For a sparse chroma
vector c*P*™° the resultant vector has length 1 (a). A flat vector c®* obtains length 0 (b). In (c), we
illustrate this principle for a random-like chroma vector.

with ¢ € [0: 11] obtaining a circular distribution of the pitch class energies. From this, we
calculate the length of the mean resultant vector

1 2miq
chfth exp < B > | . (5)

q=0

Tﬁfth(c) =

From the resultant vector, we obtain the complexity value I'gign(c) as the angular deviation

Irigen(c) := /1 — 7agen(c). (6)

This way, I'gigen, describes the spread of the pitch classes. A short resultant vector—corresponding
to a flat chroma vector—results in a high complexity value I'gign & 1. A long vector leads to small
values corresponding to low complexity. In previous work, we have demonstrated the behaviour of
this feature (and other complexity features) for isolated chords as well as for the head movements
on L. van Beethoven’s piano sonatas (Weifl & Miiller, 2014; Weif3, 2017).

S4 Chord Progression Features

In our paper, we also analyze chord transitions since such sequential properties may constitute
meaningful style markers. For estimating the underlying chord symbols, we use the Vamp plugin
Chordino.! This algorithm relies on NNLS chroma features (see Section 1) and incorporates
Hidden Markov Models for concurrently estimating and smoothing the chord labels (Mauch &
Dixon, 2010). We use the plugin together with the command line tool Sonic Annotator.?

The Chordino plugin allows for an adaptation of possible chord types using a dictionary file
(“chord.dict”, see Table S1). We modified this dictionary for our purpose by only using the four
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Table S1. Dictionary file for the Chordino algorithm. This is the “chord.dict” file for configuring the
Chordino Vamp plugin. We used this configuration to estimate the chords for our analyses. The first twelve
entries refer to the bass notes, which we did not use. The last twelve entries indicate the active pitch classes
for the respective chord type. We have considered the four basic triad types as well as five types of seventh
chords. Regarding the nomenclature, the part after the first underscore relates to the quality of the basic
triad (major, minor, diminished, or augmented). For the seventh chords, we indicate the quality of the
seventh interval over the root note after the second underscore. The algorithm automatically generates
circularly shifted versions of these templates to account for all twelve possible root notes.

_maj = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0
_min = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0
_dim = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0
_aug = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0
_dim_dim7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0
_dim_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0
_maj_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0
_maj_maj7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1
_min_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0

Root
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Figure S2. Estimation of root note transitions. In this schematic overview, we show the processing flow
for estimating the frequency of root note transitions. First, we reduce the output of the chord estimator by
only considering the root notes (without octave information). From this root note sequence, we calculate
interval statistics on the piece level.

basic triad types (major, minor, diminished, and augmented triads) as well as five seventh chord
types (major, dominant, minor, half-diminished, and full-diminished seventh chords). We do not
use the bass chromagram to estimate chord inversions since, for classical music, the harmonic
bass notes (i. e., the lowest note in a given voicing of a chord) do not necessarily lie within a
low pitch range—in contrast to most popular music, which often includes an electric bass guitar.
Regarding the chroma pre-processing, we use a window size of 16384 samples and a window
increment of 4410 samples resulting in a feature resolution of 10 Hz (sampling rate 44100 Hz).
For all other system parameters, we use the default values.

For our analyses, we only consider the relative root note distance of the chord transitions. To
this end, we reduce the Chordino output by only keeping the root note information of the chords.
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We count the occurrence of different melodic intervals between these root notes for all pairs of
chord symbols (see Figure 52). Next, we divide the resulting numbers by the total number of
chord transitions in order to obtain relative values for each piece. We do not consider transitions
between chords with the same root note such as, for instance, the transition C major — C minor.

S5 Feature Aggregation and PCA

In Data Mining and Machine Learning, the set of computed features is usually given in a
feature matriz F € RN*! where N is the number of features and I is the number of instances
(in our cases: pieces, years, or composers). Typically, the number of features can be quite
large (N > 100). Often, the feature matrix shows some kind of redundancy so that a lower
dimensionality may be sufficient to capture the relevant information. In this case, feature
aggregation techniques can be useful in order to obtain a representation of lower dimensionality
L < N. An unsupervised aggregation method is Principal Component Analysis (PCA). This
method constitutes a transformation of the feature vectors into a new basis with orthonormal
basis vectors w! := (w!,...,wl,)T € RN, [ €[l : N]. The entries of w' are called weights or
loadings. The first component w! points towards the mazimum variance direction of the feature
space. With increasing index [, a vector w' describes a smaller fraction of the data’s variance.
Therefore, we can reduce the dimensionality of the feature space by only keeping the first L < N
components while still describing a large part of the variance. As an important preprocessing
step for PCA, we have to subtract the mean vector over all instances from the initial feature
vectors. Furthermore, it can be useful to divide the feature values by the standard deviation over
all instances in order to equalize the contribution of the feature dimensions (Alpaydin, 2004).

In our experiments, we have an initial dimensionality of N = 65. For example, as basis for
the K-means clustering in the paper’s Figure 9, we have a year-wise feature matrix denoted
by Fyears € RE*315 (considering the 315 years of the timespan 1661-1975). Applying PCA, we
obtain the aggregated feature F'* as a linear combination

F*:w1F1+w2F2+...+wNFN (7)

where the weights w;, ..., w, are determined by the PCA procedure.

We may regard feature aggregation as a more general procedure. For example, we can add up
the root note transitions of ascending and descending perfect fifth intervals to a new feature. In
this case, we need to choose the weights w5 = w;, = 1 while all other weights are zero. In the
paper, we aggregate all plagal and all authentic progressions, respectively. Calculating the ratio
of these quantities is the basis for Figure 4 in the paper.

S6 Diversity Curve of Piece Clustering

In the paper, we have presented clustering results for individual pieces. Figure 10 of the
paper shows the evolution curves for the resulting cluster assignments as spindle plots. The
spindles describe the fraction of pieces belonging to each cluster over the years. To analyze the
homogeneity of styles in more detail, we present an analysis of diversity based on the year-wise
clustering results. Inspired by Mauch et al. (2015), we use a diversity measure relating to the
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Figure S3. K-means clustering of individual pieces with K = 5. For each year, the fraction of pieces
belonging to each cluster is indicated by the width of the respective spindle in the lower plot. The upper
plot shows the diversity (effective number of clusters) over the years.

entropy (Jost, 2006). Let Ai? be the fraction of pieces assigned to the cluster k£ in the year 7,
with k € [1:5] and ¢ € [1661 : 1975]. Then, we calculate the diversity measure D; in the year ¢

as follows:
5
D; = exp (— Z AFln Af) . (8)
k=1

The upper plot of Figure S3 shows the resulting diversity curve. For completeness, and for
a better comparison, we show the clustering results again in the lower plot. We observe low
diversity values for the beginning and ending years of the analyzed timespan. Again, this is
in accordance with our expectation since only few composers contribute there. The early 18th
century constitutes a period of high diversity. This is an interesting observation since, in that
time, both the old Baroque style with composers such as J. S. Bach and G. F. Handel and a
variety of pre-classical styles with composers such as C. P. E. Bach, G. F. Telemann, J. Stamitz,
or L. Mozart contribute. The classical period (roughly 1770-1825) seems to be an era of lower
diversity. In contrast, the 19th century appears rather diverse Around 1900, we find a peak. This
local maximum is probably caused by the rise of atonal style (Cluster 1) while other styles such
as the Romantic style (Cluster 5) are still present. Though the interpretation of this diversity
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analysis is rather speculative, some of the observations provide meaningful information on the
variety of composition styles over time.

Notes

1. http://isophonics.net/nnls-chroma

2. http://www.vamp-plugins.org/sonic-annotator
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