A demonstration of hierarchical structure usage in expressive timing
analysis by model selection tests
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Abstract: Analysing expressive timing in performed music can help machine to perform various perceptual tasks
such as identifying performers and understand music structures in classical music. A hierarchical structure is
commonly used for expressive timing analysis. This paper provides a statistical demonstration to support the use
of hierarchical structure in expressive timing analysis by presenting two groups of model selection tests. The first
model selection test uses expressive timing to determine the location of music structure boundaries. The second
model selection test is matching a piece of performance with the same performer playing another given piece.
Comparing the results of model selection tests, the preferred hierarchical structures in these two model selection
tests are not the same. While determining music structure boundaries demands a hierarchical structure with more
levels in the expressive timing analysis, a hierarchical structure with less levels helps identifying the dedicated

performer in most cases.
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1 Introduction

A certain number of music theories such as Gener-
ative Theory of Tonal Music (known as GTTM) [1]
considers the music structure as a hierarchical struc-
ture. As music structure affects expressive timing, hi-
erarchical structures are commonly used in expressive
timing analysis. In this paper, expressive timing is anal-
ysed with different structures to provide a statistical
evidence that hierarchical structures are helpful in the
analysis of expressive timing.

In this paper, expressive timing is analysed with hi-
erarchical models that assert probability of locating a
music structure boundary on each beat of performed
music. The resulting models are then used to detect mu-
sic structure boundaries and identify the performances
by the same performer of a given piece. To compare
different structures used in expressive timing analy-
sis, the proposed method is capable of different struc-
tures of analysis including both hierarchical and non-
hierarchical structures with multiple levels.

There are several candidate structures of analysis
are compared in this work. Besides the prime target
comparing hierarchical and non-hierarchical structures,
there are different number of levels in the candidate
structures with the units in the basic level engaging to
different number of beats. Understanding the prefer-
ence of hierarchical structure for analysing the connec-
tions between expressive timing and different aspects
of musicology help machines to understand music per-
ceptually thus forms basis of various tasks such as per-
former identification and cover song identification.
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To assert the probability of locating music structure
boundaries, the hierarchical parabola model by Todd
[2] is used inversely. By finding the local minima of ex-
pressive timing at different levels, the expressive timing
information can be converted to a probabilistic model
that each beat in a piece of expressive performance lo-
cates a boundary of music structure. The resulting
models are then compared by Receiver Operation Char-
acteristic (ROC) test. Considering that expressive tim-
ing is affected by music structure boundaries [2], the
results of the model selection test reveals the preference
of structures showing the commonalities in expressive
performances.

As the way that a performer interprets music struc-
ture boundaries is possibly unchanged, the probability
model asserting each beat in the performance locates
a music structure boundary may be used to identify
same-performer renderings. The term same-performer
rendering means the performances of the same piece
of music that is played by the same performer at dif-
ferent times. Assuming the unchanged mapping be-
tween expressive timing and the understanding of mu-
sic structure, the resulting probability model locating
music structure boundaries should be similar between
same-performer renderings.

To show the proposed algorithm can be potentially
applied to other classical music performances, the most
commonly used expressive timing dataset in classical pi-
ano performances, the Mazurka dataset ! is used. This
database contains various performances of five pieces
of Mazurkas (Op.17/4, Op.24/2, Op.30/2, Op.63/3 and
Op.68/3) and is commonly used in various works [3—
6]. For each piece of music, there are multiple perfor-

Thttp://www.mazurka.org.uk/info/excel /beat/



mances. Certain sets of same-performer renderings are
also offered. Besides the information on expressive tim-
ing, the Mazurka database also provides the boundaries
of the music structure in each Mazurka, which is used to
evaluate the models resulting from the candidate struc-
tures.

The proposed method is not an empirical method.
In other words, the proposed method does not require
data from various performances but only needs expres-
sive timing information from a single piece of perfor-
mance. The principle of the proposed method is taken
the expressive timing that is recorded as a vector of
tempo variations as a signal. Using signal processing
methods, the proposed method is capable for various
structures of analysis.

As both music structure boundaries assertion and
performer identification can be regarded as a binary
classification problem, the performance of models re-
sulting from different structures are evaluated by Re-
ceiver Operating Characteristic (ROC) [7]. The specific
measure used to evaluate the model performance is Area
Under Curve (AUC) [7], which represents how well the
resulting model can perform compared with random se-
lection results.

This paper is organised as follows: relevant research
is reviewed first. The introduction of data used in this
paper follows. Then the proposed method that converts
expressive timing to the probability that each beat in a
piece of performance locates a music structure boundary
is explained in detail before the presentation of candi-
date structures for analysis. The final results are shown
with a following discussion and conclusion.

2 Literature Review

In this paper, we build a model that converts expres-
sive timing into the probability that every beat in a per-
formance locates a music structure boundary. Accord-
ing to existing works [3, 8], the expressive timing and
the phrasing of music are closely related; thus, an al-
gorithm is proposed asserting the probability that each
beat in a performance locates a music structure bound-
ary according to the minima of expressive timing at dif-
ferent levels. The introduction of structure for analysis
defines the local minima of expressive timing in differ-
ent way. Thus the preferred hierarchical structure for
analysing expressive timing can be selected by compar-
ing different candidate structures for analysis.

There are two types of tasks for expressive timing
analysis using a hierarchical structure. Finding the
commonalities of expressive timing by different per-
formers forms a basis of expressive timing generation.
The classical parabola model [2] uses parabolic curves
to regress expressive timing at different levels. With the
same principle, earlier attempts by Desain and Honing
[9] uses the hierarchical parabola model to synthesis a
MIDI piece but have little success. Later, the introduc-
tion of machine learning techniques further improves the
synthesis of expressive timing. The DISTALL system
[10-12] considers the hierarchical relationship in tempo
variations and use such relationship to synthesise ex-

pressive timing. As the expressive timing is affected by
music structure and the music structure is hierarchical
[1], the proposed experiment asserting music structure
boundaries compares which structure is preferred for
finding commonalities in expressive timing.

The hierarchical method is also used for character-
ising personal expressive style. Sapp [5] uses a multi-
layer algorithm to identify performances from the same
performer. With multiple lengths of windows, the per-
sonal expressive style is compared with the same piece
of music performed. Moreover, Saunders et al. [13] and
Molina-Solana et al. [14] have used expressive infor-
mation to identify performers with reasonable results
presented.

In model selection tests, the proposed algorithm of
expressive timing analysis is performed with different
structure of analysis adapted. To evaluate how well the
candidate models perform, a ROC analysis [15] is per-
formed to examine how well each candidate structure of
analysis performs in the dedicated tasks. A ROC anal-
ysis balances the hit rate and the rate of false positive.
Setting a threshold to judge the positives, it is likely
to obtain two types of results: true positives and false
positives. If we use the rates of true positives and false
positives as coordinates, we can obtain a set of points
on a plane. A curve connecting all points is known as
the ROC curve. The area under the curve (known as
AUC) indicates the efficiency of the tested model in the
task. A larger AUC means better performance. We will
compare a set of models resulting from a set of proposed
structures.

3 Dataset

The term expressive timing is a perceptual concept
that the beat of performed music varies to express dif-
ferent emotions. A straightforward way to digitise ex-
pressive timing is to use a vector of tempo variations.

Despite beat tracking algorithms reaches a reason-
able level of accuracy by music information retrieve re-
searchers, the accuracy of beat tracking for classical mu-
sic is still far from usable due to the rapid changes of
beat lengths. As a common practice, the raw data of ex-
pressive timing still demands human annotation works.
Labelling the timing of each beat in expressive perfor-
mance with a vector of beat timing T = (t1,t2,...,tn)
where there are n beats in the performance, the tempo
of each beat can be calculated by the reciprocal of inter-
beat interval, i.e. 7, = ﬁ Connecting the values
of tempo on each beat, the resulting curve is named as
tempo curve that is a common way to visualise expres-
sive timing.

Figure 1 compares the tempo curves throughout a
piece of music for two different players performing the
same piece of music. The vertical axis shows the values
of tempo on each beat. The unit of beat is Beat Per
Minute (BPM) where a larger number indicates a faster
rate of beat. The horizontal axis is the index of beat.

In Figure 1, the tempo curves show a possible hierar-
chical structure: each tempo curve is formed by several
arcs and the peak of each arc forms further arc shapes.
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Fig. 1: Tempo variations of two different performers
playing the same piece of music.
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Fig. 2: Music structure analysis for phrasing of Chopin
Mazurka Op.24 No.2.

Moreover, at certain positions, the performers agree on
the change of tempo whereas for other positions the
micro-structure of each arc differs from performer to
performer. The agreed positions are usual the bound-
ary of music structure.

The music structure analysis in this paper focuses on
phrasing. Figure 2 shows an example of the result of
music structure analysis. There are colour blocks cover
the music sheet in Figure 2 labelling the phrases in a
piece of music. The last beat of each phrase is defined
as the music structure boundary. The piece shown in
Figure 2 is Chopin Mazurka Op.24 No.2 that is included
in the Mazurka dataset used in this paper.

Provided both the result of music structure analy-
sis and expressive timing formation in terms of tempo
variations, Mazurka dataset contains five pieces of
Mazurkas played by certain numbers of players. Next
we will introduce how the expressive timing is converted
to a probability model that asserts each beat in a per-
formance locates a music structure boundary.

4  Model establishment

The models established show the probability that
each individual beat throughout a performance locates

a music structure boundary. The proposed experiment
asserts whether a beat locates a music structure bound-
ary by comparing the probability of a beat in the re-
sulting model with a selected threshold. As each per-
formance generates a model with a given structure, the
similarity of resulting models can be measured and the
most similar performances are likely to be performed by
the same performer. As the primary task of this paper
is to show different hierarchical structures for analysis
are preferred by different tasks in different tasks of ex-
pressive timing analysis, a single model is used for both
tasks for comparison purposes hence the methods pro-
posed in this paper is far from the optimised models for
the specific music information retrieval tasks.

According to Todd [2], there is a potential hierarchical
relationship in the tempo variations in performed mu-
sic. This fact suggests that the global minimum points
on tempo variations have a higher possibility of locat-
ing a boundary of a music structure, whereas maxima of
tempo variations are less likely to be located at a music
structure boundary. In other words, performers usually
slow down the tempo around the important boundaries
of the music structure. We use this principle inversely;
thus, a minima of expressive timing has a higher prob-
ability of locating a music structure boundary.

The proposed model aims to describe, if there is
a music structure boundary, where the boundary is
likely to be located. Suppose that here are m beats
in the performance (B = by, bo,...,b,); the model
(p(B) = (p1,p2,---»Pn), Zzzl = 1) indicates that the
probability of a music structure boundary g is located
on beat 7 is p;. The structure for analysis indicates
how many beats are considered in a window at multiple
levels. The different size of windows is represented as
L= {lo,l17l27...,li,...,lL}, where lp <1 <lo <... <
lr,. Specifically, Iy represents the level of the beat (i.e.,
lop = 1). We use rectangle windows in this algorithm,
which define the window function (W, (7)) of size I; as
follows:

1 7€ [0, li — 1]
Wi, = 1
u(7) {0 otherwise. (1)

For simplicity, we call the analysis with windows of size
l; the analysis of level i. Level 1 is defined as the lowest
level, and level L is defined as the top level (or the
highest level).

The root of mean square (RMS) of tempo values in
each window at different levels is then calculated. If the
window size is I; and the performance has n beats (from
1 to n), we should have 7 windows. However, if n is
not divisible by [;, the size of the last window at level
[ will be shortened to fit the end of the performance.
We use e, = (e}, €f,...,e],...,ef) (where k = L)
to represent the RMS values within each window whose
size is [; at level 4. The element in €;, is defined as

follows:

el = RMS(7W, (7 — jl;)) — std(7FT W, (7 — jli)), (2)

where RMS represents the root of mean square and std



represents the standard deviation. We must point out
that e;, has different lengths. The length of ey, is [].

Next, we introduce the method to convert a series of e
at different levels into the probability of locating a mu-
sic structure boundary for every beat in a performance.
The target of the proposed model is to determine the
probability of locating one music structure boundary g
throughout a performance. For simplicity, the proba-
bility of a music structure boundary § being located on
beat ¢ is represented as p(i) = p(8 = b;) and the prob-
ability of a music structure boundary 3 being located
in window Wj is represented as p(WJ) =pB € WJ)
In the proposed model, we assume that the probablhty
of locating a music structure boundary on a beat (b;) is
the product of the probability of locating a music struc-
ture in the windows (W}*) at all levels that the beat (b;)
is in. Suppose that there are L levels in the candidate
hierarchical structure of analysis; we have the following:

) =TT pw. e

In the proposed algorithm, the probability of a win-
dow I/Vl] at level 4 is proportional to the reciprocal of
squared e;,; i.e.,

P L ()
=1/

5 Candidate hierarchical structures

Several hierarchical structures (Lo to L7) are pro-
posed for comparison in this paper. The symbol L rep-
resents a series of window sizes for analysis. To repre-
sent each beat in the performance, the lowest level (Ig)
in L is always 1. As a result, the lowest adjustable level
in the candidate hierarchical structures for analysis is
ly.

In Mazurkas, there are three beats in each bar. Thus
in most cases (except only two cases for comparison pur-
poses), the second level of L is set at 3 (I; = 3). We want
to investigate the effects of the multiple levels used. We
set higher levels in the candidate hierarchical structure
at 2 to group pairs of units at the previous level. The
largest window size we used in the candidate hierar-
chical structures is 48 beats, which exceeds the longest
phrases in the Mazurka database. We test two special
cases in the candidate hierarchical structures by setting
different values at [y for comparison purposes. The first
special hierarchical structure has Iy = 6, which is two
bars. We want to investigate the effects such that [y
covers a longer section of a performance. The second
special hierarchical structure engaged is [y = 4, which
conflicts with the grouping implied by the time signa-
ture. We wish to investigate whether it is important to
make [; identical to the bar length or at least consistent
with it. The candidate hierarchical structures are listed
in Table 1.

6 Model Evaluation

To test the effects of candidate hierarchical structures
on the proposed algorithm, we design two tasks for the

Candidate Hierarchical Structures

Lo = {1}
Ly ={1,3}
Lo ={1,3,6}

Ls = {1,3,6,12}
Li={1,3,6,12,24}
Ls = {1,3,6,12, 24, 48}
Le = {1,6,12,24}
L7 = {1,4,12,24}
Table 1: The candidate hierarchical structures for anal-

ysis in this experiment.

models and perform a ROC analysis. The two tasks we
used in this paper are identifying a boundary of a music
structure and identifying the same-performer rendering.
According to the proposed model (p(B)), we can assert
the location of music structure boundaries according to
the resulting models with a threshold. Then, we com-
pare the detected music structure boundaries by the
resulting models with the music structure boundaries
provided by the Mazurka dataset. We then follow a
typical procedure of ROC analysis and then compare
the models resulting from different candidate structures
of analysis.

Suppose that the music structure provided by the
Mazurka dataset is represented by a binary vector ©;
the music structure detected by a threshold w can be
represented as follows:

O, = (p(B) <w). (5)

Suppose that there are k£ thresholds used in ROC
analysis (w1,ws,...,wk, where w; < we < ... < wg),
thus, there will be k points on the ROC curves. The
coordinates of the points on ROC curve are as follows:

{xj =sum(®,;, AND (NOT ©)) (6)

y; = sum(@®,,;, AND O).

The AUC can be calculated as follows:

k—1
Yi+1 + Y
AUC = (aj41 — ;) ”12 J (7)
j=1

where a larger AUC value indicates a better result.

In a previous work [5], the author uses a correlation-
based similarity measurement to compare the perfor-
mances from the same performer, or same-performer
renderings. According to this work, same-performer
renderings are more similar to each other than different-
performer renderings. In the current paper, we investi-
gate which structure of analysis helps show the similar-
ity between same-performer renderings.

To show the similarity between same-performer ren-
derings, we compare the model we proposed from all
renderings, including the same-performer renderings
and the different-performer renderings for the same
Mazurka first. For a particular hierarchical structure,
the similarity of resulting models is compared by KL
divergence [16, p. 58].



ROC/AUC Lo Ly Lo L3 Ly Ls Lg L~
Op.17/4 0.2504 | 0.2538 | 0.2470 | 0.2521 | 0.2638 | 0.2807 | 0.2525 | 0.2531
Op.24/2 0.2990 | 0.3106 | 0.3324 | 0.3788 | 0.4024 | 0.4107 | 0.3748 | 0.3517
Op.30/2 0.0977 | 0.1070 | 0.1232 | 0.1428 | 0.1560 | 0.1639 | 0.1272 | 0.1227
Op.63/3 0.2566 | 0.2624 | 0.2878 | 0.3148 | 0.3178 | 0.3300 | 0.3038 | 0.2939
Op.68/3 0.2507 | 0.2475 | 0.2440 | 0.2654 | 0.2970 | 0.3010 | 0.2891 | 0.2783

Mean 0.2309 | 0.2363 | 0.2469 | 0.2708 | 0.2874 | 0.2973 | 0.2695 | 0.2599

Table 2: The AUC value for identifying music structure boundaries.

A larger number suggests that a better
structure is used in the analysis. The bold number indicates the best structure of analysis for a Mazurka.

ROC/AUC Lo Ly Lo L L4 Ls Ls L7
Op.17/4 0.9915 | 0.9936 | 0.9907 | 0.9697 | 0.9734 | 0.9657 | 0.9688 | 0.9937
Op.24/2 0.9945 | 0.9953 | 0.9947 | 0.9926 | 0.9785 | 0.9680 | 0.9632 | 0.9760
Op.30/2 0.9546 | 0.9604 | 0.9703 | 0.9710 | 0.9671 | 0.9230 | 0.9516 | 0.9720
Op.63/3 0.9883 | 0.9925 | 0.9864 | 0.9844 | 0.9800 | 0.9708 | 0.9791 | 0.9812
Op.68/3 0.9511 | 0.9552 | 0.9412 | 0.9200 | 0.9167 | 0.9102 | 0.9282 | 0.9267

Mean 0.9760 | 0.9794 | 0.9767 | 0.9675 | 0.9631 | 0.9475 | 0.9582 | 0.9699

Table 3: The AUC value for identifying same-performer renderings. A larger number suggests that a better structure
is used in the analysis. The bold number indicates the best structure of analysis for a Mazurka.

Selecting a performance as target rendering, we use
D = (dy,da,...,dy) torepresent the KL divergence be-
tween the model derived by the target rendering and the
models derived by other renderings. Again we choose k
thresholds (w1, wa, ... ,wk, where wy; < wo < ... < wg).
Thus the detected same-performer renderings can be
represented by a binary vector ©(w;), where

O., = (D <w). ®)

Given the ground truth (®) of the same-performer
renderings as provided by the Mazurka database, equa-
tion (6) and (7) can be used again to calculate the AUC
value.

7 Results and Discussion

In Table 2 and Table 3, the resulting AUC values in
music structure boundary assertion and same-performer
rendering identification are shown. In both tasks, we
can see that, a hierarchical structure in the analysis is
helpful for the analysis of expressive timing in general
but the preferred structure of analysis differs in different
tasks.

As shown in Table 2, a particular structure Ly out-
performs the other structures of analysis regardless of
the piece of music used for analysis when the proposed
method is used to identify music structure boundaries.
Examining the structure of analysis Ls, the L5 has the
highest number of layers and that the top-level win-
dows in Ls cover the widest area. Comparing the AUC
resulting from Ly to Ls more levels and wider cover-
age for the top-level window help the identification of
music structure boundaries for the proposed methods.
For structure L7, which breaks the metric structure of
Magzurkas, we find that the AUC results are worse than
the structure that has the same number of layers (Ls)
and the structure that covers the same length at the top
level (L4). This fact suggests that a structure breaking
the metric structure of a piece of music may lead to
worse performance of the analysis. Moreover, the hi-

erarchical structures (L; to L7) can identify the music
structure boundaries more precisely compared with the
flat structure of analysis (Lo).

The results of identifying same-performer renderings
are shown in Table 3, where the results in general are
better than Molina-Solana et al. [14] and are the com-
parable with Saunders et al. [13] with reduced com-
plexity. Among the results, two structures of analy-
sis outperforms the other structure of analysis depend-
ing on different Mazurkas. For Op.17/4 and Op.30/2,
the best model to identify same-performer renderings is
L7, which breaks the metric structure of Mazurka. In
contrast, for all other Mazurkas, the less hierarchical
structure Ly helps the identification of same-performer
renderings most. This fact suggests that the best hierar-
chical structure for identifying same-performer render-
ings differs across different Mazurkas. In general, unlike
the case of identifying music structure boundaries, the
structure of analysis for identifying same-performer ren-
derings shows a preference for a flatter structure, such
as Ly and Lo. A structure of analysis with many lay-
ers, such as Ly, L5, and Lg, do not help in identifying
same-performer renderings; in contrast, these structures
perform worse than the flat structure (Lg). This result
suggests that only some hierarchical structures help in
the identification of same-performer renderings. More-
over, as listed in Table 3, the value of AUC suggests that
the proposed algorithm is fairly effective in identifying
same-performer renderings in the Mazurka database.

In summary, the hierarchical structure in the analy-
sis of expressive timing help to improve the performance
of the proposed algorithm. However, for different tasks,
the best structure for analysis is different. For analysing
the mapping between music structure and expressive
timing, a hierarchical structure with more levels are pre-
ferred. The hierarchical structure with fewer levels are
preferred for identifying same-performer renderings. In
some cases, the best structure for analysis depends on
the specific pieces of music as well.



& Conclusions

In this paper, a model selection test is performed to
demonstrate the use of hierarchical in expressive tim-
ing analysis improves the performance of analysis. A
method of converting expressive timing into the prob-
ability that each beat in the performance will locate a
boundary of a music structure is proposed. This method
is capable of adopting a hierarchical structure for anal-
ysis during the modelling process. There are a few dif-
ferent hierarchical structures used as inputs and then
evaluated the resulting models by two different experi-
ments.

To evaluate the model performances with different hi-
erarchical structures, two model selection tests are per-
formed. The first one used the resulting models to pre-
dict the boundaries of the music structure. The second
test investigated how well the resulting models could
find same-performer renderings. The way to evaluate
the performance of the resulting models is ROC analy-
sis.

Comparing the performance of several hierarchical
structures in both tests, including a non-hierarchical
structure and several hierarchical structures that keep
the bars in the performances. Moreover, for compari-
son purposes, there is also a hierarchical structure that
matches bar starts and ends in the performance but cov-
ers a larger area in the lower levels and a hierarchical
structure that breaks bars in the performances.

Based on the results, a hierarchical structure in ex-
pressive timing analysis could be helpful. In detecting
music structure boundaries, a more hierarchical struc-
ture with a wider coverage of top-level windows per-
forms well. In identifying the same-performer render-
ings, we find that a structure with a certain level of
hierarchy is helpful. Moreover, the most suitable struc-
ture of analysis for identifying same-performer render-
ings differs according to different pieces.

As a summary, the use of hierarchical structure in
expressive timing analysis is demonstrated as helpful.
With the tasks of identifying same-performer render-
ing and determining music structure boundaries, the
hierarchical structure improves the model performance
despite the different preference.
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