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Adversarial Unsupervised Domain Adaptation for
Harmonic-Percussive Source Separation
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and P. Ohlsson

Abstract—This letter addresses the problem of domain adapta-
tion for the task of music source separation. Using datasets from
two different domains, we compare the performance of a deep
learning-based harmonic-percussive source separation model un-
der different training scenarios, including supervised joint training
using data from both domains and pre-training in one domain
with fine-tuning in another. We propose an adversarial unsuper-
vised domain adaptation approach suitable for the case where no
labelled data (ground-truth source signals) from a target domain
is available. By leveraging unlabelled data (only mixtures) from
this domain, experiments show that our framework can improve
separation performance on the new domain without losing any
considerable performance on the original domain. The letter also
introduces the Tap & Fiddle dataset, a dataset containing record-
ings of Scandinavian fiddle tunes along with isolated tracks for
“foot-tapping” and “violin”.

Index Terms—Source separation, domain adaptation, semi-
supervised learning, transfer learning.

I. INTRODUCTION

B LIND source separation (BSS) is a fundamental problem in
signal processing. It consists of separating a set of mixture

signals into a set of source signals without using any extra
information [1]. In this work, we will be considering the task
of Music Source Separation (MSS), which is an ill-posed and
underdetermined case of BSS, where multiple sources (instru-
mental signals) must be separated from a single mixture (music
recording). Current MSS methods are based on Deep Neural
Networks (DNNs) that need a lot of labelled data (mixtures and
ground-truth isolated instrumental signals) to be trained under
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a supervised scenario [2], [3]. However, labelled audio data for
MSS is difficult to obtain. In the literature, there are only a few
large-scale public datasets for MSS, such as MUSDB18 [4] and
Slakh [5].

Even though it is known that the use of data augmentation
techniques such as random pitch-shifting and random mixing
of source signals can improve model generalisation [6], [7],
separation performance will always depend on the type of audio
data used during training. When the data distribution of the
training set is different from the data distribution of the test
set, the performance of any predictor is degraded. This effect
is known as dataset shift [8], and happens due to mismatched
characteristics between data used for training and testing.

Under this scenario, domain adaptation techniques address
this problem by adapting predictors from a source domain,
where usually a large amount of labelled data is available, to
a target domain, where only few or no labelled data is avail-
able. Domain adaptation is already consolidated as an important
research topic in computer vision, where it is used in complex
classification tasks [9]. Even in closer fields, such as acoustic
scene analysis [10], [11], speech recognition [12] and speech
enhancement [13], domain adaptation methods have already
been proposed. However, to our knowledge, methods of this
nature have not yet been investigated for MSS. Therefore, our
work also attempts to fill this gap in the literature.

We propose an adversarial unsupervised domain adaptation
approach for MSS. By using the mixtures and the available
ground-truth signals from MUSDB18 and a set of unlabelled
data (mixtures) from a different domain, we show that our
framework is able to improve separation performance in the
new domain while maintaining the original performance on
MUSDB18, considerably reducing the degradation effect caused
by dataset shift. Although our experiments are carried out for
the particular task of Harmonic-Percussive Source Separation
(HPSS), our framework can be easily adapted to other MSS
tasks with different types of sources and domains.

In summary, our contributions include:
� The first work focused on unsupervised domain adaptation

for MSS;
� An adversarial unsupervised domain adaptation framework

for MSS that can be used with any neural network archi-
tecture, any type of audio representation and any number
of sources;

� The public release of the “Tap & Fiddle Dataset,” a dataset
containing recordings of traditional Scandinavian fiddle
tunes with accompanying foot-tapping along with isolated
tracks for “foot-tapping” and “violin”. This dataset has
different timbral characteristics than MUSDB18 and is
useful for domain adaptation experiments;
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� A prototype experiment where we show an improvement
over benchmark methods for the HPSS task.

II. RELATED WORK

A. Harmonic-Percussive Source Separation

The task of HPSS consists of separating a music signal into
two source signals, one with the harmonic components and other
with the percussive sounds [14]. Signal processing methods for
HPSS perform separation by exploiting the fact that percus-
sive signals form vertical lines in the mixture time-frequency
representation, while the harmonic components tend to form
horizontal structures, e.g. [15]–[17]. However, due to their strict
assumptions and hand-crafted features, methods of this nature
have intrinsic performance limitations.

Over the years, data-driven approaches have shown significant
improvements over traditional methods for HPSS and current
state-of-the-art methods are based on DNNs [18]–[21]. In previ-
ous work carried out by the authors [21], the 3W-MDenseNet, an
encoder-decoder DNN that uses convolutions with several kernel
shapes to perform HPSS, was proposed. In this work, the same
architecture is used, but here we add a domain discriminator
into the framework and modify the loss function to support
adversarial domain adaptation.

Moreover, since our approach is also grounded in Generative
Adversarial Networks (GANs) [22], it is important to point out
some key aspects in which our proposal is different from other
GAN-based source separation methods [23]–[25].

1) Discriminator: Works on GAN-based MSS use a source
discriminator, which is trained to differentiate real source sig-
nals from fake source signals. This is different from our work,
where we use a domain discriminator trained to differentiate
mixtures across two different domains.

2) Unlabelled Data: In order to train a source discriminator,
a large number of single-source signals are required, even though
those signals do not necessarily have to be paired with a music
mixture. Here, we only need mixtures from each of the two
domains to successfully train our domain discriminator.

3) Input to Discriminator: The input to a source discrimi-
nator of GAN-based MSS works is the output of the separator
network. Our approach applies the domain discriminator on the
encoded feature-maps, in the middle of the separator network
and not directly on its output.

B. Domain Adaptation

Domain adaptation methods can be either supervised or un-
supervised depending on the type of data from the target domain
that is used. While Supervised Domain Adaptation (SDA) meth-
ods use labelled data, Unsupervised Domain Adaptation (UDA)
exploits only unlabelled data (mixture signals) from the target
domain.

A typical SDA approach is to first train a model using a large
number of labelled samples from the source domain and then re-
train some (or all) of its layers using a smaller labelled dataset of
interest (target domain). This technique is known as fine-tuning
[26], [27]. Another SDA approach is joint training, where the
two datasets are merged into a new dataset and only a single
training stage is done, using labelled data from both domains in
every batch [5], [28].

UDA methods usually consider that the system is under the co-
variate shift paradigm, assuming that, even though the marginal

distribution of source domain data is different from the marginal
distribution of target domain data, the conditional probability
of the output remains the same. Therefore, if the marginal
distributions can be matched, the same predictor can be applied
successfully over samples from either of the two domains [29]. In
order to do this, some UDA methods propose to re-weight [30] or
select samples from the source domain [31], while others project
the data through an embedding function such that not only the
marginals become similar on the embedded space, but also the
embedded features keep their discrimination potential [32], [33].
The latter case is also the type of UDA method in our proposal.
We look for a transformation that creates an embedded space in
which the confusion between the two domains is maximised.
Similar to [34], we propose to find a domain-invariant and
separation-discriminative embedded space that is learned from
data via adversarial training. However, differently from [34], we
deal with the task of source separation (regression) instead of
image recognition (classification). In addition, we use CNNs for
the encoder-decoder and the domain discriminator, while in [34]
simple feed-forward networks are used, and while [34] performs
adversarial training using the gradient reversal layer method, we
conduct conditional GAN iterative optimisation as in [22].

III. PROPOSED FRAMEWORK

We assume that both the input data and the outputs are F × T
magnitude spectrograms, where F is the number of frequency
bins and T the number of frames. To simplify the notation,
we treat them as vectors in RK , where K = FT . Hence, the
input (mixture signal) is notated asx and its labels (ground-truth
isolated source signals) as the K×2 matrix Y = [hp], where
the first column is the original harmonic vector h ∈ RK and
the second column is the original percussive vector p ∈ RK .
Furthermore, we consider that the mixture-label pairs follow the
joint distribution pA(x,Y), or, in other words, we say that the
data “come from domain A”. For the general supervised HPSS
case, the goal is to train a model based on this data that can be
a good predictor of p(Y|x ∼ pA(x)).

In [21] we proposed the 3W-MDenseNet, a convolutional
encoder-decoder for HPSS, where the network output is an
estimate Ŷ = [ĥ p̂] of Y. Here, we model the encoder-decoder-
based separation process as a sequence of two mappings. First,
the encoder E with parameters θE maps the input to an embed-
ded feature space z = E(x; θE) and then the decoder D, with
parameters θD, maps z to the output Ŷ such that:

Ŷ = D(z; θD) = D(E(x; θE); θD). (1)

This separator can be optimised for the general supervised HPSS
case using the mean square error as the loss L

S
[21]:

L
S
(θE , θD) = E

x∼pA(x)

[
λh||ĥ− h||2 + λp||p̂− p||2

]

= E
x∼pA(x)

[
||(Ŷ −Y)Λ||2F

]

= E
x∼pA(x)

[
||(D(E(x; θE); θD)−Y)Λ||2F

]
, (2)

where λh and λp are weights for the harmonic and percussive
outputs respectively — we use 0.5 for each since we want to
assign equal importance to each source —, || . . . || represents
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Fig. 1. Schematic of proposed adversarial UDA for HPSS.

the Euclidean norm, || . . . ||F the Frobenius norm and Λ is the

diagonal matrix [

√
λh 0
0

√
λp

].

However, in this work we assume there also exists a new
domain B, where mixtures follow the marginal distribution
pB(x), which is considered different from pA(x). Our main goal
is now to be able to robustly predict labels Ŷ given that the
input can be from either domain A or B. Apart from the labelled
samples from domain A, we have access to set of mixtures from
B that can be used for performing UDA.

Our approach adopts a similar methodology to [34] and [35].
We propose to learn encoded features z that can not only guar-
antee a good separation performance, but that are also invariant
to domain changes. This means that z must not contain any
discriminative information about the origin of the input (A
or B). By doing so, we can make the distributions p(z| x ∼
pA(x)) = {E(x; θE)|x ∼ pA(x)} and p(z|x ∼ pB (x))= {E(x;
θE)| x ∼ pB (x)} to become as similar as possible. In order to
measure their similarity, we use a domain discriminator C(z,
θC) to discriminate the encoded feature-maps between the two
domains. Such domain discriminator is a binary classifier that
can be trained using only mixture signals by minimising the
binary cross-entropy L

U
:

L
U
(θC , θE)=− E

z∼pB(z)

[
log C(z, θC)

]− E
z∼pA(z)

[
log(1−C(z, θC))

]
.

(3)
Fig. 1 summarises the domain adaptation scenario.

In addition, we ensure that zwill become domain-invariant by
forcing the encoder sub-network to generate feature-maps that
can fool the domain discriminator. This is achieved by max-
imising L

U
when training the encoder weights. Such a min-max

game is played by the encoder sub-network and the domain dis-
criminator during training just like in GAN training [22]. At the
same time, z can keep its separation-discriminative properties if
we include the minimisation of L

S
in the loss function. The final

encoder loss is, therefore, a combination of the (unsupervised)
adversarial lossL

U
, which can be optimised using only mixture

signals from each of the two domains, and the (supervised) loss
L
S
, which can be optimised based only on samples fromA since

it requires labelled data. In summary, the loss functions of each
sub-network are:

θ̂C = arg min
θC

L
U
(θE , θC) (4)

θ̂E = arg min
θE

[
−γULU

(θE , θ̂C) + γSLS
(θE , θ̂D)

]
(5)

θ̂D = arg min
θD

L
S
(θE , θD) (6)

where γU and γS are weights given to the unsupervised part and
to the supervised part of the loss.

It should be noted that C, E and D must be trained together
in an iterative way as in GAN training [22]. If C is optimised to
completion, the encoder sub-network will not be able to increase
the domain-discriminator confusion, causing the separator per-
formance to overfit over domain A [22]. In our experiments,
at every training iteration, we perform 5 updates on θC before
updating θE and θD. The full training algorithm can be found in
the supplementary material of this letter.

IV. DATASETS

MUSDB18 [4] is the largest public dataset for MSS containing
real-world audio recordings. It contains full-track songs and
includes both the mixtures and the original sources, divided
between a training subset of 100 music recordings and a test
subset of 50. The available isolated tracks are vocals, bass, drums
and “other”. We use the drum track as the ground-truth for the
percussive source, while the sum of the other tracks is used as
ground-truth for the harmonic source.

As a different domain, we collected and publicly release
the Tap & Fiddle (T&F) dataset [36]. The T&F dataset con-
tains stereo recordings of traditional Scandinavian fiddle tunes
with accompanying foot-tapping, which is standard performance
practice within these musical styles. It consists of 28 recordings
with completely separate fiddle and foot-tapping sounds as well
as mixed signals. The dataset is divided into a training set with
23 files and a test set with 5. All recordings are solo and have an
average duration of 65 seconds. Detailed information regarding
the T&F Dataset can be found in [36].

V. EXPERIMENTAL SETUP

In our experiments, the music signals are converted to mono
and resampled to 16 KHz. The inputs are normalised magnitude
spectrograms of size 256× 256 generated by the application of
an STFT of size 512 with 75% overlap. A validation split of 20%
of all labelled data available for training is set.

We use the 3W-MDenseNet [21] as the separator architecture.
As a post-processing step, we apply Wiener filtering [37] to the
source estimates and use the mixture phase to return to the time
domain. We concatenate the encoded feature-maps of each of the
three branches of the 3W-MDenseNet to form z. Details about
hyper-parameter choices can be found in the letter’s supple-
mentary material. The architecture of the domain-discriminator
network is depicted in Fig. 2.

After experimentation, we choose the values of 1 for γS and
0.001 for γU. Training is performed using the Adam optimiser
with an initial learning rate of 0.001, which is reduced by a factor
of 0.25 if the supervised validation loss L

S
stops improving

for 50 consecutive epochs, and if no improvement happens in
200 epochs the training is stopped. The separation quality is
evaluated using the BSS_eval [38] set of objective metrics that
are largely used by the MSS community.
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TABLE I
OBJECTIVE EVALUATION OF HPSS ON MUSDB18 AND TAP & FIDDLE. THE VALUES ARE IN DB AND REPRESENT THE MEDIAN OF METRICS OVER TRACKS IN

EACH TEST SET. IBM IS THE IDEAL BINARY MASKING AND IRM REPRESENTS THE IDEAL RATIO MASKING ORACLE METHODS

Fig. 2. Architecture of the domain discriminator. Each “Conv Stage” is a3× 3
convolutional layer followed by 2× 2 max pooling. “FC” is a fully connected
layer.

VI. RESULTS

Recordings from MUSDB18 represent domain A while
recordings from the T&F dataset represent domain B. We aim
to investigate how different training scenarios perform across
the two domains. We compare our UDA proposal to traditional
supervised HPSS approaches that use only labelled data from
one of the domains, to SDA frameworks, which include joint
training using labelled data from both datasets and fine-tuning
over samples from T&F after training on MUSDB18, and to
another state-of-the-art DNN for MSS named OpenUnmix [2].
This method was previously trained on an augmented version of
MUSDB18 and serves as a baseline in our comparison.

In addition to the mixtures in the T&F dataset, we have a
collection of 50 new recordings of Scandinavian fiddle tunes
with accompanying foot-tapping. This collection is also part of
domain B and although no labels are available, it can also be
used by our UDA method. We then test two versions of our
approach: HPSS_UDA_small, which uses the mixtures on the
train set of T&F for performing the adaptation to domain B, and
HPSS_UDA_large, which uses the larger set of mixtures from
our internal collection. Results are shown in Table I.

By inspecting Table I, we can readily note that models that
were trained only with samples from one dataset had poor
performance on the other, which makes it possible to conclude
that MUSDB18 and T&F have very different priors over the data.
This fact is also reflected in the performance of OpenUnmix,
which is much lower on T&F if compared with the performance
provided by the ideal masking methods. Moreover, as expected,
the joint trained model, SDA_joint, achieved relatively good
performance overall because it uses supervised data from both

domains. The SDA_tune model, which is the HPSS_MUSDB
model fine-tuned for T&F, was indeed greatly improved when
evaluated over this domain, but, as a trade-off, it lost a lot of its
original performance on the original MUSDB18 dataset. On the
other hand, both versions of the proposed UDA approach got
a boost in performance on all 3 of the metrics on T&F without
losing any considerable performance on MUSDB18. This means
that our proposed UDA approach can perform HPSS on both
domains successfully, even though the labelled data used for
training came only from domain A.

The quantity of unlabelled data from domain B also impacted
the performance of the proposed method. Even though the results
of UDA_large are similar to UDA_small over domain A, the
former performs much better over samples from domain B than
the latter due to the fact that it uses more than double the
amount of mixtures from this particular domain during training
to perform domain adaptation. Another interesting result is that
UDA_large, which is a semi-supervised framework, had similar
performance over MUSDB18, but much better over T&F if
compared to SDA_joint, which is a fully supervised method.
This means that UDA using large amounts of unlabelled data
can be much more promising than joint training using a smaller
amount of labelled data.

More information about our work can be found in the letter’s
supplementary document and supplementary webpage.1

VII. CONCLUSIONS

In this work we presented an adversarial UDA model for
HPSS. Our proposal is a semi-supervised framework that is able
to exploit unlabelled mixtures from a target domain in order
to improve HPSS generalisation to samples from this particular
domain. Results showed that our framework improves separation
performance on the target domain without losing considerable
performance on the source domain.

As future work, we plan to investigate how the utilisation
of small amounts of labelled samples from the target domain
affect domain adaptation performance. We believe that this “few-
shot” approach can be useful in improving source separation
performance in the absence of many data samples.

1http://c4dm.eecs.qmul.ac.uk/auda-hpss
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