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ABSTRACT

We propose a model to learn latent representations of pitch
and timbre of each individual source of instrument tones
from a mixture of instruments. We employ variational au-
toencoders to train the model using a query-based infer-
ence network. Given a mixture, the model allows for pre-
cise source-level attribute editing, e.g., instrument or pitch
replacement, by manipulating the pitch and timbre latents.
On the synthetic audio clips of chords compiled using the
JSB Chorales dataset, our quantitative evaluation protocol
shows empirical success of the model on both pitch-timbre
disentanglement of individual sources and source-level at-
tribute manipulation of mixtures.

1. INTRODUCTION

Disentangled representation (DR) learning captures se-
mantically meaningful latent features of observed data in
low-dimensional latent spaces [1]. We propose a model
that extracts a DR for each source from a mixture of tones
of musical instruments. Each source-level DR encodes two
attributes, i.e., pitch and timbre, of an instrument in sepa-
rate groups of dimensions of the representation. Based on
variational autoencoders (VAEs) [2], the model encodes a
source-level DR given both a mixture and a query. The
query specifies a target source sharing the same timbre
characteristic. The source-level DRs form a set whose size
is equal to the number of sources in the mixture. A decoder
then takes as input the set to reconstruct the given mel spec-
trogram of the mixture. This study demonstrates a proof of
concept towards precise and compositional music editing.
It is precise because a user can explicitly edit the attributes
of specific sources of interest by manipulating the source-
level DRs. For example, given a mixture of piano and flute
alongside a query which is an arbitrary sample of piano,
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one can extract the source-level DR of the piano source
and swap its pitch or timbre latent for one extracted from
another sample that carries the desired attributes. It is com-
positional because the decoder can render a novel mixture
given combinations of the desired attributes.

Prior work on pitch and timbre disentanglement has
mainly considered inputs of monophonic instruments [3–
10], with only a few studies addressing mixtures of instru-
ments. Hung et al. [11] and Cwitkowitz et al. [12] encode
the overall timbre of a mixture and consider applications of
symbolic music rearrangement and transcription, respec-
tively. Cheuk et al. [13] propose a multi-task framework
that conditions music pitch transcription on intermediate
timbre information. Lin et al. [14] tackle source separation
and generation by a unified framework. While their model
is capable of generating a single source conditioned on a
pair of learnt pitch and timbre representations, we further
sample novel mixtures by a conditional decoder that takes
as inputs a set of source-level DRs, thereby allowing for
precise and compositional music editing.

2. METHOD

We describe a generative model as follows:

p(xm|zm)p(zm|Zs)p(Zs|Ts,Vs)p(Ts)p(Vs|Ys),

where xm ∈ Rd×t and zm ∈ Rl denote the mel spectro-
gram of the mixture and its corresponding latent variable.
Let Zs denote the set {z(i)s ∈ Rl}Ns

i=1, where z
(i)
s is the i-

th source-level latent out of Ns sources that make up xm.
Ts = {τ (i)s ∈ Rlτ }Ns

i=1 and Vs = {ν(i)s ∈ Rlν}Ns
i=1 are the

sets of timbre and pitch latents. Ys = {y(i)s }Ns
i=1 where y(i)s

is the pitch annotation of source i.
We first sample a set of timbre latents from a prior dis-

tribution p(Ts) and another set of pitch latents conditioned
on the specified pitch values Ys. The two sets of latents
are combined for the source-level latents {z(i)s }Ns

i=1 which
are then used to parameterise the distribution over the mix-
ture latent zm. Finally, we sample the mixture xm from
p(xm|zm). The generative process aims to disentangle the
pitch and timbre of each individual source from a mixture.

2.1 Dataset

We use a dataset compiled by Gha et al. [15] to train
and evaluate our model. It is an audio dataset of 3,131



unique chords from the JSB Chorales dataset [16], ren-
dered with sound fonts of piano, violin, and flute via Fluid-
Synth, whereby the possible number of sources for a mix-
ture is Ns ∈ {1, 2, 3}. The dataset is split into 19,719
training, 5,634 validation, and 2,826 testing samples. Each
chord sample’s notes are synthesized into 16kHz audio
waveforms, summed to form the chord’s waveform. These
are converted into mel spectrograms using 128 mel-filter
bands, a window size of 1024, and hop length of 512. We
crop a 320ms segment from the sustain phase of each sam-
ple to focus on the steady-state spectral distribution.

Given a chord, the rendering process iterates through
each composite note and synthesises it with a sound font
randomly chosen from the three sound fonts. As a result,
any of the sound fonts can play multiple notes in a chord.
The mel spectrogram of a chord is the mixture xm and that
of the notes rendered by a single sound font is a source
x
(i)
s . While the dataset has a maximum of three sources for

a mixture xm given the three selected sound fonts, in prin-
ciple our model can handle arbitrary numbers of sources.

2.2 Training objectives

We employ VAEs [2] to learn our model. The objective
function builds on an evidence lower bound (ELBO) to the
marginal log-likelihood log p(xm|Ys):

LELBO = log pθx
(
xm|zm

)
+ Eqϕτ (Ts) log p

(
zm|Ts,Vs

)
−

Ns∑
i=1

DKL

(
qϕτ

(τ (i)s )∥p(τ (i)s )
)
+ log pθν

(
Vs|Ys

)
.

The first term reconstructs xm given zm = Eϕm
(xm)

through a decoder pθx . The second term encourages zm
to fit a distribution parameterised by Ts and Vs, defined by
p(zm|Ts,Vs) = N

(
µm(Zs) =

∑Ns

i=1 z
(i)
s , σ2

mI
)
, where

σm = 0.25 and z
(i)
s = FiLM(τ

(i)
s , ν

(i)
s ). FiLM(·, ·) is

a modulation [17] used to “stylise” the pitch with tim-
bre [18]. Specifically, FiLM(τ

(i)
s , ν

(i)
s ) = α(i)ν

(i)
s + β(i)

and (α(i), β(i)) = MLP(τ
(i)
s ). By maximising this like-

lihood during training, we can composite a novel mixture
by passing to the decoder the sum of a set of source-level
latents

∑Ns

i=1 FiLM(τ
(i)
s , ν

(i)
s ) with the desired attributes

specified by {τ (i)s , ν
(i)
s }.

The third term regularises outputs of the stochastic
timbre encoder qϕτ

(Ts) :=
∏Ns

i=1 qϕτ
(τ

(i)
s |xm, x

(i)
q ) to

a prior p(Ts) =
∏Ns

i=1 p(τ
(i)
s ), where qϕτ (τ

(i)
s |·) =

N
(
µϕτ

(·), σϕτ
(·)

)
and p(τ

(i)
s ) = N

(
0, 1

)
. The last term

maximises a likelihood of outputs of a deterministic pitch
encoder Vs = fϕν

(Ŷbin
s ) given the ground-truth set of pitch

values Ys. Ŷbin
s = {SB(Eϕν

(xm, x
(i)
q ))}Ns

i=1 is a set of
transcribed pitches, each source i corresponding to a multi-
hot output [19] aligned with the fact that a source can
play multiple notes, extracted from a deterministic func-
tion Eϕν (·) and a stochastic binarisation layer SB(·).

Importantly, both Eϕν (·) and qϕτ (·) take as inputs the
mixture xm and a query x

(i)
q to derive ν

(i)
s and τ

(i)
s , re-

spectively. This is motivated by query-based source sep-
aration [14, 20, 21]. x

(i)
q is another mel spectrogram ren-

Disentanglement Mixture Editing

Pitch Inst. Pitch Inst.

The proposed 93.39% 100.00% 90.69% 100.00%
- LBT 93.18% 99.92% 87.92% 100.00%
- KLD 69.41% 100.00% 35.10% 100.00%
- SB 93.46% 46.71% 40.23% 98.91%

Table 1. Accuracy for various loss configurations.

Figure 1. Source-level attribute swapping. The first two
sources exchange their timbre while preserving their pitch.

dered by the same sound font as x(i)
s .

We also include auxiliary loss terms to reconstruct the
individual sources and classify their pitches:

Laux =

Ns∑
i=1

E
qϕτ (τ

(i)
s )

log pθx
(
x(i)
s |τ (i)s , ν(i)s

)
+

Ns∑
i=1

log p(ŷ(i)s = Eϕν
(xm, x(i)

q )|y(i)s ).

(1)

Finally, we include a variant of Barlow Twins [22]:

LBT =

Ns∑
i=1

lτ∑
d=1

(1− Cdd(z(i)q , τ (i)s ))2, (2)

where C is a cross-correlation matrix, to promote invari-
ance between z

(i)
q = Eq(x

(i)
q ) and τ

(i)
s , as the query and the

corresponding timbre latent are supposed to carry highly
correlated information. In summary, we maximise:

L = LELBO + Laux − LBT. (3)

3. RESULT

We employ pre-trained pitch and instrument classifiers
to quantitatively assess pitch-timbre disentanglement and
source-level attribute editing given mixtures. Tab. 1 shows
that the success of disentanglement relies on the Kullback-
Leibler divergence and the stochastic binarisation layer,
which impose critical bottleneck to the timbre and the pitch
latents, respectively. We also illustrate in Fig. 1 successful
attribute swapping between the first two sources.

4. CONCLUSION

We have proposed a framework that disentangles pitch and
timbre from mixtures and demonstrated its application for
music attribute editing. Future work will focus on extend-
ing the framework beyond the synthetic dataset.
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