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ABSTRACT

Automatic Drum Transcription (ADT) remains a challeng-
ing task in MIR but recent advances allow accurate tran-
scription of drum kits with up 5 classes - kick, snare, hi-
hats, toms and cymbals - via the ADTOF package. In ad-
dition, several drum kit stem separation models in the open
source community support separation for more than 6 stem
classes, including distinct crash and ride cymbals. In this
work we explore the benefits of combining these tools to
improve the realism of drum transcriptions. We describe a
simple post-processing step which expands the transcrip-
tion output from five to seven classes and furthermore, we
are able to estimate MIDI velocity values based on the sep-
arated stems. Our solution achieves strong performance
when assessed against a baseline of 8-class drum transcrip-
tion and produces realistic MIDI transcriptions suitable for
MIR or music production tasks.

1. INTRODUCTION

Automatic Drum Transcription (ADT), a sub-task of Au-
tomatic Music Transcription (AMT), offers huge potential
for extracting useful data from music signals. The his-
tory of ADT methods is well summarised in the litera-
ture [1,2]. Both cited surveys show that the history of ADT
mirrors that of AMT in terms of which techniques were
adopted; for example the progression from signal process-
ing techniques to NMF based approaches to the more re-
cent deep learning methods. However, while AMT accu-
racy for pitched instruments has increased steadily over
time [3-5], the accuracy for ADT methods remains far be-
low that of, say, piano. As identified by Wu et al. [2], they
are affected by data issues such as small size, lack of com-
plexity or lack of diversity (homogeneity).

Callender et al. [6] showed that an Onsets and Frames
[3] style ADT model which included velocity data demon-
strated strong performance in user preference studies, due
to the inclusion of velocity information. However, the re-
leased model appears to struggle with generalisation as
MP3 encoding can negatively affect real-world transcrip-
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tion results ! .

Vogl et al. [7] introduced the use of a Convolutional Re-
current Neural Network (CRNN) which transcribed 3 drum
classes (BD, SN, HH) with SOTA results on the ENST
dataset. This was later expanded to 8 drum classes [8],
albeit with lower accuracy. The current state of the art for
ADT is ADTOF [9], which uses a similar CRNN architec-
ture but with scaled up training data. However, the out-
put of the ADTOF model is limited to 5 classes due to the
source material used as training data.

Source separation has seen an explosion of interest in
recent years with the advent of deep learning models for
this task. While separating drum kits from a mixture is
well studied [10], a relatively new task is performing audio
separation of individual components from a drum kit per-
formance - for example decomposing a drum kit into kick,
snare, toms, hi-hat and cymbal stems. LarsNet [11] is one
such solution, however the training data is derived entirely
from drum samples produced by Logic Pro X. This lack of
diversity could harm separation quality when extending to
real-world examples.

Our work explores a recent open source contribution,
which we refer to as "Jarredou" 2, that has not yet been de-
scribed in the scientific literature. In correspondence with
the authors, we understand that this is trained on a private
dataset of MIDI and rendered audio from drum-sample li-
braries with 21.8 hours of audio in the training set and 0.27
hours of audio reserved as a validation set. There is some
repetition in the MIDI annotations as they are re-rendered
using a variety of sample libraries from different providers.
A full breakdown of its separation performance is planned
for future work, however empirically we find that it per-
forms well on a variety of recordings.

2. METHOD

Our method operates on solo drum kit audio (solo drums).
Where the desired source is already part of a mix, we first
isolate the drum part using Demucs v4 [10]. The input
audio is initially normalized to a constant level using the
ReplayGain algorithm? to ensure a relatively consistent
dynamic level for later processing. We proceed to tran-
scribe the solo drums via ADTOF to extract note locations
for 5 drum classes (kick, snare, hi-hat, toms and cymbals).

lgithub.com/magenta/magenta/issues/1876

2 github.com/jarredou/models/releases/tag/
aufr33-jarredou_MDX23C_DrumSep_model_v0.1

3 implemented in Essentia [12]
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Method | Dataset | Recall | Precision | F-measure
Ours MDB 0.89 0.89 0.89 (0.87)
Ours RBMATt | 0.62 0.66 0.63 (0.65)
Ours ENST 0.81 0.91 0.85(0.84)

Table 1. Results for 5-class transcription accuracy across 3
datasets. Onset-only with 50ms tolerance viamir_eval.
Obelisk () indicates drums were isolated using [10]. Orig-
inal ADTOF results are shown in parentheses

velocity Method | Dataset | Recall | Precision | F-measure

Ours MDB 0.84 0.84 0.84 (0.72)

Figure 1. Estimated Velocity Distributions for the MDB Ours RBMAT | 0.55 0.60 0.56 (0.58)
dataset Ours ENST 0.72 0.81 0.76 (0.65)

We also separate the solo drums using the Jarredou model
to extract 6 stems, with the cymbals class is expanded to
crash and ride stems.

To recover velocity information we marry the transcrip-
tion data to the drum stem data as follows: first a loudness
curve is computed for each stem. We use an equal loud-
ness filter from Essentia to preserve perceptual balance,
then calculate the RMS with a 1024 sample window (at
a 44.1kHz sample rate) and a 10ms hop size. The RMS
values are then converted to a decibel (log) scale. All
six stems are then normalized to the peak dB across the
group — this allows the performance velocity to be self-
consistent within a single performance, but if a reference
level is known it can be substituted instead.

For each note in the transcribed MIDI, we take a 50ms
window around the predicted onset time applied to the
loudness curve for the corresponding stem. We then ex-
tract a MIDI velocity estimate from 0-127 by taking the
maximum value of the window, scaled to the normalized
dynamic range across all stems in a performance.

2.1 Recovering additional instrument classes

We further enhance the transcription by increasing the
number of predicted classes from 5 to 7 as follows. For
the cymbal onset predictions, we compare the loudness
curves for the crash and ride stems and choose the maxi-
mum. However, the nature of crash cymbals means they
often have a long, slow decay in amplitude which can
cause incorrect classifications. To address this we intro-
duce a heuristic by identifying significant crash cymbal
peaks over the entire performance. For each crash peak,
a refraction period is added which lasts until 1 second be-
fore the next peak. During this period a crash cymbal can-
not be re-triggered and all cymbal hits during the period
are assigned to the ride instead.

For the hi-hat stem, we observe that the loudness curve
for open hi-hats decays more slowly. For each hi-hat note
we take a window of the loudness curve up to the next hi-
hat onset or 150ms, whichever is smaller. If the minimum
loudness over the window is greater than 75% of the maxi-
mum we assign the note to the open hi-hat class, otherwise
it is assigned to the closed hi-hat class.

Table 2. Results for 8-class transcription accuracy. See
Table 1 for details. Results in parentheses show baseline
results for 8-class transcription from Vogl et al. [8].

3. RESULTS

The most commonly used datasets for ADT evaluation to
date are ENST [13], MDB [14] and RBMA [7] which
are all publicly available. Table 1 shows results for tran-
scribing 5 drum classes (BD, SN, HH, CY, TOMS) fol-
lowing the framework of Zehren et al. [9]. The underly-
ing transcription accuracy is essentially the same as that of
ADTOF, with the only difference being our treatment of
zero velocity notes which are omitted from the evaluation.

We also include results for the 8-class transcription task
in Table 2. Our model does not attempt to predict the rel-
atively rare Cowbell class (MIDI 56) so a direct compari-
son is not possible, however we include baseline results [8]
for reference. These show strong increases in performance
over the baseline for the MDB and ENST datasets (12%
and 10%), however RBMA is 2% lower. We believe this
is due to the electronic drum sounds used in this dataset
which are outside of the domain of acoustic drums.

The predicted velocity distributions for the MDB
dataset are shown in Figure 1. The other datasets are omit-
ted but show similar distributions. This illustrates that our
method produces a range of normally distributed velocities
for each class. The concentration of snare at high volumes
is likely a result of the equal loudness curves favouring
mid-range frequencies. Our method allows for these com-
ponents to be scaled individually to improve balance, if
necessary.

4. CONCLUSIONS

In this work we demonstrate a method of combining an
ADT model (ADTOF) with a drum stem source separation
model. This combination allows us to estimate velocities
and perform additional levels of classification while retain-
ing a high degree of transcription accuracy. We intend to
use this in future for dataset production workflows to en-
hance ADT further.
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