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trainable from scratch, is dubbed as YourMT3 [6]. Based on this,
we propose YourMT3+, a hybrid architecture that incorporates ad-
vanced architectures and training methods for further enhancements.
YourMT3+ and its variants differ from prior work [4, 5] in the fol-
lowing key aspects:

• Enhanced Encoder: PerceiverTF [5], which generated piano-
rolls, is now trained with the MT3 framework to generate note
event tokens. We replaced MT3’s encoder with PerceiverTF fea-
turing spectral cross attention (SCA). Additionally, replacing its
feedforward network (FFN) with a mixture of experts (MoE) [7],
denoted as YPTF.MoE, demonstrates promising results.

• Multi-channel Decoder: In addition to General MIDI tokens,
singing transcription tokens have been further defined. We intro-
duce a multi-channel decoder that replaces MT3’s single-channel
decoder [4]. This enables task-query based training and the use of
partially annotated data, improving performance.

• Augmentation: The proposed online data augmentation frame-
work incorporates intra-stem and cross-stem mixing across datasets
and pitch-shifting. In particular, cross-stem augmentation allows
for transcribing singing with other instruments without the need
for a voice separation front-end.

• Evaluation: Our models were extensively validated on vari-
ous multi-instrument and single-instrument datasets. One of the
main applications of multi-instrument AMT can be transcrib-
ing pop music. We provide refined annotations for the existing
pop music dataset [8], presenting the first study to investigate
multi-instrument AMT performance on commercial pop music.

2. RELATION TO PRIOR WORK

While substantial research exists in AMT, multi-instrument tran-
scription has recently seen significant developments. The field often
faces challenges due to the scarcity of fully annotated datasets for all
instruments, making it low-resourced. Strategies such as multi-task
learning [4, 9], unsupervised learning methods [10] and iterative
re-alignment techniques [11] have offered partial remedies, with
most models producing piano-roll outputs at the frame level.

Compared to the conventional AMT models based on onsets and
frames [12], MT3 [4] is a sequence-to-sequence model that mainly
distinguished itself in decoding outputs. It decodes a note-level rep-
resentation similar to language tokens derived from MIDI, deviating
from the traditional frame-level piano-rolls. In Section 3.3, we dis-
cuss the advantages of using these output tokens in YourMT3.

The transcription of singing within multi-instrument AMT re-
mains largely unexplored, despite potential overlaps with source sep-
aration [13] and melody extraction [14]. PerceiverTF [5], a model
with piano-roll output, has significantly advanced the transcription
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Multi-instrument music transcription aims to convert polyphonic 
music recordings into musical scores assigned to each instrument. 
This task is challenging for modeling as it requires simultaneously 
identifying multiple instruments and transcribing their pitch and 
precise timing, and the lack of fully annotated data adds to the 
training difficulties. T his p aper i ntroduces YourMT3+, a  s uite of 
models for enhanced multi-instrument music transcription based on 
the recent language token decoding approach of MT3. We enhance 
its encoder by adopting a hierarchical attention transformer in the 
time-frequency domain and integrating a mixture of experts. To 
address data limitations, we introduce a new multi-channel decod-
ing method for training with incomplete annotations and propose 
intra- and cross-stem augmentation for dataset mixing. Our exper-
iments demonstrate direct vocal transcription capabilities, elimi-
nating the need for voice separation pre-processors. Benchmarks 
across ten public datasets show our models’ competitiveness with, 
or superiority to, existing transcription models. Further testing on 
pop music recordings highlights the limitations of current models. 
Fully reproducible code and datasets are available with demos at 
https://github.com/mimbres/YourMT3.
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1. INTRODUCTION

Automatic music transcription (AMT) [1] is a fundamental task in 
music information retrieval where the goal is to transform music au-
dio input into a sequence of musical notes, with each note possess-
ing properties such as onset, offset, pitch, and sometimes velocity. 
The output is typically presented in the form of MIDI or piano-roll 
notation. The significance of AMT extends to a wide range of appli-
cations, including interactive music systems [2], automatic accom-
paniment generation [3], and music performance assessment.

The key challenge of this research is multi-instrument AMT: 
identification a nd t ranscription o f v arious i nstruments w ith vocals 
from music recordings. Recently, there has been notable progress in 
this field: MT3 [4] utilized a MIDI-like decoding transformer, while 
PerceiverTF [5] employed a spectral attention transformer that gen-
erates conventional piano-roll. Unfortunately, the absence of fully 
reproducible code for these models has been a significant limita-
tion for replication and further research. Our replication of MT3,
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Fig. 1. Overview of YourMT3+. (left) Our encoder E(⋅) takes as input a log mel spectrogram S derived from audio X . (center) An auto-
regressive decoder D(⋅) with the language model (LM) head is conditioned by E(S), and output event tokens Y ′. (right) Cross-dataset stem
augmentation, described in Section 4.

of multiple instruments and vocals by introducing spectral cross-
attention (SCA) and stem dataset mixing. We propose an augmen-
tation method, denoted by a plus (+) sign, that formalizes the earlier
stem mixing approach [5] within an online multi-dataset pipeline.

3. MODEL

In the YourMT3+ taxonomy, YMT3 models match MT3’s [4] archi-
tecture and training. YPTF+Singlemodels use PerceiverTF (PTF)
encoder with MT3’s single-channel decoder and stem augmenta-
tion (+). Our empirical finding demonstrates that PTF’s hierarchi-
cal attention with instrument-group sub-task queries enhances multi-
instrument AMT in complex mixtures. YPTF.MoE replaces the en-
coder’s FFN with mixture of experts (MoE), enabling task-specific
encodings in multi-dataset training. These models efficiently pro-
cess MIDI tokens instead of piano-roll. Our multi-channel decoder
assigns instrument groups per channel and masks loss for unanno-
tated instruments, allowing training with incomplete labels. The fi-
nal YPTF.MoE+Multi model integrates all these features.

The left panel of Figure 1 provides a detailed overview of our
final extended model, YPTF.MoE+Multi. The subsequent subsec-
tions will detail the components of our model variants, including the
audio input, encoder, decoder, and output tokens.

3.1. Input

In Figure 1, X represents a 2.048-second audio segment. In YMT3,
X is transformed into a log-magnitude mel-spectrogram S ∈ Rt×f

with 256 time steps and 512 mel-frequency bins. In YPTF, X is ini-
tially transformed into a log-magnitude spectrogram with 110 time
steps and 1,024 frequency bins. Subsequently, a convolutional fea-
ture Sconv is produced by 2D ResNet pre-encoder [5], resulting in

Sconv ∈ Rt×c×f ′

, where both c and f
′ are set to 128. The multi-

resolution input of YPTF mirrors PerceiverTF [5], including an ad-
ditional channel dimension C, and differs from PerceiverTF only in

the input length, using 2.048 seconds instead of 6 seconds.

3.2. Encoder

The encoder E(⋅) takes S as an input, where the last dimension of
S typically matches the encoder’s hidden dimension d. Our baseline
encoder of YMT3 is based on the T5-small v1.1 [15] encoder com-
posed of 8 standard transformer blocks with 6-head self-attention
and gated FFNs. The proposed YPTF replaces the encoder with Per-
ceiverTF (PTF) [5] blocks as depicted in Figure 1 (left).
PTF block: Each PTF block in our model comprises local and tem-
poral transformer sub-blocks. The local transformer first employs
spectral cross attention (SCA), derived from Perceiver [16], using a

learnable latent array L ∈ Rk×d′ and Sconv as inputs. Here, k is typ-
ically set to twice the number of target instrument groups, where
k < c and specifically k = 26 for 12 instruments plus singing,
with each pair of latents serving as a query for the corresponding
instrument groups. The latent and temporal transformer sub-blocks,
featuring 8-head self-attention, FFNs and residual connections for
queries, differ functionally: the former processes spectral informa-
tion independently of time t, by attending to k and c, whereas the
latter handles only temporal information relevant to t and d, inde-
pendent of k. Overall, the PTF block (♠, Figure 1) performs three
iterations. Initially, ⭑ acts as the query in SCA during the first iter-
ation. In the second and third iterations, ⭐ serves as the query.
MoE: YPTF.MoEmodels replace FFNs in latent and temporal trans-
former blocks with MoE layers [7], routing attention to two of eight
experts. Using two experts gave better results than one or four; see
Supplemental B.5. In our experiments, MoE increased the model
complexity by about 5% while improving performance across vari-
ous datasets. Unlike PerceiverTF, we use RoPE [17] in every sub-
block of the encoder to integrate positional information through rota-
tion matrices, replacing trainable position embedding (PE), and pre-
LayerNorm with pre-RMSNorm. However, these modifications only
offered minor benefits in memory and computation without signifi-
cantly impacting performance.
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3.3. Output Tokens

The center panel of Figure 1 shows the output sequence Y
′ with

a maximum N time steps, and the tokens representing MIDI-like
events are listed in Supplemental F. As noted in Section 5.2, mod-
els trained with more fine-grained vocabulary consistently per-
form better. Therefore, we use MT3 FULL PLUS for training and
MT3 MIDI PLUS only for comparison tests with previous work.
Following the note sequence structure in MT3 [4], we made two
modifications to the MT3 tokens: (a) unused velocity tokens, except
0 and 1, were removed, and (b) programs 100 and 101 were reserved
for singing voice (melody) and singing voice (chorus), respectively.

Compared to traditional piano-rolls [12, 18, 10, 9, 5], MIDI-like
tokens [4] offer several advantages: they are more memory-efficient
by representing note onset, shift, and offset with tokens rather than
hundreds of frames; they simplify multi-instrument data handling
by expanding the program vocabulary without significant memory
increase, whereas piano-rolls need large separate matrices for each
instrument; and they explicitly represent linked note onsets and off-
sets, avoiding extra post-processing required for piano-rolls.

3.4. Decoder

We use an auto-regressive decoder D(⋅), conditioned on the en-
coder’s last hidden state, to generate note sequences. The baseline
decoder, based on T5-small v1.1 and denoted as Single, produces
a single sequence with events from multiple instruments.

When annotations are available for only one or some instruments
in the audio, we need to mask the loss for unannotated instruments.
The Single decoder’s output blends multiple programs, making
it hard to mask specific instruments due to token dependencies. To
address this, we propose a Multi decoder. It can provide separately
maskable supervision for each latent L of the PTF encoder, allocated
into channels for each program group.

In our implementation, the PTF encoder’s output hidden states
are grouped by allocating two latents per channel—with group-linear
projection, k = 26 latents result in k

′
= 13 projected channels. The

Multi decoder then independently decodes each of the k
′ inputs,

producing k
′ sequences for each program using parallel decoders

with shared parameters. We set the maximum sequence length to
Nsingle = 1024 (as in MT3 [4]) and Nmulti = 256. Potential truncation
loss is discussed further in Supplemental B.6.

4. DATA AUGMENTATION

This section describes an augmentation method for training with
multiple datasets. Our strategy is to maximize the diversity of the
training examples by randomly mixing selected stems from across
multiple datasets. Intra-stem augmentation described in Section 4.1
involves selectively muting stems within a multi-track recording to
generate several variations, as demonstrated with MT3 [4] and the
Slakh dataset. The concept of cross-dataset stem augmentation, as
discussed in Section 4.2, draws inspiration from PerceiverTF [5]. It
aims to create a new mixture of stems from multiple datasets. Addi-
tionally, we employ pitch-shifting as described in Section 4.3.

4.1. Intra-stem Augmentation

This refers to the process of randomly dropping instruments from
a segment containing multiple stems. From any dataset we sample
X , a 2.048-second segment starting from a random point. Assuming

Algorithm 1 Cross-dataset Stem Augmentation
Require: X , U , L, J , Ψ, τ , p {

X: A segment X ∈ U , with stems x ∈ X .
U : Cached segment batches from various datasets.
L: Maximum length of sequence. 1,024 by default.
J : Maximum number of iterations w.r.t j. 5 by default.
Ψ: Stem mixing policy.
τ : Exponential decay parameter. 0.3 by default.
p: Probability for intra stem selection. 0.7 by default. }

1: X̂in ← xi ∶ xi ∈ X, selected with xi ∼ Bernoulli(p)
2: X̂ex ← ∅
3: j ← 0
4: while r ∼ Uniform(0, 1) < e

−τj and ∣X̂ex∣ < L and j < J do
5: X

′
← a randomly sampled segment from U \X

6: X
′
← Filter(X ′

; Ψ) // retain stems meeting criteria
7:
8: if X ′

≠ ∅ then
9: X̂ex ← X̂ex ∪X

′ // add stems
10: j ← j + 1
11: end if
12: end while
13: X̂ ← X̂in ∪ X̂ex
14: Mix(X̂) // apply stem mixing

that X is composed of N stems denoted x1, x2, . . . , xN , we define
a set X̂in of randomly selected or dropped stems as:

X̂in = {xi ∶ xi ∈ X, with xi ∼ Bernoulli(p)} (1)

with i ∈ {1, 2, ...,N} where N > 1. Here, p=0.7 by default, is the
probability of each stem being selected. Each xi is chosen with p,
creating X̂in with various combinations of stems from X . A larger
p increases active stems and task difficulty. The sweet spot was be-
tween 0.6 and 0.8, increasing with model size and training time.

4.2. Cross-dataset Stem Augmentation

Procedure: In Algorithm 1, we designate U as a collection of
cached segment batches across diverse datasets, with its size required
to be at least equal to the batch size and preferably larger, if permitted
by memory constraints. The base segment X is a sampled segment
from U , and the elements of X are stems denoted by x. Here, x
signifies a stem ID, including related token and audio information.

Intra-stem augmentation is first applied to X as in Equation 1,
yielding a processed base segment X̂in. Next, we enter a loop to mix
the base stems of X̂in with the stems coming from other segments.
U \ X represents the set of all segments in U excluding X . Each
iteration begins by randomly sampling a segment X ′ from U \ X .
Stems in X

′ that do not satisfy policy Ψ (detailed in Supplemental
D.2) are then filtered out. Subsequently, X̂ex is updated by merging
X

′. This loop persists until at least one stopping criterion described
in the following subsection is satisfied. Once the aggregation is com-
plete, the Mix(⋅) function executes the actual mixing of tokens and
audio content in a batch-wise manner.
Stopping criteria In Line 4 of Algorithm 1, three criteria are estab-
lished to stop the iterative mixing among stems. The first criterion
is an exponential decay S(j) that serves as the survival function de-
fined as S(j) = e

−τj
, where τ controls the surviving curve with re-

spect to j-th iteration. The second criterion restricts X̂ex to a length
L, measured as sequence length post-tokenisation. The last criterion,
j > J with J = 5 allows mixing up to 5 segments per base segment.
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Train Test

MusicNet-EM, GuitarSet,
MIR-ST500,

ENST-Drums, Slakh,
EGMD, Maestro, CMedia,

URMP, SMT-Bass

MusicNet, MusicNet-EM,
GuitarSet,MIR-ST500,
ENST-Drums, Slakh,

Maestro, MAPS, URMP,
RWC-Pop (refined)

Table 1. Summary of datasets for train/test. Multi-instrument
datasets with full annotation and stems are highlighted in light blue,
while those with partially annotated instruments are highlighted in
pink. (refined) We offer updated annotations for RWC-Pop [8].

4.3. Pitch-shifting

We apply GPU-based phase vocoder pitch-shifting adapted from
TorchAudio1 after cross-dataset stem augmentation, using de-
fault settings except nFFT=512 for time-stretching. Batch elements
are randomly assigned to five groups, each shifted by -2, -1, 0,
+1, or +2 semitones. Notably, as will be discussed in Section 5.2,
pitch shifting’s inconsistent benefits across datasets were resolved
by MoE models’ increased capacity.

5. EXPERIMENTS

5.1. Experimental Setup

Data Preparation: Table 1 lists the datasets used for training and
evaluating our model. We offer a software package for dataset setup
and split information to ensure reproducibility of our results. Au-
dio data was converted into 16 kHz mono WAV format. Stems were
stored as arrays, and mix-tracks as WAV files, also treating stemless
tracks as mix-tracks. For training our Single decoder models on
MIR-ST500 [19] and CMedia [20] , we produced singing and ac-
companiment stems using a pre-trained separation model [13]. With
the Multi decoder, we also incorporated the original mix tracks
from these datasets.
Evaluation Metrics: To evaluate transcription accuracy for each in-
strument, we employ the Instrument Note Onset F1 metric [5]. This
metric, valid for any instruments including drums, requires matching
the onset, pitch, and instrument to the reference within a tolerance of
±50 ms. For multiple non-drum instruments, we additionally utilize
the Instrument-Agnostic Onset F1 and Offset F1 necessitating exact
matches for only onset or both onset and offset. These metrics paral-
lel the standard Note F1 metrics [21] for single-instrument datasets.
Furthermore, we used the Multi (instrument offset) F1 metric [4]
for evaluating multi-instrument AMT systems, where correct pre-
dictions require matching onset-offset pairs, pitch, and instrument
type, excluding drum offsets. Our Multi F1 metric is notably more
stringent than the Multi Onset F1 reported for PerceiverTF [5].
Vocabulary: Our models were trained using MT3 FULL PLUS and
tested on MT3 MIDI PLUS, detailed in Section F of the Supplemen-
tal Document. Despite testing exclusively with the MIDI vocabu-
lary, results in Table 3, labeled +full vocab, show that training with
the more fine-grained FULL vocabulary enhanced performance com-
pared to training and testing solely with MIDI.
Training: Our models were trained with two NVIDIA A100 GPUs
using BFloat16 mixed-precision. In the implemented online data
pipeline, four CPU processes per GPU were allocated to efficiently
load and augment data without causing streaming bottlenecks. In

1https://pytorch.org/audio

our preliminary experiments, we tested three optimizers at a constant
learning rate of 1e-03: AdaFactor [30], AdamW [31], and AdamWS-
cale [32]. AdamWScale, a variant of AdamW that normalizes gra-
dients using root-mean-square (RMS) energy, provided the most ef-
ficient training. Our models were trained using AdamWScale and a
cosine scheduler for 300K steps, with initial and final learning rates
of [1e-02, 1e-05] and a 1,000-step warm-up from 1e-03. We set the
dropout rate at 0.05.
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Fig. 3. Instrument-Onset/Frame/Multi F1 on RWC-Pop [8].

5.2. Results and Discussion

In Table 2, our models are compared with other state-of-the-art mod-
els across datasets. From MAPS to GuitarSet, evaluations use In-
strument Note Onset F1, while URMP and Slakh are assessed us-
ing Instrument-agnostic Note Onset F1 and Multi F1. Due to space
constraints, only the top-performing baselines (*) are listed on the
table’s rightmost column. Details of all models are available in our
project repository.

Our models prefixed by Y- outperformed MT3 [4] across
all datasets. Notably, our models and the unseen baseline [23],
trained without MAPS [22], outperformed the baseline [24] trained
on MAPS. This is likely due to the Maestro [33] dataset being
about nine times larger, providing significantly more in-domain
knowledge. Among our models, YPTF.MoE+Multi matched or
exceeded the performance of the latest baseline models in most
datasets. It showed exceptional performance on both refined and
unrefined datasets in MusicNet strings, particularly in tests with
refined labels (EM [11]). However, a noticeable under-performance
was observed in singing transcription compared to the baseline [5].
As evidenced by about 10% higher F1 on the MIR-ST500 (100ms),
many onset timing errors exceeded the acceptable 50ms range and
fell within 100ms. Given that our model and the baseline [5] share
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Test Set Instrument YMT3 YMT3+ YPTF+S YPTF+M YPTF.MoE+M MT3 [4] AMT

noPS noPS ∣ PS noPS ∣ PS noPS ∣ PS noPS ∣ PS (colab) Baseline *

MAPS [22] (unseen) Piano 81.44 85.92 ∣ 87.73 88.37 ∣ 88.73 87.84 ∣ 86.88 87.88 ∣ 86.25 80.62 88.40 [23]♣
MAPS [22] (seen) - - - - - - 85.14 [24]♣
Maestro v3 94.78 94.80 ∣ 94.31 96.28 ∣ 95.85 95.59 ∣ 94.54 96.98 ∣ 96.52 94.86 97.44 [24]♣

MusicNet ext.
(EM) [11]

Strings 81.69 89.04 ∣ 88.34 88.39 ∣ 89.39 88.52 ∣ 87.04 91.32 ∣ 90.07 -△ 80.00 [11] ♯
Winds 74.95 82.91 ∣ 80.53 77.72 ∣ 79.59 77.18 ∣ 76.54 83.46 ∣ 78.50 -△ 85.50 [11] ♯

MusicNet ext.
[10, 11]

Strings 58.20 64.67 ∣ 63.94 64.63 ∣ 65.40 64.17 ∣ 64.08 66.14 ∣ 66.09 -△ 63.90 [11] ♯
Winds 50.76 55.58 ∣ 55.05 52.55 ∣ 54.27 51.82 ∣ 51.42 55.95 ∣ 55.33 -△ 60.90 [11] ♯

MIR-ST500 [19] (SVS)
Singing

67.98 70.39 ∣ 70.69 70.82 ∣ 70.56 71.07 ∣ 71.32 71.60 ∣ 72.05 -◊ 70.73 [25]
MIR-ST500 [19] 3.62 64.03 ∣ 65.69 66.75 ∣ 67.11 69.67 ∣ 70.26 70.59 ∣ 71.07 -◊ 78.50 [5]
MIR-ST500 (100ms [20]) 3.64 71.15 ∣ 72.08 73.26 ∣ 73.89 79.29∣ 80.63 81.14∣ 82.08 -◊ -

ENSTdrums (DTP [26]) Drums 87.77 87.60 ∣ 87.40 89.72 ∣ 90.65 88.68 ∣ 90.61 88.79 ∣ 89.48 77.82 84.50 [26] ♣
ENSTdrums (DTM [26]) 78.64 81.84 ∣ 83.09 85.65 ∣ 86.41 85.14 ∣ 87.18 85.92 ∣ 87.27 70.31 79.00 [26] ♣

GuitarSet [27] (MT3 [4]) Guitar 88.53 91.39 ∣ 88.49 91.61 ∣ 88.32 88.92 ∣ 86.74 91.65 ∣ 88.87 89.10 91.10 [5]

URMP [28] Onset F1 [4] Agnostic 77.10 80.00 ∣ 81.47 81.11 ∣ 81.54 74.56 ∣ 75.72 81.05 ∣ 81.79 76.65 77.0 [4]
URMP [28] Multi F1 [4] Ensemble 58.23 62.13 ∣ 62.03 64.34 ∣ 65.89 57.25 ∣ 59.82 67.22 ∣ 67.98 58.71 59.0 [4]

Slakh [29] Onset F1 [4] Agnostic 64.83 77.96 ∣ 75.28 80.70 ∣ 76.32 79.39 ∣ 75.68 84.14 ∣ 84.56 75.20 81.9 [5]
Slakh [29] Multi F1 [4] All 61.77 65.92 ∣ 63.61 69.52 ∣ 65.13 69.37 ∣ 64.96 73.98 ∣ 74.84 57.69 62.0 [4]♡

Table 2. Dataset-wise Note Onset F1. PS and noPS represent training with and without pitch shifting augmentation, respectively. (EM) de-
notes evaluation using refined labels [11]. (SVS) refers to experiments using singing separated audio as input, obtained through Spleeter [13].
(DTP) represents using drum and percussion as input. (DTM) uses input including drum, percussion, and accompaniment. The Onset F1
score on Slakh is instrument-agnostic F1 for non-drum classes. (△) Unavailable due to training split overlaps. (♣) Single-instrument AMT.
(◊) Singing voice class was not defined. (♯) Additionally collected synthetic data from 8.5K songs were used for pre-training [11].

Model Onset F1 Offset F1 Drum F1

YMT3 base 64.8 41.7 77.8
+ Intra-aug. +4.8 +5.5 +0.6
+ Full-vocab. +0.6 +2.1 +2.6
+ Data balancing + 4.0 +4.7 +1.3
+ Cross-aug. +4.0 +7.2 +1.6
+ PTF-encoder +1.8 +4.2 +1.9
+ FFN → MoE +1.5 +1.3 +3.7
+ Multi decoder +1.8 +4.0 +0.6

YPTF.MoE+Multi 84.6 70.7 90.1

MT3 (colab) 75.2 56.8 83.9
MT3 [4] 76 57 -
PerceiverTF [5] 81.9 - 78.3

Table 3. Model component analysis and comparison on the
Slakh [29] dataset. (-) Values not reported.

similar encoder structures, our decoder may be more prone to timing
errors than traditional piano-roll models. Additionally, the practi-
cality of a 100ms onset tolerance, used in past MIREX [20] singing
transcription protocol, appears justified.

YMT3+ and YPTF+Single differ only in their encoders. This
comparison revealed that the PTF encoder architecture performs
particularly well in complex multi-instrument datasets such as MIR-
ST500, ENSTdrums (DTM), and Slakh. Cross-stem augmentation,
denoted by the (+) symbol in model names, proved essential for
transcribing singing without singing voice separation (SVS). YMT3
recorded an F1 score of 3.6% without separation, while YMT3+
with augmentation reached 64%. The models with Multi decoders
were beneficial when training on partially annotated datasets, such
as MIR-ST500 and ENSTdrums. Mixture of Experts (MoE) showed
consistent performance improvements across all datasets. Notably,

while pitch-shifting often led to performance degradation in other
models, YPTF.MoE compensated for this loss or even improved
performance, as evidenced by the Slakh result.

As compared in the lower section of Table 2, YPTF.MoE+
Multi significantly outperformed the baselines (MT3 [4] and Per-
ceiverTF [5]) on multi-instrument datasets such as URMP and Slakh.
The baseline Multi F1 score marked with a ♡ is from MT3 authors’
report [4]. For the complete comparison table with MT3 [4] and
PerceiverTF [5], see Section H of the Supplemental Document.
Ablation Study: In Table 3, the impact of each model component
on performance was investigated. Both intra- and cross-stem aug-
mentations significantly improved performance by over 4 percent-
age points, while all other proposed components steadily enhanced
transcription performance. Additionally, the performance improve-
ment denoted by Data balancing suggested that previously adopted
temperature-based sampling in MT3 [4] might not be suitable for de-
termining the sampling probability of AMT datasets. This is further
discussed in Section F of the Supplemental Document.
Performance on Pop Music: As seen at the bottom of Table 3,
our model demonstrated competitive performance on the synthetic
dataset [29] compared to other multi-AMT models. In Figure 2, our
final model achieved 50 to over 90% performance for most instru-
ments, except for a few non-mainstream ones like chromatic percus-
sion (c. perc) and synth pad (s.pad) in the synthetic dataset. How-
ever, a significant limitation emerged in its performance on com-
mercial pop music recordings, as shown in Figure 3. Particularly for
non-main instruments (excluding piano, bass, vocals, and drums),
our models performed below 10%. This suggests potential biases in-
troduced by training primarily on synthetic datasets, which may not
fully cover the diverse timbres of pop music. Furthermore, except
for the piano, all the pitched instruments showed a significant gap
in the chroma-level metric, suggesting substantial octave errors and
hinting that more varied pitch-shifting could be beneficial.
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6. CONCLUSION AND FUTURE WORK

This work presented YourMT3+, a hybrid model suite that com-
bines MT3 and PerceiverTF features. Our final model, YPTF.MoE
+Multi, employed spectral cross-attention and a Mixture of Ex-
perts in its encoder for enhanced performance, and a multi-channel
decoder to handle the instruments where annotation is partially avail-
able. Our models trained using the proposed online augmentation
strategy demonstrated direct vocal transcription capabilities without
the need for a singing separation front-end. The final model sig-
nificantly outperformed MT3 and PerceiverTF on the multi-AMT
benchmark with a parameter increase of less than 2.5% compared
to MT3. Evaluations across ten public datasets also validated our
model’s competitiveness. Despite progress, challenges persist: on-
set timing in singing voice transcription lags behind our baseline,
and low performance in pop music may stem from reliance on syn-
thetic datasets for diverse instruments. Future research will address
these issues.
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