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Abstract

We demonstrate that pretrained generative models can learn repre-
sentations that are useful for multi-pitch estimation. We explore rep-
resentations extracted from DAC, a state-of-the-art audio compres-
sion model [24], which is based on VQ-GAN, an encoder-decoder
architecture with vector quantisation. We propose pitch condition-
ing in the model’s latent space such that the learned embeddings are
pitch-aware. To determine whether such representations are suit-
able for transcription, we use them as input features to train a shal-
low multi-pitch transcriber. We show that conditioning the encoder
with ground truth pitch targets leads to substantially improved
transcription results. These improvements hold true even when
conditioning on noisy labels generated by an off-the-shelf music
transcriber, eliminating the need for annotated data during pretrain-
ing. Specifically, pitch conditioning in the pretraining phase yields
an absolute average improvement of 14.5% and 12.0% in framewise
and notewise F-scores respectively across datasets. Furthermore,
we show that our representation learning method facilitates effi-
cient transfer learning since our downstream model’s performance
is comparable to recent work even though it is trained on audio
of a total duration of only 2 hours per dataset for 20 epochs. The
source code of this work is available on Github 1.
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1 Introduction

Multi-instrument music transcription is a fundamental task in the
Music Information Retrieval (MIR) field. It is a challenging prob-
lem due to the complexity and variety of music signals, including
issues such as overlapping harmonics and uncertainty regarding
the number of simultaneously active notes or instruments. It con-
sists of many subtasks, such as multi-pitch estimation (MPE), onset
and offset time detection, instrument recognition, beat tracking,
interpretation of expressive dynamics, and score typesetting [3].

Although deep learning has led to significant advances in multi-
instrument transcription, the lack of annotated datasets and the
increased hardware requirements impede research progress and
practical applications of transcription systems. Furthermore, models
are usually designed and trained in a task-specific manner, for
example to target specified instruments, which means that they
may generalize poorly or that they may be difficult to adapt for
similar tasks.

Large pretrained models are commonly used in MIR either as
feature extractors for downstream tasks [7, 13, 43] or for finetuning
and transfer learning [33, 42]. Such approaches aim to eliminate
the requirement for large amounts of annotated data, which is
particularly useful in music transcription where labeled datasets
are scarce due to the cost of manual annotation.

Descript Audio Codec (DAC) is a Vector Quantized Generative
Adversarial Network (VQ-GAN) that demonstrates state of the art
performance in audio compression. Motivated by 1) great progress
in the generative audio field, 2) the fact that directly modeling
music audio as opposed to time-frequency transformations or labels,
yields richer representations for MIR [7] and 3) the introduction
of reconstruction objectives in recent music transcription systems
[8-10], we propose a VQ-GAN model architecture based on DAC
[24], which performs music compression, reconstruction and pitch
conditioning. We refer to this model as PA-DAC (Pitch-Aware DAC).
We show that PA-DAC learns useful representations for multi-pitch
estimation (MPE) and hence transcription.

Specifically, we propose pitch conditioning that guides the en-
coder module to learn embeddings that can describe pitch qualities.
To evaluate whether our representation learning methodology is
beneficial for music transcription, we pretrain PA-DAC on musical
datasets and use it as a feature extractor to train a shallow frame-
wise transcriber. Not only do results show that pitch awareness
in the pretraining phase greatly benefits the downstream task of
MPE, but they are also comparable to or outperform other SOTA
transcription models.

Furthermore, we show that pitch conditioning is beneficial even
if the ground truth pitch labels used for conditioning are noisy. To
do this, we use an off-the shelf pretrained transcription model to
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synthetically generate pseudo-ground-truth for pitch conditioning
which we refer to as noisy labels. Thus, we introduce flexibility in
dataset choices in the pretraining phase as there is no requirement
for annotated data. Using this method, the model can be pretrained
on a diverse set of musical data (genre, instrument, recording con-
ditions, etc.) which reduces the risk of overfitting and improves
generalisation in downstream tasks.
This work makes the following contributions:

e We propose a two-stage methodology for representation
learning and transfer learning for MPE. The first stage com-
prises of PA-DAC and the second stage of training a shallow
transcriber for the downstream task of MPE using the repre-
sentations learned in the first stage.

e We show that by introducing pitch awareness in the pre-
training phase, the model used for the downstream task can
be generic and while small amounts of data for training are
sufficient.

e We propose pretraining on noisy labels using an off-the-shelf
transcription model, thus eliminating the need for annotated
data and allowing for flexibility in dataset choices.

The paper is structured as follows. In section 2 we present state
of the art work on music transcription. We also discuss recent work
on generative pretraining within the MIR field. In section 3 we
describe the pretraining stage of our work: the PA-DAC model
architecture and its training details as well as the noisy label gener-
ation method we used for supervised pitch conditioning. Section 4
describes the downstream model along with training and evalua-
tion details. Section 5 presents and discusses the results. These are
obtained from evaluating the downstream model which was trained
on embeddings extracted from the pretrained PA-DAC. Section 6
concludes this paper.

2 Related Work

2.1 Music transcription

Deep learning models have become the current state of the art
(SOTA) in Automatic Music Transcription (AMT). Many of these
focus on transcription of specific instruments, mainly piano due to
data availability [16, 21] as well as guitar [20, 31, 46], violin [2, 34],
voice [22, 40, 41] and drums [6, 19] among others.

Multi-instrument AMT studies the problem of transcription of
music signals that consist of multiple sources (different instruments
and vocals). There are transcription systems that simultaneously
estimate note events and their instrument sources [15, 18, 27, 28,
33, 44] and others that focus on estimating note events only [4,
8, 10, 11, 32, 45]. In the latter case, where instrument sources are
not inferred, transcription systems are referred to as instrument-
agnostic. Our work belongs to that category of system and we leave
the instrument source estimation for future work.

SOTA transcription systems are commonly designed in a task-
specific manner. They are based on either Recurrent Neural Net-
works (RNNs) such as Long Short-Term Memory networks [16, 21,
28], or U-Net structures [18], or Transformer models [15, 33, 36].
These architectures are popular for analyzing temporal sequences
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of acoustic features. In most cases, models are large hence resource-
hungry, with MT3 for example reaching 60 million trainable pa-
rameters [15]. In the case of traditional supervised learning, large
amounts of annotated data are required for training.

Addressing the problem of large and resource hungry models,
Basic Pitch is the first lightweight (approximately 16,000 parame-
ters) model for transcription [4]. It is an extension of Deep Salience,
a fully convolutional instrument agnostic model with a Harmonic
Constant-Q Transform (HCQT) frontend [5]. It consists of a multi-
output structure that estimates framewise onsets, multipitch and
note activations and is followed by a post-processing mechanism
to produce note-level estimates. Despite its simplicity and low-
resource setting, the model can achieve comparable results to other
SOTA models.

To counteract the requirement for large annotated datasets, there
are a few approaches that introduce semi-supervised and continual
learning [8] and self-supervised learning [11, 32]. The aforemen-
tioned models are instrument-agnostic. ReconVAT [8] uses Virtual
Adversarial Training (VAT) which enables semi-supervised learning
with unlabelled data in combination with small annotated datasets.
PESTO [32] leverages equivariance to musical transpositions and
proposes a Siamese-style network that learns to capture pitch in-
formation given pairs of transposed inputs. SS-MPE [11] uses an
autoencoder model inspired by Timbre Trap [10] together with
self-supervised objectives which leverage the properties of timbre
invariance and geometric equivariance.

Several transcription models have shown that incorporating
reconstruction objectives in their system is beneficial for transcrip-
tion. ReconVAT [8, 9] includes a reconstruction module within its
transcription system which learns to reconstruct the input spectro-
gram using the posteriogram produced by a first-step transcription
process. The reconstructed spectrogram is then used to produce
the transcription output. It is shown that the reconstructed spec-
trogram is a denoised version of the original spectrogram and the
transcription produced using the reconstruction yields improved
performance.

Timbre Trap [10] is an autoencoder model that can operate in
two modes: MPE and reconstruction of complex CQT coefficients. In
MPE mode, the decoder outputs pitch salience probabilities, while
in reconstruction mode, the decoder outputs real and imaginary
parts of CQT coeflicients. The model architecture is based on audio
compression models [14, 47] and hence is similar to the model we
use in the pretraining phase.

Timbre Trap is the first work to introduce the idea of a unified
model for transcription and reconstruction with promising results.
Building on top of this idea, we propose a two-stage methodology
instead, where the first stage involves representation and recon-
struction learning and the second stage involves transcription and
transfer learning to new datasets.

2.2 Generative pretraining for MIR

Previous research has shown that using pretrained generative mod-
els for discriminative MIR tasks is beneficial. JukeMIR [7] and Sheet
Sage [13] utilise representations from Jukebox [12], a VQ-VAE mu-
sic generation model which contains a language model trained on
codified audio. The suitability of representations is evaluated for
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Figure 1: Noisy labels (left) are generated by converting note events estimated by an off-the-shelf transcriber into piano rolls.
These are used for pitch conditioning within PA-DAC. PA-DAC (middle) produces pitch-aware latent space embeddings via
a pitch conditioning module. The shaded part of the diagram corresponds to the original DAC model. Dotted arrows show
the losses associated with each module. 1, denotes the pitch loss, I¢; and lc2 the codebook and commitment losses, 1, the
reconstruction loss, 13 and Ig the discriminator and generator losses. After pretraining PA-DAC, latent space embeddings are

extracted from the encoder to train a shallow transcriber (right).

several downstream MIR tasks: tagging, genre classification, key
detection, emotion recognition [7] and melody transcription [13].
It is shown that generative pretraining greatly improves perfor-
mance on the downstream tasks when compared to handcrafted
features such as time-frequency transformations or features ex-
tracted from models trained to perform other discriminative tasks.
Both JukeMIR and Sheet Sage achieve comparable performance to
SOTA even though JukeMIR uses a generic shallow model for all
downstream tasks.

While our work can be considered similar to JukeMIR [7] and
Sheet Sage [13], our proposed method differs in two ways: 1) we
further repurpose the generative model we use in the pretraining
phase such that representation learning is specific to our down-
stream task; and 2) we choose the embeddings learned from the
encoder module to train our downstream model while the previous
methods [7, 13] use embeddings learned from the language model
within Jukebox which is trained on vector-quantised tokens.

3 PA-DAC Pretraining

3.1 Model architecture

PA-DAC is a VQ-GAN model based on DAC [24]. It consists of
a fully convolutional encoder-decoder structure which performs
temporal downscaling with a chosen stride factor, a Residual Vector
Quantisation (RVQ) module which compresses the latent space into
discrete tokens before entering the decoding stage and a complex
STFT discriminator. The model accepts variable-length audio sam-
pled at 44.1 kHz. For further details regarding the aforementioned
modules please refer to the original DAC paper [24].

PA-DAC incorporates a pitch conditioning module which drives
the encoder to produce embeddings that can describe pitch. The
architecture is shown in Figure 1 (middle). The pitch conditioning

module is a two-layer fully connected network (FCN) with each
layer followed by a ReLU activation function. The pitch conditioner
accepts latent space embeddings of one second of audio. These are
of dimensionality T X D = 87 X 1024, where T denotes time and D
the latent space size. It outputs 128 features for each one of the 87
frames which represent the probability of each pitch being active
at that frame.

3.2 Training objectives

Following a multitask learning configuration, the PA-DAC model
optimises several objectives simultaneously which are also depicted
in Figure 1 (middle):
frequency domain reconstruction with a multi-scale L1 loss
for mel spectrograms
time and frequency domain discrimination using the Hinge-
GAN adversarial loss formulation [25] and the L1 feature
matching loss [23]
codebook learning with the original codebook and commitment
losses from the VQ-VAE formulation [38]
pitch conditioning with the binary cross entropy loss.

To balance the influence of each loss term, we apply a different
weight to each. For the reconstruction, discrimination and code-
book learning objectives, we adopt the same weights used in the
original DAC model [24]. For the pitch conditioning term, we ex-
perimented with several weight values from 15.0 to 300.0 and we
made the following observations: 1) the pitch conditioner weight
greatly impacts the embeddings produced by the encoder hence it
also impacts the performance of our transcriber probe and 2) the
greater the weight, the greater the performance of our transcriber
up to a certain threshold, when transcription performance starts to
degrade again. We speculate that this might be due to mistakes in
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the noisy labels being weighted more strongly thus pitch condition-
ing becoming less accurate. For our final experiment, we choose the
a weight of 150.0 for the pitch loss that yields embeddings which
lead to the best performance for our transcriber. The overall loss is
shown in Equation 1, where Lyecon denotes the reconstruction loss,
L,4v the adversarial loss, Lge,; the feature matching loss, L.y4e the
codebook loss, Leommit the commitment loss and Ly, the pitch
conditioning loss.

Liotal = 15.0 X Lrecon + 1.0 X Lygy + 2.0 X Leeat
+1.0 X Leoge + 0.25 X Leommit +150.0 X Lpjrer, (1)

3.3 Noisy label generation

The pitch conditioning module within PA-DAC is trained in a su-
pervised manner. We generate synthetic pitch labels using the
pretrained Basic Pitch model [4] provided by its authors in the
associated repository?. As shown in Figure 1 (left), we convert the
estimated note events into piano rolls and use those as labels to
train PA-DAC. We choose Basic Pitch because it is a lightweight
model with a short inference time, it is trained on a variety of
datasets including different instruments and it achieves comparable
to SOTA perfomance, as described in section 2.1. For further details
on the model, please refer to the original paper and the associated
repository [4].

3.4 Pretraining details
We train PA-DAC using the following datasets:

Mazurkas 3 A collection of mazurkas of a total of 123 hours per-
formed by 157 different pianists.

Bach violin dataset Introduced by Tamer et al. [34], this is a 34-
hour dataset of solo violin recordings composed by Bach.

Guitar dataset A collection of audio-score pairs that have been
used for training deep learning models for guitar transcrip-
tion [31].

GTZAN A collection of 100 30-second excerpts for each of the
following music genres: blues, classical, country, disco, hip-
hop, jazz, metal, pop, reggae, rock [37]. For our experiments,
we only use the blues, classical, country, jazz, pop and rock
subsets.

We train the model for 100k iterations with a batch size of 6. At
each iteration, the model accepts a 1-second audio excerpt from
each one of the datasets except for GTZAN from which the model
sees three examples from each one of the following subsets: 1)
classical, 2) jazz and 3) blues, country, pop or rock.

Following the original DAC paper [24], we use the AdamW
optimizer [26] with a learning rate of 0.0001, f; = 0.8 and f2 = 0.8
for both the generator and the discriminator. We reduce the learning
rate at every step with y = 0.999996.

3.5 Ablation experiment

In order to evaluate the quality of the synthetic labels generated
using the method described in section 3.3, we also run an abla-
tion experiment, where we pretrain PA-DAC using the MAESTRO
dataset [17] in two different conditions: 1) using the annotations

Zhttps://github.com/spotify/basic-pitch/
3http://www.charm.rhul.ac.uk/index.html

Mary Pilataki, Matthias Mauch, and Simon Dixon

provided with the dataset as ground truth; and 2) using Basic Pitch
predictions as ground truth. All training details and objectives are
identical to those described in sections 3.4 and 3.2 except for the
dataset; for the ablation experiment we only use MAESTRO for
pretraining PA-DAC. We then train our transcriber probe using
features extracted from each condition and compare the results.

4 Probing method
4.1 Model architecture

To evaluate the effectiveness of our proposed representation learn-
ing method, we use a shallow classifier, referred to as a ‘probe’. A
probe can only use the hidden units of a given intermediate layer as
discriminating features. This method was introduced by Alain and
Bengio [1] and adopted by Castellon et al. [7] for probing Jukebox
representations, as described in section 2.2.

To this end, we train a supervised one-layer perceptron with 512
hidden units. The model accepts as inputs latent space embeddings
of 1 second of audio which are learned by PA-DAC. Each input has
a dimensionality of T X D = 87 X 1024 where T denotes time and
D denotes the latent space dimensionality. The model is trained
to predict probabilities of each pitch being active at each point in
time. To achieve this, model outputs are passed through a sigmoid
activation function. Those outputs are of dimensionality T X P =
87x128. P denotes MIDI pitches 0-127, based on the equal-tempered
scale 4.

4.2 Training details

After pretraining PA-DAC, its weights are frozen and the latent
space embeddings are used as inputs to our transcriber probe. We
use the PA-DAC checkpoint from iteration 100k. We first split audio
into 1 second excerpts, 0.2 seconds overlapping and feed those into
PA-DAC. We extract and save the features. The corresponding
diagram is shown in Figure 1 (right).

We then train the model in a supervised manner on subsets of
Slakh [29], MusicNet [35] and GuitarSet [46]. We randomly sample
audio excerpts of a total duration of two hours per dataset. For
validation we use random excerpts of a total duration of 10% that of
our training data, 12 minutes per dataset. We exclude tracks used
for training. We provide the exact track IDs for each split in our
open-source code release for this paper. We train the model for 20
epochs with a batch size of 2. The Adam optimiser is used with a
learning rate of 0.00005 and a weight decay of 0.00001.

4.3 Evaluation details

For evaluating, we use the checkpoint of the model at epoch number
20. We test the model on the official test sets of Slakh and Music-
Net and the full GuitarSet dataset. We also include a comparison
with the following instrument-agnostic models where results are
available: Timbre Trap [10], SS-MPE [11], Deep Salience [5] and
Basic Pitch [4]. We also include a comparison with MT3, a SOTA
multi-instrument transcription model [15]. The experimental setup
differs between the aforementioned baselines (model architectures,
training details and datasets are highly different), hence direct com-
parisons cannot be made.

*https://midi.org/
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Table 1: Precision (P), recall (R), F-score (F) and accuracy (Acc) percentages of the transcriber probe MPE estimates and note-level
F-scores (Fn). The leftmost column indicates the pretrained model used to extract features to train the transcriber. PA-DAC (n)
and PA-DAC (g) refer to the ablation experiment discussed in Section 3.5 where pretraining is performed on MAESTRO only

using the dataset’s ground truth (g) or noisy labels (n).

GuitarSet Slakh MusicNet
P R F Acc Fn p R F Acc Fn P R F Acc Fn
Pretrained model
DAC 64.7 640 644 433 379 628 555 589 409 308 519 440 47.6 28,6 243
PA-DAC 84.6 77.0 80.6 66.7 494 66.7 730 69.7 527 429 595 691 64.0 455 368
PA-DAC (g) 79.1 685 734 563 435 664 67.6 670 49.6 377 56.7 637 60.0 413 335
PA-DAC (n) 774 68.7 728 553 425 674 656 665 489 371 598 578 588 39.6 321

Table 2: Baseline comparison of frame-level Precision (P), Recall (R), F-score (F) and Accuracy (Acc), plus note-level F-score (Fn)
(where applicable). The leftmost column indicates the transcription model except for our method which indicates the model
used in the pretraining phase. The asterisk indicates that GuitarSet is excluded from the training data.

GuitarSet Slakh MusicNet
P R F Acc Fn P R F Acc Fn P R F Acc Fn
Method
Timbre Trap 48.6 756 59.2 413 - - - - - - - - - - -
SS-MPE 59.5 581 58.8 40.2 - - - - - - - - - - -
Deep Salience 77.7 70.6 740 57.7 - - - - - - - - - - -
MT3 - - - - - - - 79.0 - 76.0 - - 68.0 - 50.0
Basic Pitch 794 851 822 695 77.6 729 394 512 340 405 651 51.2 573 398 623
PA-DAC 84.6 77.0 80.6 66.7 494 667 73.0 69.7 527 429 595 69.1 640 455 36.8
PA-DAC* 63.6 77.8 70.0 522 357 660 740 698 528 436 572 69.6 628 443 355

We utilize the community-standard mir_eval package [30] to
compute precision (P), recall (R), F-score (F) and accuracy (Acc)
of multi-pitch estimates with respect to the ground truth. Frame-
level P-R-F estimates are obtained by performing local peak-picking
across frequency and applying a threshold of 0.3. Accuracy is com-
puted as the ratio between the number of pitch estimates within
0.5 semitones of matched ground-truth pitches to the total number
of pitch estimates plus the number of missed ground-truth pitch
estimates.

To compute note-level metrics, we convert frame estimates to
note events by applying the post-processing method introduced
by Bittner et al. [4]. The only modification we make is that we
estimate onset times using our model’s frame output. In that case,
a threshold of 0.1 is used and detected events that are shorter than
10 frames (~ 116 ms) are removed. For further details on the post-
processing method please refer to the original Basic Pitch paper [4].
Notes are considered correct if the pitch is within a quarter tone
and the onset is within 50 ms. Final framewise and notewise results
are computed by averaging across all tracks within an individual
dataset.

5 Results

Table 1 presents the performance of the multi-pitch transcriber
probe trained on representations extracted from the pretrained
DAC and PA-DAC models. Pretraining is done using the datasets
described in section 3 except for PA-DAC (g) and PA-DAC (n) (last
two rows in the table) which are pretrained on the MAESTRO
dataset only. PA-DAC (g) and PA-DAC (n) correspond to results
of our ablation experiment which is described in section 3.5. (n)

denotes that the model is trained on noisy labels whereas (g) denotes
that the model is trained on MAESTRO’s ground truth annotations.

For PA-DAC, the noisy labels for pitch conditioning are generated
using the method described in section 3.3. It is apparent that pitch
conditioning in the pretraining phase not only greatly benefits
multi-pitch estimation, but also the estimation of note events after
post-processing. Specifically, the percentage increase for each of the
datasets, GuitarSet, Slakh and MusicNet respectively, is as follows:
1) Frame accuracy: 23.4, 11.8 and 16.9; 2) Frame F-score: 16.2, 10.8
and 16.4; 3) Note F-score: 11.5, 12.1 and 12.5.

Referring to Table 1 and comparing PA-DAC (g) and PA-DAC
(n), results indicate that using noisy labels in the pretraining phase
does not significantly degrade the downstream task performance.
Specifically, when using noisy labels in pretraining there is an
average performance decrease of 0.8%, 1% and 1.1% in frame-wise
and note-wise f-scores and frame-wise accuracy respectively across
datasets compared to when using the ground truth. Although pitch
conditioning is more accurate when using ground truth, the value
of pitch conditioning on noisy labels is apparent. The performance
increase in pitch estimation when using representations extracted
from PA-DAC (n) compared to those extracted from DAC is 9.1%,
6.2% and 10.3% for frame-wise and note-wise f-scores and frame-
wise accuracy respectively across datasets.

As expected, representations extracted from PA-DAC yield a
stronger performance compared to representations extracted from
PA-DAC (g) and PA-DAC (n). PA-DAC is trained on several datasets,
described in section 3, hence the learned representations are richer,
capturing timbre and pitch related information for a variety of in-
struments. Nevertheless, with PA-DAC (g) and PA-DAC (n), transfer



MMASIA °24, December 3-6, 2024, Auckland, New Zealand

Pitch

LR N [ E N N ]
=]
@

LE N N ]
g

N ]
o
&
X

(a) PA-DAC model’s latent space.

Mary Pilataki, Matthias Mauch, and Simon Dixon

e T
.)..‘~:hg\‘ ® 2
o '@ ® Fu
0 T Y0 s N
9 S8 ry Fo3
LY} b3 L ofe .| ‘ s e A2
o »2.8 N .o ¥ i. . G2
L A 2 e c=2
o A AT &
. S ceN N B3
©le o .‘ooﬁ‘ﬂ\" ® G2
e gl 0 ® @ .‘?9»... H) G4
% ° rye [ D4
@ 0" 0 o0 U 0
o ¥ 00\\1'.: ';_“‘ .‘.‘ .2 * : gis
f 4 'w..‘l..s . » ® A
- e % B
t v 4 e . ‘.’ . o a2
':...: -.‘... (] 24

L]
>

s

[

(b) DAC model’s latent space.

Figure 2: t-SNE visualization of the latent space extracted from PA-DAC (a) and DAC (b) using the GuitarSet dataset. A subset of
20 pitch classes are shown. Colours represent different pitch classes.

learning to instruments other than piano is effective as can be seen
in Table 1.

Table 2 presents the performance of several instrument-agnostic
models along with our best model which is trained on represen-
tations extracted from PA-DAC. We use the checkpoint provided
online by the authors of Basic Pitch [4] to evaluate their model. We
obtain results for SS-MPE [11], Timbre Trap [10] and Deep Salience
[5] from the SS-MPE paper [11]. In that case, the evaluation is per-
formed using the whole GuitarSet dataset as this was not included
in the training data for the aforementioned models. For a fairer
comparison, we also re-train our model excluding all GuitarSet
tracks from training and validation. This model is denoted in Table
2 as PA-DAC”. Finally, we obtain MT3 results from the original
paper [15].

Our method outperforms Timbre Trap [10] and SS-MPE [11]
across all metrics while performance is comparable to Deep Salience
[5]. Furthermore, PA-DAC* performs well on the GuitarSet dataset
even though it is only trained on a few synthetic guitar examples
from Slakh.

Our method clearly outperforms Basic Pitch in terms of frame-
wise performance on Slakh and MusicNet, while for GuitarSet
framewise scores are comparable. In terms of notewise performance,
our method achieves a better score on Slakh while for the other
two datasets Basic Pitch performs better by a large margin. This
is expected because Basic Pitch is a specialised architecture which
combines framewise onsets, multipitch and note activations, to
predict note events in contrast to our model which only uses frame
estimates. Furthermore, Basic Pitch is trained on the Guitarset
dataset while PA-DAC* excludes all Guitarset data from its training
set.

Finally, as expected due to its sophisticated architecture and pa-
rameter size, MT3 is the best performing model overall and outper-
forms our model by a large margin. However, MT3 is outperformed
by Basic Pitch on the MusicNet test set in terms of note-wise f-score.

We visualise the latent space of our pretrained models using the
t-SNE dimensionality reduction method [39]. Figure 2 (a) and (b)
shows the latent space of PA-DAC and DAC respectively where
different colours indicate different pitch classes. For clearer visuali-
sation, those embeddings have been extracted using monophonic
excerpts from the GuitarSet dataset. The exact track IDs are in-
cluded in the open-source code release for this paper. We observe
that pitch conditioning introduces the formation of pitch clusters
as opposed to the original DAC model.

6 Conclusion

In this paper, we have described a representation learning method
based on pretraining a VQ-GAN model. We have introduced pitch-
awareness in the pretraining phase and have shown that this greatly
aids the downstream task of multi-pitch estimation and facilitates
efficient transfer learning with scarce data. Our downstream model
was trained on only 2 hours of data per dataset for 20 epochs, prov-
ing that our method is suitable for low-resource settings. We have
also proposed pretraining on noisy labels where there is no require-
ment for labeled data, allowing for flexibility in dataset choices.
Although in this work we use Basic Pitch [4] to synthetically gen-
erate noisy labels, different transcription models could be tested.

For future work we would also like to explore modifications in
the pitch conditioning module such that conditioning is performed
at the note-level, and replace our downstream model such that we
can achieve increases in both frame and note-level scores for tran-
scription. Finally, we are interested in evaluating the reconstruction
capabilities of PA-DAC and exploring whether pitch conditioning
also benefits music reconstruction .
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