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ABSTRACT

Our study investigates an approach for understanding musi-

cal performances through the lens of audio encoding mod-

els, focusing on the domain of solo Western classical piano

music. Compared to composition-level attribute understand-

ing such as key or genre, we identify a knowledge gap in

performance-level music understanding, and address three

critical tasks: expertise ranking, difficulty estimation, and

piano technique detection, introducing a comprehensive

Pianism-Labelling Dataset (PLD) for this purpose. We

leverage pre-trained audio encoders, specifically Jukebox,

Audio-MAE, MERT, and DAC, demonstrating varied ca-

pabilities in tackling downstream tasks, to explore whether

domain-specific fine-tuning enhances capability in captur-

ing performance nuances. Our best approach achieved

93.6% accuracy in expertise ranking, 33.7% in difficulty

estimation, and 46.7% in technique detection, with Audio-

MAE as the overall most effective encoder. Finally, we

conducted a case study on Chopin Piano Competition data

using trained models for expertise ranking, which highlights

the challenge of accurately assessing top-tier performances.

1. INTRODUCTION

Traditional music understanding tasks focus on

composition-level attributes: key, tempo, genre and

instrumentation are widely explored [1–3]. These attributes

are not only tagged individually via end-to-end approaches

but have also been the focus of foundation models

and various musical representations aimed at learning

them in a unified manner [4, 5], facilitating cross-modal

understanding [6, 7].

However, a large portion of human music activity is

focused not on the composed songs or pieces themselves,

but on the process of learning and performing them [8].

Despite its great importance to the vast community of stu-

dents, teachers and musicians, the ability to understand

performance nuances (challenging techniques, skill vari-

eties, stylistic differences, difficulty grading, etc.) has not

been grasped by machines. Sporadic experiments [9] of
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these tasks are conducted, often on small-scale [10, 11] or

proprietary [12–14] datasets. Performance understanding,

in contrast to the more recognized composition-level mu-

sic understanding, suffers from scarcity of data [15, 16],

ambiguity of tasks [17], and the inherent complexity of

modelling and representing expressive elements in perfor-

mances [18, 19].

Meanwhile, unified representations and foundation mod-

els have advanced several fields by providing robust and

versatile frameworks [6, 20], demonstrating their potential

to overcome challenges related to data scarcity and task

specificity. Building on this precedent and their applications

to compositional-level understanding [21], we extend the

capacities of pre-trained audio encoders such as MERT [22]

and MULE [5] into the performance-understanding realm,

investigating the shared knowledge between composition-

and performance-level understanding: Do pre-trained audio

encoders capture performance nuances? Can they catego-

rize performance-related attributes? If not, how can we

improve their performance?

This work is a first step in filling the gaps within

the performance understanding realm. Applying domain-

adaptation to pre-trained audio encoders, we work towards

a piano judge that specializes in ranking performers’ skill

level, determining the given repertoire’s difficulty and core

techniques, thus pursuing a human piano teacher’s capabil-

ity and paving the way to performance understanding in an

educational context. Our contributions 1 include:

1. We benchmark three tasks in the realm of audio per-

formance understanding: expertise ranking, difficulty

estimation, and solo piano technique detection.

2. We leverage four audio representation learners (Juke-

box, Audio-MAE, MERT, DAC) and compare their

capabilities in tackling the downstream tasks.

3. We release the Pianism-Labelling Dataset (PLD) with

detailed labeling curated for the three tasks, the first

large-scale dataset (136 hrs in total) that aims to ad-

dress performance understanding.

4. We fine-tune DAC [23] and AudioMAE [24] by

domain-adaptation with solo piano, and compare

their performances with pre-trained versions.

5. We conduct a case study on Chopin Piano Compe-

tition data (ICPC-2015), exploring how a trained

expertise ranking model can be transferred to rank

candidates in the most prestigious competition of the

pianistic scene.

1 Code available at: https://github.com/anusfoil/PianoJudges
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2. RELATED WORK

2.1 Performance and education focused understanding

The exploration of performance through recordings pro-

vides rich resources for music understanding. Automatic

performance analysis (APA) [17] delves into dimensions

from dynamics [25,26] to timing [27,28], forming the basis

for tasks such as performer identification and automatic

music performance assessment (MPA) [15]. The former

seeks to attribute performances to their respective musicians

based on stylistic and technical signatures [29, 30], and the

latter aims to evaluate the quality and expression of per-

formances. MPA approaches can be further divided by the

level of proficiency. For novice players, the emphasis is on

technical accuracy, ensuring correct notes and rhythm via

score alignment [16, 31] or detecting conspicuous mistake

regions [14] in a score-free context. Advanced performers

are assessed by their expression and musicality, usually

in the form of predicting rating scores on multiple dimen-

sions [12, 32]. Recently, the release of feedback-based

assessment data [33, 34] offers the possibility to conduct

multimodal MPA in a more personalized manner.

On the other hand, the analysis of performances in an

educational context emphasizes the identification of chal-

lenges and learning opportunities within the repertoire:

expert-annotated difficulty level is predicted from symbolic

scores [35] via a machine learning classification approach

that merges musicologically-inspired score features. At a

more granular level, we would like to identify instrument-

specific techniques that demand practice. For example,

techniques such as acciacatura and portamento on Chinese

bamboo flute can be identified from spectro-temporal pat-

terns [36], but similar problems have yet to be explored on

piano because of the homogeneity of piano sound. Other

learning aid information such as fingering [9, 37] and bow-

ing [38] can also be predicted. In this work, we focus on

expertise, difficulty and technique estimation by extracting

relevant information from performance audio. This work

is the first of its kind in piano technique detection and ex-

pertise ranking, and the first to use an audio representation

approach for difficulty estimation [9, 39].

2.2 Leveraging audio representations for downstream

tasks

The surge of learning audio representations was originally

motivated by generative models such as AudioLM [40]

and MusicLM [41]. Jukebox [42] is a generative model

trained on 1.2M songs. Subsequent work [4, 43] has shown

that Jukebox’s representations can be effective features for

task-specific linear classifiers. Jukebox embeddings have

also been employed in multimodal learning [6] of music

captioning and reasoning tasks. MERT [22] uses masked

language modelling (MLM) style acoustic self-supervised

pre-training. With a music teacher and an acoustic teacher,

MERT demonstrates good performance in downstream mu-

sic understanding tasks and extends its music understanding

ability into question answering and captioning [44] by gen-

erating music representations to aid language models.

Audio-MAE [24] is a vanilla 12-layer transformer that

learns to reconstruct randomly-masked spectrogram patches.

The output feature map from the penultimate block of an

Audio-MAE encoder has been used to encode fine-grained

patterns in audio [45]. Different from previous approaches,

Descript-Audio-Codec (DAC) [23] is a neural audio com-

pression autoencoder that compresses high-dimensional

signals into lower dimensional discrete tokens. DAC has

been proven useful in a generative context [46], but there

have been few attempts to explore it with downstream un-

derstanding tasks [47].

The four aforementioned audio representations are cho-

sen for our investigation. Since they are constructed from

different theoretical approaches (quantized codecs vs. con-

tinuous spectrograms) and trained on different data (general

audio vs. music), this variety presents an opportunity to

evaluate the extent to which the encoded information con-

tributes to performance understanding.

3. METHODOLOGY

3.1 Downstream problem definitions

3.1.1 Expertise ranking

We formulate our assessment into a ranking problem: given

audio performances p1 and p2, which one has the higher

expertise? We define three coarse levels of expertise (be-

ginner, advanced and virtuoso), represented by integers 0, 1

and 2, respectively, and define a function Q which maps a

performance to one of these levels. Instead of directly pre-

dicting the absolute expertise level Q, we learn a 2-way or

4-way ranking function between each pair of performances

from different levels, R2 or R4, as below:

R2 =

{

0 Q(p1) < Q(p2)

1 Q(p1) > Q(p2)
R4 =



















0 Q(p2) − Q(p1) = 2

1 Q(p2) − Q(p1) = 1

2 Q(p1) − Q(p2) = 1

3 Q(p1) − Q(p2) = 2

(1)

The motivation is to teach the model a relative notion

of expertise, instead of an absolute level or category of the

performance quality. In real life and competition settings

(as will be discussed in Sec 5.1.1), we are more interested

in the comparative skill level among a set of candidates.

3.1.2 Difficulty estimation

Following the literature [9, 18, 35] on difficulty level pre-

diction, we formulate the problem as a classification task

with 9 difficulty classes, given the dataset described in Sec-

tion 4.2, which has 9 levels of difficulty annotation. Given

that the difficulty annotation is subjective and boundaries

between levels are fuzzy, we also report the results of 3-

class estimation by merging the level groups, as in [35].

3.1.3 Technique identification

Given a piece, a piano teacher can immediately identify

the most challenging passage(s) that would require students

hours of practice to master: intense octave runs, fast flowing

scales, repeating notes that require finger iteration, etc.
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Encoder C F (Hz) Dim

Jukebox 2048 345 64

MERT - 75 1024

Audio-MAE - 51.2 768

DAC 9×1024 87 1024

Spectrogram - 150 128

Table 1. Specifications of the audio encoders as well as

the spectrogram baseline: C is the codebook size, F is the

frame rate in Hz and Dim is the hidden dimension of the

embedding (mel-bins for spectrogram).

Figure 1. Overview of our tasks and experiment

pipeline.For the expertise ranking, two audio embeddings

are concatenated in the time dimension.

In the technique-specific dataset (Section 4.3), we in-

clude 7 common techniques and formulate a multi-label

classification task for technique identification. Given that

our labels are relatively sparse, we also experiment with the

case of single-label prediction in which predicting any one

of the multiple labels is considered correct.

3.2 Audio embeddings and encoder fine-tuning

An overview of the used audio embeddings is given in

Table 1. For Jukebox, we employ the 345 Hz sample

rate encoding, and for Audio-MAE, the 768-dimensional

embedding is taken from the ViT-B Transformer encoder.

Additionally, we considered a spectrogram baseline, as a

low-level representation to compare with the trained embed-

dings. We use 128 mel bins, an FFT of 400 samples, and

hop size of 160 samples, resulting in a spectrogram with

frame rate of 150 Hz and 128 dimensions that feeds into

the prediction head module like the trained embeddings.

We examine whether fine-tuning the two generic-audio-

trained encoders DAC and Audio-MAE with domain-

specific data results in a performance boost. The two en-

coders are fine-tuned using their original self-supervision

objective on around 2k hours of solo piano recordings,

from datasets of MAESTRO [48], ATEPP [49], SMD [50],

Mazurkas 2 as well as the novel PLD data introduced in

this work. For DAC, the fine-tuning lasts for 25k iterations

while the Audio-MAE is fine-tuned for 64 epochs.

3.3 Experiments

For all encoders, we first compute 10-second segment audio

embeddings (or spectrograms), and include a maximum of 5

2 http://www.charm.rhul.ac.uk/index.html

task type classes tracks len. (s)

Expertise Multi-class 2 or 4 1694 167.4

ICPC-2015 Multi-class 2 137 1827.0

Difficulty Multi-class 3 or 9 737 269.8

Techniques Multi-label 7 222 45.5

Table 2. Dataset statistics (number of classes, number of

tracks and average duration) for each task.

minutes (30 segments) of audio as input with padding. The

concatenated embedding of each audio track is of shape

(30, F × 10, D) where F is the frame rate and D is the

embedding dimension as shown in Table 1.

Given the audio embedding, we transform it through a

prediction head module that consists of two 2D convolu-

tional layers (nkernel = 7, nstride = 5), one linear layer

to align different input dimensions, and one self-attention

layer (nheads = 2, d = 128), followed by a final linear

layer that projects to the desired classes of each task. A

full pipeline of the experiments is shown in Figure 1. As

is standard practice [4, 43], we maintain a straightforward

projection module design, aiming to minimize its influence

on the probing performance.

Regarding each individual task, we run a grid search on

the hyper-parameters for learning rate, weight decay, batch

size, etc. The details for the final training parameters for

each task are documented in the project page 3 . All fine-

tuning and training are conducted on one NVIDIA A5000.

4. PIANISM-LABELING DATASET

The pianism-labeling dataset (PLD) includes audio and an-

notations for three notions that are centrally relevant to

pianism and piano education: expertise, piece technique

and difficulty, where dataset statistics are specified in Ta-

ble 2. All of the labeling, metadata correspondence, as well

as examples are available on the project page.

4.1 Expertise

We curated a collection of solo piano recordings from

YouTube, each annotated with an expertise level. Their

categorization was based on information gleaned from the

YouTube channels’ descriptions, which provided insights

into the background of the recordings. This categorization

process was validated by two college-level piano students

to ensure accuracy.

• Beginner (562): Amateur level, featuring mostly

adult self-taught learners’ practice recordings.

• Advanced (570): Performances of music students

and junior competition recordings.

• Virtuoso (562): Famous pianists’ recordings sourced

from the ATEPP [49] dataset. To balance with the

other groups, we randomly select a subset of 562 of

the 11K recordings.

The repertoire of selected performances is mainly fo-

cused on the Western classical repertoire, with some rear-

ranged folk and pop songs at the Beginner level. Indeed,

3 https://bit.ly/3SYzozY
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it is challenging to align the performed repertoire across

levels since the complexity of played pieces increases with

the expertise: e.g. Beginners’ pieces are shorter (av. 128.9

s) than Advanced (201.1 s) or Virtuoso (171.8 s) tracks.

In experiments, the three levels are first individually split

into train and test subsets and then paired up randomly.

Each recording only shows up once in the pairs to prevent

leakage, which results in 2694 pairs in training.

4.1.1 ICPC-2015

In this task we aim to assess whether the learnt compar-

ative ranking objective can be applied to the professional

domain, the International Chopin Piano Competition, with

data gathered from the 2015 edition (ICPC-2015 dataset) 4 .

We employ only the preliminary round performances to en-

sure limits on the length and instrumentation (i.e. solo), and

assume that the overall better players clearly demonstrate

their skills in the preliminary round performance. Out of

160 candidates, 137 recordings are successfully retrieved.

We compile the data into ranking pairs similar to Sec-

tion 4.1, by first assigning a score S(c) for each candidate

based on their progression into the following rounds. For

every round that the candidate passes into, the score is

incremented with 1 point. For candidates a, b with their

respective scores S(a), S(b), all preliminary round record-

ings are formed into pairs with ranking as in Eq. 1. As

shown in Table 2, the preliminary round recordings have

an average duration of 30 minutes. Thus, we obtain paired

ranking results for each pair of 5-minute segments (30 seg-

ments in total) and use majority voting to obtain the final

rank among two recordings.

4.2 Difficulty

We employ the Can I Play It? (CIPI) [35] dataset for our

task of difficulty prediction. Given that the original dataset

is sourced in symbolic MusicXML, we obtain the perfor-

mance audio from YouTube by querying the metadata fol-

lowed by manual correction to enforce piece alignment.

Note that the performances are sourced from different lev-

els of playing rather than virtuoso recordings only, with the

aim of learning a more general view of audio difficulty. In

the CIPI dataset, difficulty labels are annotated by Henle

Verlag 5 , a renowned publisher in the music education com-

munity. The ratings range from 1-9 and span 29 composers.

Note that we split the movements from sonata or other

multi-movement compositions, resulting in the 737 audio

tracks shown in Table 2 compared to 637 compositions in

the original metadata. We also use the same train-test split

as the original dataset.

4.3 Techniques

The technique dataset contains 222 recordings with an av-

erage duration of 45 seconds, demonstrating one or more

canonical piano techniques from seven categories taken

from piano practice literature [51]. The excerpts are taken

4 https://github.com/cyrta/ICPC2015-dataset
5 https://www.henle.de/

from etude books like Beyer or Czerney, or passages from

performance repertoire (e.g. dense octave run from Chopin

op.25 no.10). Besides YouTube sourcing, 41 out of 222

recordings are recorded by the authors, if the specific pas-

sages containing the techniques are not publicly available

in any recording. The categories of techniques are:

• Scales (48): Pure scale run across octaves. Can be

both hands or one hand.

• Arpeggios (40): Pure arpeggio run across octaves, or

music passages that are accompanied with arpeggios,

or melody that is constructed on arpeggiated chords.

• Ornaments (31): Including grace notes, trills, mor-

dents, acciacatura. Note that we do not balance these

subclasses, and the most common ornament in our

samples is grace note.

• Repeated notes (35): Musical passages that feature

a series of repeated single notes.

• Double notes (36): Musical passages that feature

sequences of simultaneous intervals (mostly thirds,

but also fourths and sixths), where the intervals are

performed with one hand.

• Octaves (35): We differentiate octaves from dou-

ble notes because of their sheer importance in piano

repertoire, as well as their distinctive sonority.

• Staccato (41): Musical passages that are predomi-

nately performed by staccato articulation.

We formulate the prediction task as multi-label classi-

fication since a musical passage is often associated with

multiple techniques. Among the 222 recordings, we have

40 labeled with two techniques and two recordings with

three techniques. Note that besides scales and arpeggios,

few other techniques exist in their pure form (e.g. an entire

music passage of trills). Thus we aim to identify the most

prominent technique present in the recording.

5. RESULTS

5.1 Expertise Ranking

We train the projection module in 2-way and 4-way ranking

as described in Section 3.1.1, and show results in Table 3

(left). For 2-way ranking, we achieve up to 93.56% ac-

curacy, indicating a clear distinction between recordings

of varying levels of expertise in most cases. Audio-MAE

outperforms the other three audio encoders while Jukebox

embeddings contain the least information for discerning the

level of playing. The result of 4-way prediction is similar

with Audio-MAE performing the best with 84% accuracy,

indicating a good capability to distinguish larger expertise

differences (beginner vs. virtuoso) from smaller ones. The

baseline spectrogram achieves much lower metrics on both

classifications, indicating that the pre-trained encoders cap-

ture more relevant nuances of musical performance. How-

ever, we are also aware that the three levels of data differ

not only on performance but also on repertoire and record-

ing environment. The effect of fine-tuning with solo piano

domain data is not salient in this task: the fine-tuned Audio-

MAE achieved roughly the same performance while DAC

actually declined.
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Expertise Ranking Difficulty Estimation Technique Identification

2-way 4-way 9-way 3-way Multi Single
Acc F1 Acc F1 Acc0 Acc1 Acc0 F1 mAP AUC Acc Acc F1

pre-trained

Spec 75.90 74.73 52.34 49.94 32.98 59.17 67.21 66.75 57.49 71.13 73.02 46.67 39.26
Jukebox 84.51 83.79 60.41 56.75 33.41 55.36 60.49 58.27 49.33 59.79 73.33 25.44 23.53
Audio-MAE 93.48 92.84 84.21 81.20 31.60 66.09 79.03 75.11 60.69 67.51 77.46 42.22 39.81
MERT 89.48 88.73 82.12 78.81 26.55 62.28 73.13 71.38 55.76 69.05 79.37 37.78 35.85
DAC 86.84 87.91 77.77 76.24 27.61 59.86 69.64 69.87 48.50 57.87 78.73 24.44 23.61

fine-tuned

Audio-MAE 93.56 90.22 82.26 77.82 33.67 60.21 77.73 75.84 61.81 67.61 79.05 35.56 33.73
DAC 82.87 81.83 78.41 76.23 28.63 61.59 64.45 62.34 50.77 59.80 79.68 26.67 25.66

Table 3. From left to right: results of 2-way and 4-way expertise ranking, 9-way and 3-way difficulty estimation, multi-label

and single-label technique prediction. Best results are highlighted in bold.

5.1.1 Discussion: How far are we from predicting the

Chopin Competition winner?

From the trained 2-way expertise ranking module, we ap-

ply the ICPC-2015 pairs as a testing set as described in

Section 4.1.1. Ideally, the model should discern the three

levels of piano expertise by identifying specific nuances in

performance that distinguish, for example, virtuosi from

advanced students. Such insights could then be applicable

to evaluating competition-level performances. In Table 4,

“fitting” indicates that we first fit the trained model on half

of the candidates’ pairs for 5 epochs and test on the other

half. Without fitting, we only evaluate on these same testing

pairs using the model trained in Section 5.1.

w/o. fitting w. fitting

Acc F1 Acc F1

pre-trained

Spec 52.91 52.79 49.27 49.04
Jukebox 46.63 44.92 48.27 47.13
Audio-MAE 56.86 55.86 59.08 58.76
MERT 49.07 46.78 53.05 52.54
DAC 42.17 41.71 53.67 53.67

fine-tuned

Audio-MAE 54.32 50.14 54.89 49.81
DAC 60.49 60.27 59.87 59.84

Table 4. 2-way paired-ranking test result for the competi-

tion dataset ICPC-2015.

Several interesting observations are made from this ex-

periment: 1) Transferring the learnt expertise ranking into

assessing competition-level playing (which should all be-

long to the virtuoso tier within our training) is challenging,

considering the random guess baseline of 50% accuracy in

predicting the better performer within a pair. The best we

achieve is slightly above 60%, possibly because the out-

comes of competitions often transcend mere audio content

to include performative expression like gestures, resulting

in a sight over sound phenomenon [52]. 2) Adaptation

on the competition set does not significantly boost the per-

formance. For the pre-trained embeddings the accuracies

slightly increase after fitting, but it has no effects on the

fine-tuned embeddings. 3) The fine-tuned DAC embed-

dings, despite having a lower performance in the ranking

task with three levels, largely outperform other models in

ranking the candidates in a competition setting.

Using the paired prediction results from best model (fine-

tuned DAC w/o. fitting), we translate pair-wise predictions

into a global ranking. Each candidate is ranked by how

many wins they obtain in the ‘paired matches’. Each candi-

date is involved in 272 pairs, given 137 candidates and we

infer on each pair (136) and its inverse. Figure 2 shows the

relationship between our predicted candidate win counts

and the preliminary round pass hit-rate (i.e. what propor-

tion of candidates actually passed the preliminary round).

Michał Szymanowski is the predicted best candidate who

wins in the most pairs. Overall, there exists a good correla-

tion between our predicted win counts rank and candidates’

ground truth performance: the top 18 predicted candidates

all passed the preliminary round, with many of them pro-

gressing into round 2 or 3 (demonstrated by the color in

Figure 2). Down to the cut-off threshold of half of the candi-

dates, 65% of them passed the preliminary round. Finalists,

however, are not necessarily predicted accurately: the win-

ner Seong-Jin Cho only “wins” 39 matches and is placed

towards the end in this rank, as is the third placed Kate Liu.

Only Charles Hamelin (2nd place) is placed relatively high

in our ranking.

Figure 2. Paired win count threshold vs. hit-rate for prelim-

inary round pass prediction. Each candidate is a data point

colored by their ground-truth result tier (i.e. the highest

round they progressed from). The red dashed line is the

cut-off of half the candidates.
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5.2 Difficulty estimation

The difficulty estimation experiments are defined in Sec-

tion 3.1.2 on the CIPI dataset. In Table 3 (middle), we

report the accuracy within n (Accn) for the 9 class predic-

tion. Defined as Eq. 2, Accn aligns with the ordinal nature

of the task and we observe results for n = 0 (exact match)

and n = 1 (allowing for one-class deviation).

Accn =
1

|C|

∑

c∈C

|{y ∈ Sc : |f̂(x)− c| ≤ n}|

|Sc|
(2)

The Audio-MAE embeddings yield overall the best per-

formance for both 9-way and 3-way estimation. But it

is worth noting that the untrained spectrogram baseline

actually achieved accuracy metrics on-par with the audio

encoders (32.98% vs. 33.67% in 9-way estimation), even

higher than the worst-performing embedding of DAC.

The best we achieve with 9-class Acc0 is 33.67% (com-

pared to the same-set symbolic data baseline [35] of

39.47%). However, this is based on the fact that our audio

embeddings are capped to 5 minutes, removing the effect of

the major feature of piece length. For the 3-way classifica-

tion we achieved accuracy that is on-par with the symbolic

baseline, with the best Acc of 79.03%, demonstrating that

the complexity of piano repertoire can also be encoded with

the current pre-trained representation.

Interestingly, the Acc0 and Acc1 metrics do not improve

hand-in-hand: Jukebox embeddings achieved the highest

Acc0 among the pre-trained models, but performed worst

on Acc1 since its prediction is sparse and scattered from

observing the confusion matrix. The fine-tuned models

exhibit a modest enhancement in performance metrics, as

in the Acc0 for Audio-MAE and 3-way F1 for DAC, as well

as better generalization and less overfitting.

5.3 Technique identification

The technique identification experiment is performed as

both multi-label and single-label prediction, as formulated

in Section 3.1.3. In Table 3 (right), we report the mean-

Averaged-Precision (mAP) and Area Under the Receiver Op-

erating Characteristic Curve (AUC). The former accounts

for the balance between precision and recall, while the latter

computes area under the false positive rate and true pos-

itive rate (recall) which reflects the influence of the true

negatives. We also note the multi-label accuracy Acc which

accounts for all binary predictions of each class.

The most important observation on the result is that the

spectrogram representation easily outperforms the audio

encoder embeddings on this task, especially on the single-

label prediction case (46.67%). This offers an interesting

perspective on the learned embedding content: exact note

onsets and texture patterns (that are associated with the pi-

ano technique classes) seem to be overlooked by the embed-

dings, capturing less performance-related details compared

to the lower-level spectrogram. The results demonstrate

that DAC and JukeBox are the least informative audio em-

beddings for this task (24.44% and 25.44%). Audio-MAE

is the best-performing audio encoder, but the single-label

prediction results do not improve with fine-tuning. On the

other hand, fine-tuning DAC on the solo piano data im-

proved performance on this task by 2%, compared with its

pre-trained version.

To gain a better understanding of the identified tech-

niques we observe the class-wise mAP from the best-

performing representation of spectrogram. As depicted

in Figure 3, Repeated Notes emerge as the most accurately

identified technique. Conversely, the Staccato class exhibits

a decline in performance throughout the training, hinting at

a potential acoustic overlap with Repeated Notes, as sug-

gested by prior research [53]. Meanwhile, the precision

for other techniques shows consistent improvement dur-

ing training, achieving 40% to 60% even in more distinct

technique categories like Scales and Arpeggios. However,

with the highest accuracy for single-label 7-way prediction

being 46.67%, it is clear that the model’s ability to pinpoint

techniques could be further refined, especially considering

these are easily discernible to the human ear.

Figure 3. Average Precision for each class over epochs in

multi-class prediction, from spectrogram representation.

6. CONCLUSION

Our research aimed to extend the capabilities of audio

encoding models to the domain of solo piano perfor-

mance understanding. Through this effort, we addressed

tasks such as expertise ranking, difficulty estimation, and

solo piano technique detection. The study introduced the

Pianism-Labelling Dataset (PLD) and utilized a range of

pre-trained audio encoders for evaluation. The curated set

of performance-related attribute labels can contribute to

multi-task learning or contrastive learning tasks in the fu-

ture.

Our results, with the highest accuracy of 93.6% in

expertise ranking, suggest that models like Audio-MAE

hold promise for assessing aspects of musical performance,

while the codified representations such as DAC or Jukebox

struggle with capturing performance nuances. However, the

studies on difficulty and especially techniques suggest the

limitations of current pre-trained representations in captur-

ing pianistic textures and patterns, as they fail to outperform

the spectrogram baseline, prompting for the design of a

performance-oriented audio representation. Meanwhile, the

case study on the Chopin Piano Competition via transferring

the assessment objective confirmed that we are still far from

capturing the nuances of top-level human performance.
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