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Abstract

This study identifies self-attention using rotary positional embed-
dings (RoPE) as an instance of Nadaraya-Watson (NW) kernel re-
gression. Leveraging the properties of kernels, we modify the atten-
tion model to replace RoPE with a novel, explicitly designed bank
of decaying periodic kernels. Experiments are conducted using a
GPT architecture, a character-based tokenization strategy, and a
13-million-character corpus. The results from the new model signif-
icantly outperform the baseline RoPE implementation, as measured
by mean cross-entropy loss.
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1 Introduction

The Transformer model [17] has revolutionized artificial intelli-
gence, and has become a key foundational architecture across di-
verse domains such as NLP [10], computer vision [7, 11], speech
recognition [6], computational biology [20], and more. Nevertheless,
Transformers remain more of a heuristic than a formal scientific
framework. An underlying theory explaining not just how, but why
they work has remained elusive, but such a theory is, arguably,
essential for predicting safety, reliability, and alignment [4]. Theo-
retical models are useful at several levels. They provide intuition,
but more importantly, they provide a foundation for analysis when
analyzing errors, and they are a springboard for inventing improved
models. The objective of this work is to develop a modified, more
explanatory model for self-attention and to evaluate its ability to
improve performance when used in a GPT architecture.
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Figure 1: Illustrating Nadaraya-Watson regression. The re-
sulting regression function, shown as a blue curve, is the
weighted sum of shifted kernel functions, each shown as a
black, dashed curve. The data locations, x;, are represented
by the red dots on the horizontal axis, and their values, y; are
represented by the size of the dots.

2 Methodology

2.1 Theory

The methodology used in this work is based on Nadaraya-Watson
(NW) regression [12, 18], which uses a set of observed points,
{xi,yi}, i = 1,...,N, and a kernel function, Kj(x — x;), to esti-
mate the value of y at any new point, x:
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In this expression, the K}, function is centered around each of the
x; and weighted by the corresponding y;. This shifted and normal-
ized weighted sum forms the regression function. The shape of
K}, is typically a symmetric, Gaussian-like curve whose width is
controlled by a parameter h. Figure 1 illustrates a simple example.
When self-attention is implemented using rotary positional em-
beddings (RoPE) [15], its form is the same as NW regression
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RoPE is implemented as a sparse matrix, ©, operating on the query
and key vectors. The structure of © is block diagonal, where each
block is a 2D rotation matrix. The angles of rotation increase as a
function of index and position. One of the key characteristics of
RoPE is that ©7© is a function of the indicial distance between
embeddings. Attention, and NW regression, both form normalized
weighted sums dependent on relative distances. Thus, attention can
be interpreted as a proper kernel function centered around each
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x; [16]. Although attention is not symmetric, asymmetric kernels
have been formalized in both theoretical frameworks and practical
applications, and are useful for modeling conditional probabilities
and directed graphs [8, 9, 19].

2.2 Kernel Modeling

Kernel functions can be combined through summation or multi-
plication while remaining valid kernels [1], and this characteristic
makes them useful for modeling. RoPE is thought to implicitly
embody decaying periodic features that occur in the structure of
language [3], and the goal of this section, is to redesign attention,
replacing RoPE with kernel functions designed to explicitly model
these features. We begin by defining two kernel functions, one for
periodicity, Py, and another for exponential decay, Dy.:

Pr(xp, xi) = exp {—Zai sin? ( InT— d )} (3)
3

Di(xn. i) = of exp{—'”,;"} @)
Each kernel is an explicit function of the indicial distance between
xp, and x;. Py is a function of two learnable parameters oy and 7.,
where the former controls amplitude and the latter wavelength. Dy
depends on the learnable parameters o;. and I, where the former
is the strength of the term and the latter is a time constant or decay
width parameter. The two kernels can be multiplied, Gy (xp, x;) =
Dy (xp, xi) Pr. (xn, x;), to model decaying periodicity, and summed
to create a bank of M such kernels:

M
Gotn x1) = ), D (X, i) P (X, i) (5)
k=1

Finally, the expression in Equation 5 can be combined with that for
attention from Equation 2 without, however, the 07® terms from
RoPE:
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We call this model Gaussian process attention (GPA), and by com-
parison with static RoPE, it contains 4M additional learnable pa-
rameters.

2.3 Experimental Setup

The experiments are based on a standard GPT Transformer, initially
using RoPE as the baseline. The data for the experiment is the col-
lected works of Charles Dickens, obtained from Project Gutenberg
[5], and we use a character-based tokenization strategy [2]. The
corpus contains 13m characters, with a total vocabulary of 93 to-
kens. The baseline Transformer architecture consists of four blocks,
each containing four attention heads and a feedforward layer. The
model also includes a layer norm and the usual embedding and
unembedding layers. The context window was set to 256, and the
embedding dimension 512. Finally, the performance metric used
to evaluate results is the mean cross-entropy loss of the validation
data.
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Figure 2: Comparison of four experiments: blue is static
RoPE, orange is learned RoPE, green is exponential decaying
kernel, and red is decaying periodic kernel.

3 Results

Four experiments were run to evaluate the kernel modeling ideas
of the previous sections, and the results are shown in Figure 2. Each
curve in the figure represents the mean cross-entropy (MCE) loss
during training. The experiments are run for 200,000 iterations
with a batch size of 256, which is the equivalent of running for 4
epochs. The data was split into a training set, with 10% set aside as
a validation set. The blue curve in the figure is the MCE loss of the
validation data using the baseline RoPE implementation of the GPT
architecture as specified in Equation 2. The red curve is the MCE
loss for the Gaussian process attention (GPA) kernel described by
Equation 6 and using a bank of M = 8 decaying periodic kernels. It
is the best performing model, showing a considerable improvement
over the RoPE experiment. To test ideas, two additional models
were run. The orange curve is a modification of RoPE, where the
angular rotations, normally static values, are trained as learnable
parameters. The legend refers to this experiment as Learned RoPE.
The final experiment removes the periodic kernel component of
the GPA expression, using only the exponential decaying part from
Equation 4. This performs better than either the static or learned
RoPE experiments, but not as well as the decaying sinusoidal kernel.

4 Future Work

The results from the previous section seem promising, but they are
for a small corpus with a simple tokenization scheme. Experiments
with a larger corpus (for example, an English Wikipedia dump), and
a more sophisticated tokenization strategy (such as WordPiece [13]
or byte-pair encoding [14]) need to be explored to ensure that the
results carry over to more realistic problems. The use of kernels as
a modeling methodology seems to hold significant potential, and
suggests many new avenues of scientific enquiry, exploring kernel
compositional structures, parameterization, and model bank order.
Testing these models in downstream applications would provide
additional insight into their strengths, weaknesses, and capabilities.
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