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Abstract—This study introduces RUMAA, a transformer-based frame-
work for music performance analysis that unifies score-to-performance
alignment, score-informed transcription, and mistake detection in a near
end-to-end manner. Unlike prior methods addressing these tasks separately,
RUMAA integrates them using pre-trained score and audio encoders and
a novel tri-stream decoder capturing task interdependencies through
proxy tasks. It aligns human-readable MusicXML scores with repeat
symbols to full-length performance audio, overcoming traditional MIDI-
based methods that rely on manually unfolded score-MIDI data with
pre-specified repeat structures. RUMAA matches state-of-the-art alignment
methods on non-repeated scores and outperforms them on scores with
repeats in a public piano music dataset, while also delivering promising
transcription and mistake detection results.

1. INTRODUCTION

Music Performance Analysis [1] (MPA), a key area of Music
Information Retrieval (MIR), investigates the relationship between
a musical score and its performance across various genres and
instruments. This study focuses on classical piano music, examining
how performers adhere to the score, what deviations occur, and how
audio translates into symbols. In classical music, where score fidelity is
relatively critical, these questions support applications like tutoring [2]
and assessment.

We address three essential tasks: score-to-performance alignment,
score-informed transcription, and mistake detection. Scores, with
symbolic repeats and expressions, contrast with audio performances.
Prior work treated these tasks separately—e.g., alignment mapping
notes, transcription converting audio, and mistake detection identifying
errors [3], [4]—yet their interdependence is clear: alignment reveals
matched or missing notes signaling mistakes, while transcription
leverages alignment for accurate audio-to-symbol conversion.

This interdependence suggests a unified approach would be more
effective. Additionally, conventional MIDI-based representations
cannot handle repeat symbols, which are often ignored in practice but
strictly followed in formal performances. This poses challenges for
MIDI-based alignment methods requiring manually verified, repeat-
unfolded scores. In contrast, RUMAA directly processes repeat symbols.

We propose RUMAA [ru:ma:] illustrated in Fig. 2, a transformer-
based framework unifying these tasks with key features:

• Proxy-driven multi-task model: Employs three proxy tasks
to encode target task interdependencies, enhancing multi-task
learning for transcription, alignment, and mistake detection.

• Multimodal and crossmodal seq-to-seq: Utilizes pre-trained score
and audio encoders to jointly process symbolic scores and audio,
enabling crossmodal reasoning and producing structured outputs
that reflect task dependencies.

• Repeat handling: Handles repeats by aligning to performed
structure without pre-unfolded scores, enabling adaptation to
real-world performance variations.

This unified approach enables robust and flexible music performance
analysis, bridging symbolic and audio modalities through proxy-driven,
crossmodal learning.
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Fig. 1: Token streams for proxy tasks. Top: Example score and audio
performance (visualized as a piano-roll), with orange highlights (missing) for
missing score notes and pastel blue highlights (extra) for extra performance
notes. Bottom: RUMAA decoder outputs for performance (Proxy Task 1), score
(Proxy Task 2), and alignment (Proxy Task 3), as detailed in Section 3 and
Table 1. Yellow boxes (□) denote exclusive tokens, and dotted boxes indicate
silence tokens. Patterns ensure grayscale readability. Best viewed in color.

2. RELATED WORK
Score-performance alignment [5, pp. 115–166] employs cross-modal
methods that directly align heterogeneous representations or symbolic
methods that convert both modalities into a common space. Most
methods adopt symbolic approaches, while cross-modal methods [6],
[7] align in the audio domain using features like chromagrams, making
note-level alignment challenging. Conventional DTW [8]–[10] and
HMM-based [3] methods typically align transcribed symbolic se-
quences, incurring complexity and cascading errors from transcription.
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Fig. 2: Overview of RUMAA framework. Left: The input MusicXML score is converted into an interleaved ABC representation (Section 4.1). Center: The
score and performance audio are encoded into score (Section 4.1) and audio embeddings (Section 4.2). Right: The decoder (Section 4.3), conditioned on score
and audio context, autoregressively generates multi-channel tokens. Each channel corresponds to a proxy subtask (Section 3) related to our main tasks.

Repeat handling is a known issue [11] in alignment methods. MIDI-
based approaches struggle since MIDI lacks explicit repeat notations.
JumpDTW [11], [12] uniquely handles repeats by aligning image-
domain scores with audio. Traditional methods rely on global structure
analysis followed by local matching, while Transformer architectures
may learn hierarchical patterns through multi-head attention, though
long-context handling [13] remains challenging.

Recent deep learning methods include the GlueNote Trans-
former [14], which enhances DTW for symbolic alignment but requires
external transcription. Chou et al. [15] proposed a Transformer for
mistake detection, but we exclude it from baselines as it assumes pre-
aligned 2-second score-audio pairs, making it unsuitable for inference
on unaligned data.

Score-informed transcription methods [4], [16] demonstrate that
joint modeling enables accurate transcription and simultaneous
alignment with mistake detection, inspiring our unified transformer-
based approach.

3. PROXY TASK DESIGN
We address three interdependent tasks: score-performance alignment,
score-informed transcription, and mistake detection. To efficiently
learn these task relationships and enable their joint inference, we
formulate a proxy task that learns to generate a tokenized alignment
sequence of performance (T1) and score (T2) events, including explicit
edit operations (T3) through our tri-stream decoding.

The core idea (Figure 1) is to create a strict one-to-one alignment by
explicitly modeling extra or missing notes. This sequence integrates
edit operations such as <Match>, <Insert>, and <Delete>.
When a note is present in the performance but absent in the score
(an insertion) or vice versa (a deletion), the exclusive token <-> acts
as a placeholder in the corresponding channel for the missing note.
This maintains a consistent, perfectly aligned structure.

Figure 1 illustrates how each decoder channel corresponds to a
proxy task. These tasks include:

T1. Score-Aligned Performance Transcription outputs perfor-
mance tokens with timing and note information.

T2. Performance-Aligned Score Conversion outputs score
tokens following performance order.

T3. Edit Operation Tagging outputs alignment operation tokens.

Table 1: Token definition. Tokens marked with ⋆ are exclusive, silencing
other multi-class tokens in their channel. <BOS> and <EOS> are global tokens
that silence all channels. N includes a silence token per class.

Token Range N Description

(Performance Tokens)
T (onset time) 0:32 34 62.5 ms grid timing
T.Reset ⋆ None 2 Reset T every 2 seconds
T.Micro -5:5 11 6.25 ms adjustment
Velocity 1:32 32 MIDI velocity, 4-unit steps
Duration 0:48 49 Up to 4s: 31.25/62.5/125 ms
Pitch 21:109 89 Piano MIDI pitch
- ⋆ None 2 Skip an extra note

(Score Tokens)
Time Sig. ⋆ 1/4 to 12/8 12 Time signatures (top/bottom)
Bar 0:50 51 Indexing bar
Pos 0:32 33 40-tick (32nd note) grid
Pos.Micro -5:5 11 4-tick adjustment
Duration 0:48 49 40/80/160-tick steps
Pitch 21:109 89 Piano MIDI pitch
- ⋆ None 2 Skip a missing note

(Alignment Tokens)
Insert/Delete/Match None 4 Extra/Missing/Matched note
Repeat None 2 Repeated notes or bar
- ⋆ None 2 Skip

BOS, EOS None 2 Begin and end of sequence

This parallel decoding paradigm mirrors post-processed outputs
from HMM/DTW-based methods using the Matchnote format [3],
[10] adapted into a tokenized neural-friendly representation. While
traditional approaches rely on global structure- or cluster-level align-
ment followed by local matching, our Transformer decoder directly
learns these hierarchical patterns via cross-attention. Conditioning on
full score input with barlines and repeats allows it to handle omissions
and non-linear repeats without explicit rules.

Table 1 provides the complete token definitions. Our tri-stream
tokenization (Table 1) extends CP-Words [17] by introducing struc-
tured tokens across three aligned streams: performance, score, and edit
operations. Each note is encoded with onset, duration, and pitch tokens,
including exclusive and silence tokens. Compared to serialized MIDI-
like [18], [19] tokens, our design yields over 3× shorter sequences
and enables simpler note-level alignment. By adopting two-level



quantization—<T> and <T.Micro> [20]—and a timing reset token
[21], we achieve higher temporal resolution with fewer tokens than
prior schemes, which typically require over 100 timing tokens per
second. In contrast, our timing and duration representations are length-
invariant, each using a fixed vocabulary of fewer than 50 tokens.

4. MODEL
Fig. 2 illustrates the structure of RUMAA, which integrates pre-
trained score and audio encoders with a custom decoder. Our
design specifically addresses the training memory bottleneck of long
audio inputs—unlike symbolic alignment models [14] or short-audio
transcription models (e.g., MT3 [18], [22]) without score. We adopt:
(1) efficient score representation using ABC notation with bar-level
patching, (2) optimized audio encoding to reduce token length, and
(3) hierarchical cross-attention decoder with tri-stream output strategy.
The following subsections detail these components.

4.1. Score Encoder
As shown in the left panel of Fig. 2, the score encoder converts
MusicXML [23] to ABC notation [24], representing each bar with up
to 64 characters [25]. Both notes and key musical elements (dynamics,
repeats, keys, time signatures, and pedal) are retained.

We adopt the pre-trained M3 encoder from CLaMP2 [25], which
relies on character-level tokenization and bar-level patching to process
ABC notation. Each character is encoded as a 12-dim embedding,
and 64 embeddings per bar are stacked into a single 768-dim bar-
level token. A 12-block Transformer with multi-head self-attention,
pre-trained to capture musical events without losing note-level details
from long sequences, produces a 768-dim representation [25]. This
output is linearly projected from 768 to 1,024 dimensions before
being fed into the decoder described in Section 4.3.

4.2. Performance Audio Encoder
We use a spectrogram from 16 kHz mono audio (STFT: 2,048
samples window, 10ms hop). A pre-encoding layer (three ResNet
blocks) processes features to produce 1024-dim outputs at 12 frames
per second. Inspired by Music2Latent [26], this lower frame rate
efficiently supports longer sequences without degrading transcription
performance, as verified in preliminary experiments.

The audio encoder is a 12-layer self-attention Transformer, pre-
trained following YourMT3+ [22] with three modifications: adapted
for lower-frame-rate inputs, re-implemented with flash attention, and
pre-trained decoder predicting MIDI velocity tokens (0-127). In
RUMAA, we reuse only the pre-trained and frozen audio encoder,
which produces 1,024-dim representations.

4.3. Decoder
The decoder, shown as the green box in the center of Fig. 2, is a
6-block Transformer autoregressively generating tri-stream outputs
conditioned on audio (Section 4.2) and score (Section 4.1) features.

Our key architectural choice is hierarchical cross-attention, which
involves separate conditioning for audio then score, in contrast to
standard concatenation [15] or prepending input. Each block processes
shifted outputs via self-attention, then cross-attention with audio, then
score. This sequential approach resembles iterative transcription/score-
following and is more efficient than simple context concatenation.
Replacing hierarchical attention with simple concatenation leads to
1% performance drop despite similar model size.

Built on TorchScale [27], the Transformer uses a GatedFFN [28],
[29] and extends standard decoder blocks with an additional cross-
attention layer as mentioned above. The final 1024-dime latent
representation is divided into three streams (1024 // 3), each processed

by a multi-sequence language model (LM) head [17] to generate
parallel sequences. Each head corresponds to a proxy task defined in
Section 3: T1, T2, T3. The third head also has the potential to decode
extended compound tokens, such as beat, tempo, or other attributes
relevant to music performance modeling. Note that tokens with the
same name across score and performance channels (e.g., <Pitch>;
see Table 1) use separate embeddings and do not share weights.

5. EXPERIMENTAL SETUP
5.1. Data Preparation and Training
For pre-training the audio encoder, we use the YourMT3 dataset [22],
combining 10 public multi-instrument transcription datasets including
Maestro [30], reserving the official test split for evaluation. While
prioritizing piano, we maintain multi-instrument pre-training, as initial
findings show that mapping speech to singing and non-musical or
percussive sounds to drums—or ignoring them—boosts robustness in
live piano transcription.

For post-training the decoder, we use the (n)ASAP dataset [10],
a Maestro [30] subset with 222 MusicXML [23] scores and 519
piano performances, including MIDI, audio, and manually verified
note alignments [10]. We held out 20 movements and 50 recordings
from six composers—Bach, Beethoven, Chopin, Haydn, Liszt, and
Schubert—as the test set. MusicXML scores are converted to ABC-
interleaved format [25] for the score encoder. Tri-stream tokens for
the proxy tasks derived from (n)ASAP’s alignment, MIDI, and score
data. We randomly sample one-minute audio segments and extract up
to 50 bars of score content that cover the corresponding passage.

To augment (n)ASAP’s semi-professional performances, which
limit mistake learning and rarely include repeats in 1-minute segments,
we create five score-modulated versions, altering 10% of notes via
pitch modulation (±5 semitons) or deletion, and five performance-
modulated versions using Piano-SynMist [31] and MIDI-DDSP [32].
This expands the dataset tenfold for robust proxy task training. For
repeat simulation, we add repeat symbols to random bars in 20% of
ABC-interleaved scores lacking repeats, repeating the audio.

To evaluate score-performance alignment, we use the revised
Vienna [33], with high-quality piano performances, transcriptions,
MusicXML scores, and manual alignments. Score-informed transcrip-
tion is tested on (n)ASAP [10], score-free transcription on Maestro
[30]. Lastly, STPD [4] is used for mistake detection benchmark, with
its score-MIDI converted to the ABC-interleaved format. All the
evaluation datasets are isolated from the training dataset.

We trained our decoder alongside an off-the-shelf M3 [25] score
encoder and a pre-trained performance audio encoder described
in Section 4.1. For this post-training, we adopted AdamW-Scale
optimizer [34] and scheduler from the prior work [22]. Training takes
on three A6000 GPUs or H100 GPUs using a cosine schedule with
initial and final learning rates of [1e-02, 1e-05] and a 1,000-step
warm-up from 1e-03, spanning approximately two days.

5.2. Evaluation Metrics
Since our task includes transcription, we adopt a widely used ±50 ms
onset tolerance [35] across all evaluations.

For score-to-performance alignment, we employ the note-level
Falign metric [10]. This metric evaluates matched note pairs and
inserted/deleted notes as True Positives, unmatched predicted notes
as False Positives, and missing ground-truth notes as False Negatives.
Originally designed for symbolic alignment tasks without repetitions,
we adapt it by redefining repeated notes to be counted independently.

For score-informed transcription, we utilize two metrics derived
from mir_eval [35]: Fon to evaluate note onset detection and Foff-vel



to assess combined onset, offset, and velocity detection. Additionally,
MAEvel measures the mean absolute error of velocity (0–127).

For the mistake detection task in Table 4, we adopt four metrics
consistent with prior studies [16], [36]: Fcorrect, Acccorrect for correctly
played notes, Fextra, Accextra for erroneous notes not in the score,
and Fmissed, Accmissed for notes omitted from the performance despite
being in the score.

6. RESULT

Table 2: Note-level alignment (Falign) on the piano score-to-performance
task. “w/o repeat” indicates evaluation with all songs from Vienna [33]
dataset, while “w/ repeat” indicates evaluation with two songs containing
repeat symbols (Mozart K331, Schubert D783).

Model w/o repeat w/ repeat

(symbolic alignment)
Nakamura HMM [3] 99.0 36.4
hDTW+sym [10] 98.5 28.2
GlueNote Transformer [14] 98.5 12.7

(symbolic-audio alignment)
AMT [22] + Nakamura [3] 97.4 31.8
AMT [22] + hDTW+sym [10] 96.9 26.5
AMT [22] + GlueNote [14] 96.9 26.3
RUMAA (ours) 98.4 98.4

This section reports the evaluation of RUMAA on score-to-
performance alignment, score-informed transcription, and mistake
detection. Results are summarized in Table 2–4, showing its perfor-
mance across these tasks within a unified framework, with particular
focus on scores with repeats and score-informed processing.

6.1. Score-to-Performance Alignment
For the score-to-performance alignment task, Table 2 reports Falign

values on the Vienna [33] piano dataset. The “without repeat” setting
uses unfolded scores across all songs, while the “with repeat” setting
applies original scores to songs with repeat symbols. The upper section,
symbolic alignment, includes methods HMM [3], hDTW+sym [10],
and GlueNote Transformer [14], aligning ground truth performance
MIDI with unfolded score MIDI under ideal conditions without
transcription errors nor repeats. Nakamura HMM achieves the highest
performance on non-repeated scores, with RUMAA trailing by less than
1% (F1-score 98.4). On scores with repeats, however, these methods
drop by up to 87%, while RUMAA maintains 98.4. Conventional
methods [3], [10], [14] using score-MIDI cannot interpret repeat
symbols, often aligning only the beginning and end of repeated scores.
This is particularly noticeable in GlueNote, which struggles more
with repeats.

The lower section, symbolic-audio alignment, reflects alignment
errors that inherently include prior transcription errors, as the
alignment is performed on transcribed symbolic data. On repeated
scores, these methods drop by up to 87%, while RUMAA maintains
98.4. In symbolic-audio alignment, with transcription errors, baselines
combining an external automatic music transcription (AMT) [22]
with prior methods decline by up to 70% on repeats, but RUMAA
outperforms them by over threefold, enhancing practicality without
an external transcriber.

6.2. Score-informed Piano Transcription
Table 3 evaluates score-informed transcription on the (n)ASAP
dataset [10], reporting onset F1, offset-velocity F1, and velocity
MAE. Without score guidance on Maestro, RUMAA competes with
top models like hFT-T [37] and YourMT3+ [22], though it falls
short of IS-CRF [38] by about 2%. RUMAA’s note offset-velocity

Table 3: Note-level transcription performance (Onset, Offset-Velocity F1
and Velocity MAE) on the score-informed piano transcription task. “w/o
score” indicates evaluation without score guidance, while “Score-informed”
uses aligned score data from the (n)ASAP dataset [10] on the same test
set. Models marked with an asterisk (*) are trained for multi-instrument
transcription, while the others are piano-only.

Model Fon ↑ Foff-vel ↑ MAEvel ↓

(w/o score: Maestro)
hFT-T [37] 97.4 89.5 -
IS-CRF [38] 98.3 93.0 -
MT3∗ [18] 84.9 - -
YourMT3+∗ [22] 97.0 - -
RUMAA∗ 96.1 76.0 3.5

(w/o score: (n)ASAP)
RUMAA∗ 95.9 75.8 4.6

(score-informed: (n)ASAP)
RUMAA 99.1 93.6 4.0

Table 4: Benchmark for piano mistake detection on the STPD [4] dataset.

Model w/o Score Score-informed

Fon Fcorrect Fextra Fmissed Acorrect Aextra Amissed

Wang [16] – 99.2 84.9 92.6 98.4 75.2 86.9
Ewert [36] – 99.3 77.0 94.5 98.6 64.0 89.9
Benetos [4] 91.1 – – – 93.2 60.5 49.2
RUMAA 92.8 99.5 89.2 95.3 98.7 80.3 90.4

prediction performance drops by up to 18% compared to other
models. This may stem from inconsistent offset annotations in the
multi-instrument dataset used to pre-train our audio encoder, unlike
competing models optimized for Maestro. However, with score
information on (n)ASAP, the proposed RUMAA achieves a near-
perfect onset F1 score (99.1), surpassing all baselines by a clear
margin, demonstrating that leveraging score information significantly
enhances transcription performance.

6.3. Piano Mistake Detection
For mistake detection, Table 4 presents a performance comparison on
the STPD [4] piano dataset alongside previous NMF-based methods.
RUMAA outperforms prior NMF-based approaches [4], [16], [36] in
mistake detection. Without score guidance, it surpasses Benetos et
al. [4] by approximately 2%; with score information, it achieves up
to a 15% improvement in detecting extra and missed notes while
maintaining top accuracy metrics.

7. DISCUSSION AND FUTURE WORK
RUMAA demonstrates that a unified model for score-performance
alignment, transcription, and mistake detection achieves strong
performance across all tasks. Notably, it performs well on scores
with repeats, indicating effective modeling of MusicXML repeat
structures. A key advantage of the unified audio and score encoders
is reduced transcription error via score-informed decoding, in contrast
to conventional AMT + HMM/DTW pipelines.

However, the model struggles with long audio sequences (over
one minute) due to cross-chunk memory limits, restricting its use
on extended real-world recordings [39] for alignment and mistake
detection. Evaluations were also limited to relatively clean, single-
instrument data, and online processing remains unexplored.

To address these limitations, future work could proceed along one
of two avenues: developing memory-augmented architectures [40]
to overcome sequence length constraints, or enhancing the model’s
generalizability by extending it to multi-instrument scores and more
diverse, real-world recordings.
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