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Abstract—We demonstrate that the Joint-Embedding Predictive Ar-
chitecture is effective for learning representations suitable for Music
Information Retrieval tasks. Specifically, we explore its application
to multi-instrument automatic music transcription, focusing on multi-
pitch estimation and instrument recognition. We evaluate the learned
representations across multiple settings: (1) finetuning a pretrained
JEPA model with transcription supervision, (2) end-to-end training with
transcription supervision, (3) training an instrument-aware transcriber
on frozen JEPA embeddings and (4) training an instrument-agnostic
transcriber on frozen JEPA embeddings. To assess the structure of the
learned representations, we compute Calinski-Harabasz clustering scores
with respect to pitch index, pitch class, instrument, and octave. We find that
the representations learned by JEPA and its modified version (2), primarily
capture instrument identity and pitch height information, rather than
pitch class distinctions. Despite this, our results demonstrate promising
transcription performance and highlight the potential of non-generative
self-supervised learning for multi-instrument music transcription. Code
and model configurations are available on GitHub.1

1. INTRODUCTION

Multi-instrument automatic music transcription (MIAMT) is a core
task in Music Information Retrieval (MIR). Its complexity arises from
three key challenges: overlapping harmonics, polyphonic ambiguity,
and the need to jointly solve several interrelated subtasks, including
multi-pitch estimation (MPE), onset and offset detection, instrument
recognition (IR), beat tracking, interpretation of expressive dynamics,
and score typesetting [1]. Most research in automatic music transcrip-
tion (AMT) focuses on a small subset of these tasks, often neglecting
the broader challenges posed by real-world multi-instrumental music.

MIAMT approaches can be broadly categorized into instrument-
agnostic and instrument-aware transcription. Instrument-agnostic mod-
els focus on transcribing pitch from multi-instrument audio without
explicitly identifying instrument source [2]–[6]. While effective in
capturing pitch and temporal information, these models are not
designed to distinguish between timbral characteristics, limiting their
utility in applications requiring structured representations such as
multitrack MIDI or score generation. Instrument-aware models address
this limitation by jointly estimating pitch and instrument source [7]–
[11], requiring representations that encode both pitch and timbre.
Recent models like MT3 [9], YourMT3 [10], and MR-MT3 [11]
use transformer architectures to accommodate diverse instrument
combinations, but rely heavily on supervised training, which restricts
scalability due to the limited availability of annotated datasets.

Large pretrained generative models are increasingly used in MIR
tasks, either as feature extractors [6], [12]–[14] or as foundations for
transfer learning [15]. These approaches have improved performance
across various tasks, including genre classification, key detection,
emotion recognition, and melody transcription, often outperforming
models trained from scratch with task-specific objectives [12], [13].
These benefits hold even when using simple and shallow downstream
architectures, underscoring the value of high-quality representations.

1https://github.com/marypilataki/amt-jepa

Fig. 1: MIAMT-JEPA framework: Unmasked embeddings pass through a
projection layer (proj) to recover the time-frequency axis and then fed into the
transcriber. When training with transcription supervision, the transcription loss
is added to the JEPA objective. Target encoder weights are updated through
an Exponential Moving Average (EMA) of the context encoder weights.

However, generative models typically focus on reconstructing
waveform-level details, many of which are irrelevant for transcrip-
tion. Self-supervised non-generative approaches, such as contrastive
learning [16], [17] or Joint Embedding Predictive Architectures
(JEPAs) [18], [19], aim to learn task-relevant representations without
reconstruction overhead. Building on this idea, Stem-JEPA [19]
pioneered JEPA-based architectures for MIR and demonstrated that
they can capture timbral, harmonic, and rhythmic structure, suggesting
a strong potential for MIAMT applications.

In this paper, we investigate whether JEPA [20] can learn musically
meaningful representations suitable for transcription. We evaluate
two shallow transcription probes trained on frozen JEPA embeddings:
an instrument-agnostic transcriber and an instrument-aware variant
that jointly predicts pitch and instrument activity, focusing on the
MPE and IR subtasks. Furthermore, we adapt the architecture and
training paradigm such that representation learning is aligned with
transcription objectives. Our work is in line with previous work in
generative pretraining such as [13], Sheet Sage [12] and PA-DAC [6].
However, our proposed representation learning method is not based
on generative modeling and, following [6], [19], [20] all predictions
are made in the representation space.

Our approach addresses critical challenges in MIAMT by leveraging
self-supervised pretraining to enable the use of large-scale unlabeled
music collections, mitigating reliance on scarce, costly annotations.
Our results demonstrate that even a base JEPA Vision Transformer
(ViT), pretrained for a few epochs, learns musically meaningful
representations without complex architectures or large labeled datasets.
This proof of concept underscores the potential of self-supervised
learning for MIAMT, where the scarcity of annotated data hinders
progress. It also opens promising directions for self-supervised music
representation learning in broader MIR tasks.



2. MIAMT-JEPA FRAMEWORK
2.1. Architecture
The architecture builds on JEPAs [18]–[20], which learn represen-
tations by predicting features of masked target regions from visible
context regions within the same input, with target features computed
by a learned target encoder [20]. As depicted in Fig. 1, the proposed
framework consists of four core components: a target encoder, a
context encoder, a predictor and a multi-instrument transcriber. Given
a spectrogram, the model is trained to predict representations of distinct
target blocks from context blocks within the same spectrogram.

Patch embeddings are passed through a projection layer before
being fed into the transcriber. This design encourages the encoder
to focus on pitch and instrument-specific information while learning
high-level music representations. It is inspired by the pitch conditioner
of PA-DAC [6]. Masks are applied after creating the patch embeddings
of the input spectrogram. Hence, the context and targets are actually
masked embeddings that correspond to certain spectrogram regions.
We adhere to the original JEPA formulation for the target and context
encoders and the predictor; please refer to [20] for further details.
The transcriber shares the same architecture as the instrument-aware
probe described in Section 2.3.

The target encoder, a Vision Trasformer (ViT) base architecture [20],
[21], processes mel spectrograms via a patch-based pipeline. First,
the input spectrogram is divided into 256 non-overlapping patches of
size [8× 8] which are linearly projected into patch-level embeddings.
To generate prediction targets target, four distinct masked regions are
applied to the target embedding. Each mask is a rectangular block with
an aspect ratio sampled between 0.75 (wide) and 1.5 (tall), covering
15–20% of the target feature map. This forces the model to learn
from sparse visible regions.

The context encoder, identical in architecture to the target en-
coder, also processes spectrograms by dividing them into 256 non-
overlapping [8 × 8] patches. These patches are embedded into a
patch-level representation which is then masked to retain a large
contextual region, leaving 85-100% of the feature map visible. This
setup encourages the encoder to extract meaningful features for the
predictor to infer missing target regions.

The predictor, a narrow Vision Transformer (ViT) [20], takes two
inputs: context embeddings and positional mask tokens indicating the
target patches to be predicted. For each target block, the predictor
is conditioned on corresponding mask tokens representing its spatial
location, allowing sequential prediction of multiple masked regions
while maintaining consistent global context conditioning.

2.2. Input features
Mel spectrograms are computed from 44.1 kHz mono audio with 128
Mel bands, a 25 ms Hanning window, and 10 ms hop size. These
features are generated via torchaudio.compliance.kaldi.fbank [22],
utilizing HTK-style Mel scaling, no dithering, and no energy term
[23]. They are obtained from 1.3-second audio segments with 0.3
s overlap, yielding [1 × 128 × 128] spectrograms. All features are
normalized by the dataset’s mean and standard deviation.

2.3. Multi-instrument transcriber
We employ two shallow transcribers: an instrument-agnostic model and
an instrument-aware variant. Both consist of two hidden linear layers
and use sigmoid activation to output pitch probabilities. The agnostic
model, inspired by PA-DAC’s pitch conditioner [6], takes 128 input
features, equal to the number of mel-frequency bins, and produces
an output layer of 88 neurons, corresponding to pitch range A0–C8.
The instrument-aware variant extends this to predict pitch activity per

instrument class, with an output layer of [N×I] = [88×11] neurons,
where N is the number of pitches and I the number of instrument
classes.

Pitch probabilities are predicted from latent embeddings. As
illustrated in Fig. 1, these embeddings are extracted by passing
unmasked patch-level representations, derived from 1.3-second audio
segments, through the frozen context encoder.

Embeddings have dimensionality [B × Ws×Hs
Wp×Hp

× D], where B
denotes the batch size, Ws the spectrogram width (time axis), Hs the
spectrogram height (frequency axis) and, similarly, Wp and Hp are
the patch width and height respectively. D denotes the embedding
dimension. For our configuration, this corresponds to [B × ( 128

8
)2 ×

768] = [B× 256× 768], since both the spectrograms and patches are
square with Ws = Hs = 128 and Wp = Hs = 8.

Embeddings are projected onto the spectrogram space via a
transposed convolutional layer with a kernel size and stride matching
the patch size. This yields an output of [B × 1 × Ws × Hs],
ensuring a one-to-one correspondence between embedding values
and spectrogram regions.

2.4. Instrument vocabulary
Our model employs the MT3 MIDI PLUS instrument vocabulary
[10], but is trained specifically on 11 instrument classes, excluding
singing voice and drums: Piano, Chromatic Percussion, Organ, Guitar,
Bass, Strings, Brass, Reed, Pipe, Synth Lead, and Synth Pad.

3. EXPERIMENTAL SETUP
3.1. Datasets
For pretraining, we utilize a diverse collection of multi-instrument
datasets: GTZAN [24], the Violin Bach dataset [25], Mazurkas2,
and the guitar dataset by Riley et al. [26]. Maintaining identical
configurations and dataset splits as described in PA-DAC [6], this
results to an approximately 159-hour dataset.

For finetuning, end-to-end training with transcription supervision,
and probe training, we utilize the following datasets: Slakh [27],
MusicNet’s EM version [28], [29], GuitarSet [30] and URMP [31].
We adopt the official train and test splits from Slakh, while for
the remaining datasets we follow the standardized configurations
established by Chang et al. [10] and Gardner et al. [9], ensuring
compatibility with recent state-of-the-art approaches in MIAMT. The
MAESTRO dataset [32] is entirely unseen during training, with its
test set used exclusively for evaluation.

3.2. Experiments
We first pretrain the baseline JEPA framework for 200 epochs. Then,
we use the checkpoint of epoch 200 and we (1) finetune the model
for a further 100 epochs with transcription supervision while jointly
training the transcription head, (2) train from scratch end-to-end
the JEPA framework with transcription supervision, (3) train an
instrument-aware transcriber on frozen JEPA embeddings and (4)
train an instrument-agnostic transcriber on frozen JEPA embeddings.
Pretraining details and details regarding training variants (1-2) are
described in Section 3.3 while probing details for (3-4) are described
in Section 3.4.

3.3. Training details
The JEPA loss as introduced by Assran et al. [20], computes
the average ℓ2 distance between predicted and target patch-level
representations, with the objective of minimizing their discrepancy in
the embedding space.

2http://www.charm.rhul.ac.uk/index.html
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As formalized in Equation (1), for M target blocks sampled from
the input, the loss aggregates the squared ℓ2 distances between target
encoder’s representations sy(j) and predictor outputs ŝy(j) for all
patches j within each target block Bi. This objective drives the
self-supervised pretraining of the JEPA baseline model.

The transcription loss combines two components, a pitch loss and
an onset loss. The pitch loss is the Binary Cross-Entropy (BCE)
between target and predicted pitch probabilities. For instrument-aware
transcription, we employ a weighted BCE loss to address the imbalance
between active and silent frames. Frames with at least one active
instrument are assigned a weight of 0.7, while silent frames receive a
weight of 0.3. Similarly, the onset loss is computed using a weighted
BCE between extracted onset labels (derived from piano rolls or
multi-instrument labels), with a weighting of 0.9 for onset frames
and 0.1 for non-onset frames to emphasize note transitions. The total
transcription loss is defined as the sum of the pitch and onset loss
components.

Ltotal = LJEPA + α · Ltranscription (2)

While in pretraining, only the JEPA loss is optimized (Equation (1)),
variants (1-2) minimize a weighted sum of the JEPA and transcription
losses, as shown in Equation (2) where α denotes the transcription
loss weight. We set α = 10.0 to prioritize the downstream task,
as empirically, this value balanced transcription performance and
gradient stability, allowing the transcription loss to dominate (absolute
values differing by approximately 0.1–0.3) without disrupting feature
learning

All models are optimized using AdamW [33] with batch size 64.
The learning rate follows a warmup schedule with linear increase
from 0.0001 to 0.001 over 15 epochs, before decaying to 0.000001
via a cosine scheduler. Target encoder weights are updated via an
Exponential Moving Average (EMA) of the context encoder’s weights
[20], a method proven beneficial for joint embedding architectures
[18], [20], [34], [35].

3.4. Probing details
Following established practices in MIR research [6], [14], [36], we
evaluate learned representations via downstream probing. A probe is
a shallow classifier trained on frozen representations to assess their
encoded task-relevant information [37].

We employ the frozen baseline JEPA encoder at epoch 200 as
a feature extractor, training both instrument-aware and instrument-
agnostic transcription probes for 100 epochs. The models are optimized
using AdamW with a batch size of 64, learning rate of 0.0001,
and weight decay of 0.0001. We use the the Ltranscription loss from
Equation (2), with the same weighting scheme discussed in Section 3.3.
This approach allows us to assess the quality of the representations
learned via self-supervised learning while isolating the probing task
from the pretraining objective.

3.5. Evaluation details
We evaluate our models using three key metrics: note-wise F1-score,
multi-instrument F1-score and instrument recognition F1-score. We
also include comparisons with recent instrument-aware and instrument-
agnostic models where results are available: MT3 [9], YourMT3+ [10],
MR-MT3 [11], Basic Pitch [3], and PA-DAC [6]. We note that direct
comparisons should be interpreted cautiously due to differences in

Table 1: Evaluation of MIAMT-JEPA variants. Trainable indicates which
components are updated during training. F is the multi-instrument F1-score,
except for the instrument-agnostic probe (marked agn.), where it reflects note-
wise F1. IR denotes instrument recognition accuracy.

MIAMT-JEPA setting Trainable GuitarSet URMP MusicNet Slakh

JEPA Probe F IR F IR F IR F IR

(1) Finetune baseline ✓ ✓ 62.7 67.8 72.2 67.8 39.6 49.3 27.9 23.9

(2) End-to-end training ✓ ✓ 59.2 59.2 60.0 63.4 39.5 45.1 25.1 23.1

(3) Linear probe ✗ ✓ 63.5 68.0 76.8 64.5 41.2 49.4 45.1 24.0

(4) Linear probe (agn.) ✗ ✓ 70.1 - 84.3 - 54.2 - 52.3 -

Table 2: Baselines comparison across datasets. Numbers indicate multi-
instrument F1-scores except for Agnostic, where the note-wise F1-score is
reported. MAESTRO dataset is unseen by our models, in contrast to the rest
of the baselines where it is included in training.

Dataset Instrument YourMT3 MT3 MR-MT3 Basic Pitch PA-DAC JEPA Probe

GuitarSet
Guitar 91.7 78.0 62.5 - - 63.5

Agnostic - 90.0 - 77.6 49.4 70.1

URMP
Ensemble 68.0 - - - - 78.9
All - 59.0 - - - 76.8
Agnostic 81.8 77.0 - - - 84.3

MusicNet

Strings 91.3 - - - - 47.9

Winds 83.5 - - - - 35.7

All - 31.0 - - - 41.2
Agnostic - 50.0 - 62.3 36.8 54.2

Slakh
All 74.8 57.7 62.5 - - 45.1

Agnostic 84.6 75.2 67.3 42.0 43.6 52.3

MAESTRO
Piano 97.0 94.9 - - - 48.1

Agnostic - 96.0 - 71.0 - 54.2

experimental setups, model architectures, and instrument vocabularies
across studies.

Note-wise and multi-instrument F1-scores are computed using the
community-standard mir eval package [38]. To compute note-level
metrics, we convert frame estimates to note events by applying the
post-processing method introduced by Bittner et al. [3]. The only
modification we make is that we estimate onset times using our
model’s frame output. In that case, a threshold of 0.3 is used and
detected events that are shorter than 10 frames (≈ 100 ms) are removed.
For further details on the post-processing method please refer to the
original Basic Pitch paper [3]. Notes are considered correct if the
pitch is within a quarter tone and the onset is within 50 ms. Regarding
instrument-aware evaluation, we extend the note-matching criteria to
require correct instrument classification, following the methodology of
MT3 [9] and YourMT3+ [10]. This ensures comprehensive evaluation
of both pitch and instrument recognition capabilities.

4. RESULTS

4.1. Transcription performance

Table 1 details our framework’s transcription and IR performance,
reporting multi-instrument F1-scores (except note-wise for the
instrument-agnostic Probe (agn.)). The Linear Probe (variant (3)),
trained on frozen JEPA features, achieves the strongest transcription
performance. This demonstrates the effective transfer of pretrained
representations, allowing the transcriber to focus on learning pitch
and instrument mappings.

In contrast, finetuning with transcription supervision (variant (1))
shows slightly reduced transcription performance, likely due to
representation drift during joint optimization. However, it exhibits
comparable or improved IR compared to variant (3), attributed to
superior instrument encoding (4.2). End-to-end training (variant (2))
yields the weakest results, as joint optimization from scratch introduces
competing objectives.



The superior performance of frozen JEPA features indicates that
self-supervised pretraining learns musically meaningful representations
with minimal adaptation for transcription. Preserving the pretrained
feature space allows the transcriber to focus exclusively on learning
instrument and pitch mappings. On the other hand, finetuning seems
to introduce instability. While the joint objective in variant (1) is still
useful for the transcription task, it gradually degrades the pretrained
feature space. End-to-end training, variant (2), struggles further, as
neither JEPA nor the transcriber receive stable signals during early
training.

The limitations of variant (2) stem partly from its dependence on
limited supervised data. In contrast, JEPA pretraining benefits from a
much larger unannotated corpus, enabling the encoder to generalize
from a broader and more diverse set of musical content. Despite
this difference, Table 2 reveals promising generalization capabilities.
On the completely unseen MAESTRO dataset, our models perform
comparably to in-domain results, suggesting that JEPA representations
capture some aspects of music that are transferable across datasets.
Notably, on URMP, frozen JEPA Probe exceeds the performance of
MT3 and YourMT3 despite using simpler architectures and no data
augmentation or class balancing.

In addition to overall performance differences across training
paradigms, transcription quality is notably lower for underrepresented
instruments, due to limited training examples and lack of class-
balancing strategies. Addressing this remains an important future
work direction.

While performance is limited by factors like class imbalance
for underrepresented instruments and optimization constraints re-
quiring longer pretraining times and targeted augmentation, our
work highlights self-supervised pretraining as a viable solution to
the fundamental challenge of MIAMT research: severe shortage
of annotated data. It significantly reduces annotation needs while
delivering usable results. This will allow future work to rather focus
on the refinement of representations and model architectures.

4.2. Learned embeddings
To understand the structure and semantic content of learned represen-
tations, we evaluate latent embeddings using the Calinski–Harabasz
Index (CHI) [39], an unsupervised metric for cluster compactness
and separation. The higher the score, the more compact and well-
separated the clusters are. We compute CHI scores for pitch index,
pitch class (chroma), octave (pitch height), and instrument class
(timbre), extracting embeddings from the monophonic NSynth dataset
[40]. As shown in Figure 2, the encoder develops stronger clustering
along timbre and pitch height across all variants, while pitch-related
attributes remain less prominent, even with transcription supervision.
The T-SNE visualization of variant’s (1) latent space, shown in Fig. 3,
supports these insights, showing distinct instrument clusters (left)
while pitch height is mostly organized from lower to higher on the y
axis (darker to brighter colors on the right plot).

This implies that JEPA prioritizes stable macro-level features like
timbre and register over transient pitch information. When finetuning
the baseline with transcription supervision (variant (1)), instrument
clustering scores increase significantly while octave information
remains stable, confirming JEPA’s focus on high-level representation
learning. In contrast, end-to-end training (variant (2)) maintains
relatively high but reduced timbre and octave scores compared to other
variants (though still higher than pitch attributes), with no significant
improvement in pitch or chroma clustering. This implies joint training
preserves some macro-feature learning but fails to enhance encoding
of pitch information.

Fig. 2: Calinski–Harabasz index (CHI) of learned embeddings with respect to
pitch index, pitch class, instrument and octave. From left to right scores
correspond to the latent space of the pretrained JEPA baseline, variant
(1) (finetuning with supervision) and variant (2) (end-to-end training with
supervision). .

Fig. 3: Latent space t-sne visualisation coloured by instrument (left) and midi
number (right).

The consistent strength in timbre and register representations
across variants, combined with weaker pitch encoding, likely stems
from JEPA’s time-frequency masking strategy. Masking both time
and frequency regions encourages the model to predict future or
past contexts rather than concurrent feature relationships, favoring
time-stable attributes (timbre, octave) over transient ones (pitch).
Future work could explore alternative masking approaches, such as
frequency-only masking, to better balance pitch and timbre encoding
by encouraging pitch-harmony learning while maintaining temporal
stability.

5. CONCLUSION
Our work demonstrates that self-supervised learning with JEPA is a
promising direction for MIAMT, especially under limited annotation.
JEPA learns musically meaningful representations, enabling competi-
tive transcription with minimal supervision and directly addressing
the field’s bottleneck of annotation scarcity.

A key finding is that decoupling representation learning from
task-specific objectives improves performance. Frozen JEPA features
consistently outperform jointly trained variants, suggesting that task-
specific gradients can degrade the quality of learned embeddings.

Latent space analysis shows that JEPA emphasizes stable attributes
like timbre and octave over transient pitch details, likely due to its
time-frequency masking. Improving temporal precision could help
capture finer pitch dynamics and harmony relationships while retaining
long-range dependencies.

Future research should explore masking strategies that enhance
both temporal accuracy and spectral structure, and further disentangle
pitch and instrument representations. Benchmarking against large-scale
generative models will also help contextualize JEPA’s capabilities. By
refining how JEPA encodes musical time and leveraging unlabeled
audio, we move closer to transcription systems that are accurate and
generalizable, allowing researchers to focus on model design rather
than costly data collection and annotation.
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