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Abstract—Research in music understanding has extensively explored
composition-level attributes such as key, genre, and instrumentation
through advanced representations, leading to cross-modal applications
using large language models. However, aspects of musical performance
such as stylistic expression and technique remain underexplored, along
with the potential of using large language models to enhance educational
outcomes with customized feedback. To bridge this gap, we introduce
LLaQo, a Large Language Query-based music coach that leverages audio
language modeling to provide detailed and formative assessments of
music performances. We also introduce instruction-tuned query-response
datasets that cover a variety of performance dimensions from pitch
accuracy to articulation, as well as contextual performance understanding
(such as difficulty and performance techniques). Utilizing AudioMAE
encoder and Vicuna-7b LLM backend, our model achieved state-of-the-art
(SOTA) results in predicting teachers’ performance ratings, as well as
in identifying piece difficulty and playing techniques. Textual responses
from LLaQo was moreover rated significantly higher compared to other
baseline models in a user study using audio-text matching. Our proposed
model can thus provide informative answers to open-ended questions
related to musical performance from audio data.

Index Terms—Ilarge language models, music education, performance
assessment, semantical feedback, piano

I. INTRODUCTION

In the domain of Music Information Retrieval, the majority of
music understanding research has focused on composition-level
attributes such as key, tempo, genre, and instrumentation. [1]—[3]
These attributes are not only tagged individually via end-to-end
approaches but have also been the focus of foundation models and
unified music representations. Recent advances further extended to
cross-modal understanding of music, which enabled tasks such as
music captioning [4], [5] and even music reasoning [6] with the help of
large language models (LLMs). Despite these technological advances,
the nuanced aspects of music performance — such as interpreting
complex techniques, recognizing stylistic differences, and evaluating
performance quality — remain underexplored [7].

On the other hand, traditional systems for music performance
assessment [8] have primarily relied on quantitative metrics that
provide summative feedback, often in the form of scores or binary
judgments [9]-[11]. Such approaches, while beneficial for certain
applications, fall short in educational contexts where formative,
detailed and instructional feedback is essential for student development
[12], [13]. Meanwhile, performance assessment encompasses multiple
dimensions including rhythm accuracy, tone production, and expressive
dynamics, which makes semantic descriptors particularly appropriate.
Thus, we introduce LLaQo (Large Language Query-based Coach),
a pioneering approach in the domain of expressive performance
assessment that leverages the capabilities of LLMs to analyze and
assess music performances at a granular level, providing interpretative
guidance for MIR-supported music pedagogy. Constructed with
AudioMAE for audio embeddings, Vicuna-7b language backend along
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with a Q-former aligner, our model is trained on instruction-tuned
data specific to performance assessment. Our contribution! can be
summarized as follows:

1) We present the first LLM-supported music coach, addressing
performance understanding tasks including difficulty analysis,
technique analysis, composer recognition, and most importantly,
performance assessment.

2) We compiled and instruction-tuned a diverse collection of
publicly available performance-understanding datasets, and
standardized them into query-response pairs. Additionally, we
contribute a newly recorded dataset, NeuroPiano, with detailed
annotations on 12 performance dimensions.

3) Our model demonstrated superior performance in objective and
subjective evaluation tasks over existing audio-language model
baselines in performance assessment, as well as difficulty and
technique prediction.

II. RELATED WORK

The integration of large language models with audio signal
processing has been overviewed in Latif et al. [14] and Wu et al.
[15]. Pioneering audio language models (ALM) such as Pengi [16],
LTU [17] and SALMONN [18] bridge audio and speech perception
with natural language reasoning and specializes in tasks from speech
recognition to audio reasoning. Such ALMs are usually composed
of a frozen audio encoder (CLAP [19], Whisper [20]) and a frozen
causal language model (LLaMA [21], GPT2) as backend, and a
trained connection or mapping module that project the input audio
embeddings into the text token space. Given an input audio-text
pair, the models can generate free-form text to address open-ended
tasks and close-ended tasks. In the specific branch of music language
understanding, however, research has mainly focused on music context
question answering [6] and captioning [4], where models are limited to
answering questions on compositional aspects such as genre, mood or
instrumentation. On the other hand, pure LLMs showed poor musical
understanding and are only restricted to answering questions related to
the contextual background behind a musical piece [22], [23]. Models
with adequate musical performance understanding are therefore still
lacking [7].

Another challenge in the field of music understanding relates
to the availability and quality of data. Efforts have been made to
generate natural language descriptions from large-scale tag datasets
through language models, as seen in music captioning initiatives [5].
Additionally, instruction-tuning has been applied to unify disparate
music data annotations for fine-tuning LLMs [6]. In the realm of music
education, however, acquiring precise descriptors for performance
nuances proves difficult [13], whether through automatic means or
manual annotation. This task is further complicated by the inherent

ICode is available at: https:/github.com/anusfoil/LLaQo, Data is demon-
strated in project page: https:/bit.ly/3XjUOuX



Objective measures

Descriptive measures

Is the performed note accurate?

Is the performance hesitant or

Is the performed tempo stable?

Is the rhythm accurate?

Is the articulation appropriate?

Is the pedal change clean?
Is the pedal usage appropriate?

How is the tone production?

Is the contrast in dynamics

Is the balance between both
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[ Performance understanding ]

Is the recording played by a student or a master?
What’s the overall rating you would give to the
performance?

What does the student need to work on ?

[ Difficulty & Techniques ]

How would you rate the difficulty level of the piece?
What are some technical challenges of the piece?

[ Compositional Background ]

Who might be the composer of the piece?
Is the interpretation appropriate to the style of the
composition?

Fig. 1. Overall framework of our model, as well as the piano assessment rubric used to construct query-answer pairs for instruction-tuning in each dataset.

perceptural subjectivity, which can lead to bias and inconsistency
in human feedback [8], [24]. Despite these challenges, the field
of automatic music assessment has seen considerable benefits from
leveraging formative text feedback [12], which provides a richer
alternative to traditional methods that rely on simplistic summative
scoring systems [9]-[11].

III. INSTRUCTION TUNING DATASET ON
MUSIC EDUCATION

In Table I, we describe the instruction-tuned performance datasets
used to train our framework. Several types of data were utilized:

The first consisted of teachers’ free-response feedback 2 [24],
[25] that provides a holistic comment on a performance, covering
various performance dimensions or practice suggestions. This data
was transformed into query-response pairs using GPT4 according to
the instruction of an assessment rubric in Figure 1. For each piece
of feedback (around 30 to 50 words), we generated three to five QA
pairs.

The second comprised data with performance-related annotations
[26], [27], such as a specific articulation or tempo. In this case, queries
were formed based on their performance attributes, with examples
such as Is the playing using legato or staccato articulation?

The third consisted of single-rating datasets [28], [29] that come
with a summative rating. The query was designed to ask directly about
the rating, such as How would you rate the overall performance, in a
scale of 10?

The last data type comprised performance understanding data [7],
[30] that do not address the quality of a performance, but on contextual
information that is ideally obtained by a teacher or student, such as
What’s the most difficult technique in this passage? or What is the
composer and stylistic period of this piece? In total, we aggregated
around 130 hours of recording and 34k QA pairs for training.

For this project, we also recorded a student pianist dataset with
detailed teacher annotations (the NeuroPiano dataset). It consists
of short technique snippets including scales, stepwise chords, and
third dyads performed by students®. Based on the rubric in Figure 1,
we formulated 12 questions, ranging from tone production to hand
balance, in which teachers provided textual feedback and a rating
score on a scale from 1 to 6. Note that the original annotations are
in Japanese, in which we used DeepL to translate to English, and

2The CROCUS dataset is translated from Japanese to English using DeepL.
3From the NeuroPiano Music academy: www.neuropiano.org

performed a round of manual correction. The dataset is further spitted
by half for training, with the remaining half used for objective and
subjective evaluation described in Section V.

IV. MODEL ARCHITECTURE AND TRAINING

The overall structure of LLaQo is based on the APT-LLM [34]
framework, which originates from BLIP-2 framework, as shown
in Fig 1. It is comprised of an audio encoder, an audio-language
aligner, and a large language model. We use Audio-MAE [35], a 12-
layer transformer encoder that learns to reconstruct randomly-masked
spectrogram patches during training, as the audio encoder. The output
feature map from the penultimate block of Audio-MAE encodes
fine-grained patterns that’s essential for performance understanding.

The audio-language aligner connects the audio encoder to the frozen
language model. It takes in a text prompt together with audio feature
maps extracted by the audio encoder, and produces a fixed number
of acoustic embeddings. Following a Query Transformer (Q-former)
architecture, four transformer blocks constitute our audio aligner where
32 trainable query embeddings attend to the input text tokens and
extract relevant information from the audio feature maps.

The language model predicts the output text by considering the
previous generated texts and the input audio-text tokens. When
interleaving audio and text tokens, each audio clip is appended with
a learnable token (AUDIO) to indicate the beginning of audio tokens.
As shown in Figure 1, the query text pass through both the Q-former
tokenizer and LLM’s tokenizer and its word embedding layer. We
parameterize the language model by Vicuna-7b [36].

A. Learning Objective

Consider an audio-text pair (a,t) and their response g. The audio
input a is transformed into a sequence of embeddings Xaudgio using the
encoder A, and aligner M. These embeddings are then concatenated
with text embeddings X, derived from input text ¢ using the
embedding layer W, to form the combined sequence Xaudiosext.- More
precisely, the embeddings are concatenated as follows:

Xaudio;lexl = C(MG(A¢ (CL)), W¢ (t))7 (1)

where C' denotes the concatenation function.

The learning objective £ of our model is to optimize the parameters
¢, 6, and ¢ to maximize its ability to predict the next token based
on the concatenated embeddings by minimizing cross-entropy loss:

L+|g|

L= Z logp¢>,0,w(xi‘Xaudio;texl, Xpred,<i)7 )
i=L+1



Dataset Recordings QA pairs  Level Feedback or Annotation Repertoire
Expert-Novice ( [24]) 83 2.4k beginner Full verbal feedback and rat- Pop song arrangements
ings
CROCUS-piano ( [25]) 22 616 intermediate, ad-  Verbal feedback Western classical concert repertoire
vanced
Con Espressione ( [31]) 50 4.3k master, MIDI Description of expressive  Western classical concert repertoire
character
Expressive Musical Ges- 106 845 intermediate Labels of performance in- ‘Trdumerei’ by R. Schumann
tures ( [26]) struction (e.g. slow, staccato)
Burgmuller ( [32]) 25 114 intermediate Annotation of error regions Burgmuller Etudes
Music Shape Dataset ( 2.3K 11k intermediate Annotations of dynamics and ~ Schmitt exercise
27D articulation changes
PISA ( [28]) 61 256 beginner- Single rating score Folk songs arrangements, easy classical
intermediate pieces
YCU-PPE ( [29]) 2.6K 7.7k beginner Rating score from 3 judges Chinese folk song arrangements
PLD-expertise ( [7], 1.4k 2k beginner and ad- Performing skill level based  Western classical concert repertoire
[33]) vanced on the uploader’s profile
PLD-techniques ( [7]) 223 223 mixed Piano Technique labeling (e.g.  Music segments of common piano tech-
arpeggio, octave) niques such as scales, ornaments, re-
peated notes, etc.
CIPI ( [30]) 736 2.2k intermediate to  Henle Difficulty labeling on ~ Western classical concert repertoire
advanced a scale of 9
NeuroPiano (ours) 104 3.3k advanced text response on 12 specific ~ Short technique snippets including

aspects including articulation blocked
and tempo, as well as rating

score on a scale of 6

scales, arpeggios,
chords, octaves

dyads,

TABLE I
PUBLIC DATASETS RELATED TO PERFORMANCE ASSESSMENT AND PERFORMANCE UNDERSTANDING, INSTRUCTION-TUNED FOR TRAINING OUR MODEL.

where L is the length of X,udiosext. This formulation allows us to
directly leverage the audio-text context to predict subsequent tokens.
B. Experiment setup

Pretraining: We first pretrain the audio aligner module to bridge
the audio modality and the text modality. The Qformer audio aligner
is trained with audio-text pairs from AudioSet and WavCaps, with
the triplet objective of audio-text matching, audio-grounded text
generation, and audio-text contrastive as described in [34]. This step
is performed on four NVIDIA A100 (40G) and trained for 120 hours.
General audio multi-task finetuning: The first-stage finetuning
trains the whole pipeline as described in the previous section. It
is performed on general audio tasks such as audio tagging, audio
captioning, audio question answering, facilitated by datasets including
AudioSet, WavCaps, and Clotho. Furthermore, it learns from multiple
audio clips through few-shot audio classification and natural language
audio reasoning, where it predicts sound event labels by juxtaposing
more than one audio clips with input text. This step is performed on
four NVIDIA A100 (40G) and trained for 120 hours.

LLaQo data finetuning: The final round of finetuning is trained with
intruction-tuned datasets in Table I, with (a, ¢, g) triplets as described
in Equation 2. This last step is performed on one NVIDIA H100
(80G) GPU and trained for 120 hours.

Adam optimiser was used for all model training described above.
We applied linear warmup strategy in the first 2K steps and used a
cosine annealing learning rate of 5 x 10°. For the AudioMAE input,
we resampled all data into 32kHz and computed Kaldi filterbank with
128 mels and a frameshift of 10ms. Due to resource limitation, our
input is limited to a filterbank of length 4096 (40 seconds).

V. EVALUATION AND DISCUSSIONS

A. Compared baselines

For all tasks, we compared our model against two open-source audio-
language models capable of answering audio QA tasks, namely Listen,

Think and Understand (LTU-AS) [17], which is an improvement of
the LTU [37] that incorporates Whisper [20] and low-rank adaptors
to the language model, as well as Music Understanding LLaMa
(MuLLaMA) [4], which is trained on a generated MusicQA dataset
and utilizes MERT encoder for audio representation to answer music-
related questions and generate captions for tracks.

B. Objective evaluation

Given an audio input, we first evaluated the performance of each
model in terms of its ability to answer open and closed questions
regarding Performance assessment, Difficulty, and Technique. We
performed three iterations of objective evaluation to ensure that the
reported results were stable.

To evaluate Performance assessment, each model was required to
provide open responses to 12 questions related to the quality of a
performance (see Figure 1), as well as an integer score from 1 to 6
(e.g., with the prompt ‘How would you rate the consistency of the
tempo on a scale of 1 to 62°) on the evaluation set of the NeuroPiano
dataset. Model performance on open questions was assessed in terms
of semantic validity and given in terms of common NLP metrics,
namely BLEU (B-U) (an average of BLEU1, BLEU2, BLEU3 and
BLEU4), SPICE [38] and BERT-Score (BERT-S). We also measured
sentiment similarity (SS), which is quantified by the cosine similarity
of a 5-class sentiment vector between teachers’ feedback and model
output as given by a sentiment analysis model*. Performance on closed
questions was quantified using mean absolute error (MAE), which
measures the deviation from the predicted rating with the teacher
rating, and prompt following rate (PFR), which defines the ratio in
which the model actually produced a numerical rating. Given that
baseline models LTU and Mu-LLaMa are not specifically trained for

“https://huggingface.co/nlptown/bert- base- multilingual-uncased-sentiment



Performance assessment Difficulty Technique
Model PFR?T MAE| SSt B-U?T SPICE?T BERT-S1 Acco T Acer 1 Acco T
LLaQo 0.99+0.02 0.97+0.10 0.52+£0.08 0.09+0.02 0.12+0.04 0.88+0.07 0.21+0.10 0.55+£0.15 0.374+0.12
LTU 0.98+£0.01 1.39+0.08 0.32+0.05 0.06+0.03 0.07£0.10 0.87£0.12 0.16+0.09 0.34£0.13  0.16£0.07
MU-LLaMa 0.66+0.07 1.81+0.15 0.40£0.10 0.06+0.05 0.12+£0.06 0.88+0.09 0.11+0.12 0.26£0.18  0.2040.10
TABLE II

COMPARISON OF MODELS ON THE METRICS OF THE EVALUATED CONTENT. NUMBERS INDICATE MEAN AND STANDARD DEVIATION. 1 INDICATES LARGER
VALUE FOR BETTER PERFORMANCE, AND VICE VERSA.

numerical predictions, we allowed a maximum of 5 attempts for them
to generate a numerical rating.

To evaluate Difficulty and Technique, we followed the same
procedure as in [7]. For Difficulty, each model was required to produce
an integer score from 1 to 9 given the prompt ‘How would you rate
the difficulty of the piece on a scale of 97’ on the CIPI dataset [30].
Model performance was quantified in terms of proportion of exact
matches (Accp), and proportion of matches that deviate by at most
1 (Accy). For Technique, each model was required to select 1 of 7
playing techniques in response to the prompt ‘What'’s the most salient
technique used in this recording? Choose from trills, octaves...’ on
the PLD-techniques dataset [7], and evaluated in terms of Acco.

The results, presented in Table IV-B, reveal that our proposed
LLaQo model achieved the best performance amongst all models
with regards to all objective metrics. Numerical predictions by LLaQo
was within a MAE of less than 1 on a scale of 6, indicating a close
alignment between its predictions and the teachers’ ground truth. Also,
while LLaQo and LTU were able to consistently return numerical
ratings, MU-LLaMa struggled, as shown by a low PFR score.

Generated repsonses by LLaQo also showed substantially higher
sentiment similarity with the ground truth (0.52) compared to LTU and
MU-LLaMA. However, the BLEU score was relatively low across all
models compared to typical values of 0.2-0.3 [4] in music captioning
tasks. This could be attributed to the expansive semantic space used
by the teacher for feedback, where traditional NLP metrics might not
have been suited for evaluating feedback responses in this context.
Likewise, all models achieved similar BERT-S scores possible because
all model responses remained on-topic.

Lastly, while LLaQo surpassed the baseline models for difficulty
and technique prediction by a wide margin, it is interesting to note
that it did not outperform non-LLM based approaches on the same
dataset (e.g. [30] achieved Acco = 0.39 in Difficulty, [7] reported
Acco = 047 in Technique).

C. Subjective feedback evaluation

We conducted a human-based evaluation using audio-text matching
[6] to subjectively evaluate the quality of textual answers provided by
each model. Given a query and audio, participants (20 music students
and teachers) rated the response from each model on a 4-point scale
in terms of their relevance to the question and alignment with the
performance content. In particular, three categories of open-ended
questions were matched:

1) Feedback: What's your overall feedback on this performance?,

or How clean is the attack?, or Is the dynamics change natural?

2) Suggestion: What does the student need to work on?

3) Appreciation: How would you describe the emotional intent of

the performance?
Participants rated 250 randomly sampled questions on Feedback and
Suggestion from the NeuroPiano dataset, as well as 250 questions
on Feedback, Suggestion, and Appreciation from the Expert-Novice,
CROCUS and YCU-PPE datasets.

NeuroPiano-data Other performance datasets
Mode!
[ LLaQo
—/ v
[ MU-LLaMa

Vodel
=3 LLaQo

35 — U 35
[ MU-LLaMa

Average Rating
I
N
&

feedback suggestion feedback suggestion appreciation

Fig. 2. Audio-text matching subjective evaluation result of three models, with
errors bars indicating standard error of the mean.

Results of the audio-text matching task are shown in Figure 2. In
terms of Suggestions, participants rated our proposed LLaQo model
significantly higher than LTU and MU-LLaMa in both NeuroPiano and
Other datasets (Mann-Whitney U-test, NeuroPiano: p(corrected) =
0.0274 and p = 0.0013, respectively; Other: p = 0.0382 and p =
0.0028, respectively). Similarly, LLaQo was rated the highest for
Feedback in both datasets, scoring significantly higher than LTU
in both (p = 7.2 x 107* and p = 1.9 x 10—4, respectively) and
MU-LLaMa in Others (p = 0.0028). Lastly, participants gave highest
ratings for LLaQo in questions related to Appreciation, though the
differences were not statistically significant.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the LLaQo model, designed for music-
education related question answering, which is the first study that
use Large Language Model to support music pedagogy. Our model
offers performance feedback and suggestions, as well as information
on performance techniques and piece difficulty, and has demonstrated
superior performance in objective and subjective evaluation tasks
over existing models such as LTU and MU-LLaMa. Additionally, we
contributed a collection of instruction-tuned music question answering
datasets, including the recorded and annotated in-house, and previously
unreleased NeuroPiano dataset. Though our model is currently trained
on piano sets, our framework can be easily extended towards other
instruments, when large-scale assessment data become available.
Future work should also consider timestamp positioning of feedback,
as the ability to correctly locate an error, (e.g. the first measure, the
last beat) is crucial for informative feedback.
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